Vector Quantization for Spatiotemporal Sub-Band Coding by Pasquale Romano Jr

Total Page:16

File Type:pdf, Size:1020Kb

Vector Quantization for Spatiotemporal Sub-Band Coding by Pasquale Romano Jr Vector Quantization for Spatiotemporal Sub-band Coding by Pasquale Romano Jr. A.B., Computer Science Harvard University Cambridge, Massachusetts 1987 SUBMITTED TO THE MEDIA ARTS AND SCIENCES SECTION IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF MASTER OF SCIENCE AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 1990 @Massachusetts Institute of Technology 1989 All Rights Reserved Signature of the Author . ..... ... .. f Pasquale Romano Jr. Media Arts and Sciences Section September 28, 1989 In Certified by ............ ............. '............... / .... d w....... .p. .. a... Andrew B. Lippan.1u/ Lecturer, Associate Director, Media Laboratory Thesis Supervisor . I P_ Accepted by Stephen A. Benton Chairman Departmental Committee on Graduate Students mAssACHUSETTS INS OF TEcwQLOGY FEIB 27 1990 Rotert Vector Quantization for Spatiotemporal Sub-band Coding by Pasquale Romano Jr. Submitted to the Media Arts and Sciences Section on September 28, 1989 in partial fulfillment of the requirements of the degree of Master of Science at the Massachusetts Institute of Technology Abstract This thesis investigates image coding using a combination of sub-band analysis/synthesis techniques and vector quantization. The design of a vector quantizer for image sub-bands is investigated, and the interplay between multi-rate filter banks and the vector coder is examined. The goal is twofold, first, a vector quantizer that is bounded by a distortion criterion versus an apriori fixed limit is essential to more optimally allocate bits in a sub- band coding system. This is due to the dynamic nature of the energy distribution in the sub-bands. Second, parameters for the vector quantizer that are psychophysically and statistically well matched to the characteristics of image sub-bands must be determined. Chrominance information is treated independantly due to reduced acuity in humans to chroma information. Ultimately a moving picture coding system is proposed which affords significant bit rate reductions while maintaining a high degree of flexibility with respect to the feature set required in an interactive multi-media environment. Wherever applicable, the tradeoffs between coding efficiency and flexibility are discussed. Issues involving source material and coder/decoder complexity are also examined. Thesis Supervisor: Andy Lippman Title: Lecturer, Associate Director, Media Laboratory This work was supported in part by Columbia Pictures Entertainment Incorporated, Paramount Pictures Corporation and Warner Brothers Incorporated. Contents 1 Introduction 12 2 Sub-band Analysis 17 2.1 Modeling the Human Visual System Using Spatiotemporal Sub-bands 18 2.2 Temporal Source Model Considerations .. ............... 20 2.3 Sub-band Transforms and Image Coding ............. ... 22 2.3.1 Perfect Reconstruction Multi-rate Filter Banks ......... 24 2.3.2 Pyramid Coding ....... 30 2.3.3 Temporal Band Splitting ..................... 33 3 Vector Quantization 51 3.1 Background ........ ................................ 52 3.2 Tree Based Algorithms for Vector Quantization . 55 3.2.1 H istory ........... ........ 3.2.2 Implementation Specifics ......... ..... 58 3.3 Error Limit Coding ... ............. 3.4 Jointly Coding Spatial Detail in QMF pyramids 4 Chrominance Coding 4.1 Color Vision .... ........ ........ 4.2 Source Model Considerations .. ...... ... ...... ... 71 4.3 Using Vector Quantization to Code Chrominance Information 5 A Spatiotemporal Sub-band Coding System 5.1 System Overview . ....... ....... ....... .. 5.2 Preprocessing ... .... .. .... ... .... 80 5.3 Luminance Sub-band Analysis . ...... 84 5.4 Encoding ... ...... .. 85 5.5 Decoding ......... ... 91 5.6 Sub-band Synthesis .. ... 91 5.7 Post Processing .. ... .. 92 5.8 Experimental Results ... .. 92 6 Conclusions and Future Work 98 6.1 Concluding Remarks ...................... ..... 98 6.2 Future Work ................................ 100 A Computational Requirements of Spatiotemporal Sub-band Trans- forms 101 A.1 Spatial QMF pyramid Transforms ............... ..... 101 A.2 Temporal QMF Sub-band Transforms ........ .......... 104 A .3 Sum m ary ........ ............. ............. 105 B Acknowledgments 106 List of Figures 2.1 Arbitrary M band analysis/synthesis system. 25 2.2 Top: Notched 2way band splitter. Middle: Overlapped 2way band splitter. Bottom: Ideal band splitter .................. 26 2.3 Aliasing as a result of decimating the pictured spectrum (top) by a factor of 2 . .. 27 2.4 9 tap QMF analysis/synthesis bank [42]. Top Left: Impulse re- sponse of the low pass filter. Top Right: Impulse response of the high pass filter. Bottom: Magnitude response of the two filters pictured above displayed simultaneously. ..................... 32 2.5 Frequency domain subdivisions in a typical 3 level QMF pyra- mid. LL denotes lowpass filtering vertically and horizontally. LH de- notes lowpass filtering vertically an highpass filtering horizontally. HL denotes highpass filtering vertically and lowpass filtering horizontally. HH denotes highpass filtering both horizontally and vertically. .... 34 2.6 Top: Original image from the sequence "Alley". Bottom: Pyramid decomposition of the above image corresponding to the frequency do- main subdivisions shown in Figure 2.5. Level 1 Gain = 16. Level 2 Gain = 8. Level 3 Gain = 4. ........... ........... 35 2.7 2 way band splitting filter bank (15 tap) used recursively to achieve the 4 way split - Left Column: Analysis transform basis functions. Right Column: Synthesis transform basis functions ... 37 2.8 Magnitude response of the 2 way band splitting filter bank - Top: Magnitude response of the analysis bank (15 tap). Bottom: Magnitude response of the synthesis bank (3 tap). ........ ... 38 2.9 5 way band splitting filter bank (7 tap) - Left Column: Analysis transform basis functions. Right Column: Synthesis transform basis functions ....... ....................... .... 39 2.10 5 way band splitting filter bank (7 tap) - Top: Magnitude re- sponse of the analysis bank. Bottom: Magnitude response of the synthesis bank. ... ....................... .... 40 2.11 5 way band splitting filter bank (13 tap) - Left Column: Anal- ysis transform basis functions. Right Column: Synthesis transform basis functions ............................... 45 2.12 5 way band splitting filter bank (13 tap) - Top: Magnitude response of the analysis bank. Bottom: Magnitude response of the synthesis bank. .............................. 46 2.13 13 frame excerpt from the sequence "Table Tennis. ...... 47 2.14 5 sub-bands resulting from applying the 7 tap 5 band trans- form pictured in Figures 2.9 and 2.10 to the middle 7 frames pictured in Figure 2.13. Top Left: Band 0. Top Right: Band 1 (gain = 2). Middle Left: Band 2 (gain = 3). Middle Right: Band 3 (gain = 5). Bottom: Band 5 (gain = 6). ............... 48 2.15 5 sub-bands resulting from applying the 13 tap 5 band trans- form pictured in Figures 2.9 and 2.10 to the frames pictured in Figure 2.13. Top Left: Band 0. Top Right: Band 1 (gain = 2). Middle Left: Band 2 (gain = 3). Middle Right: Band 3 (gain = 5). Bottom: Band 5 (gain = 6). .... .... ... .... ... 49 2.16 Top: Original. Middle Left: 13 tap analysis/synthesis bank w/bands 2-4 vector coded. Middle Right: 7 tap analysis/synthesis bank w/bands 2-4 vector coded. Bottom Left: Error signal resulting from 13 tap analysis/synthesis system w/vector coding (gain = 8). Bottom Right: Error signal resulting from 7 tap analysis/synthesis w/vector coding (gain = 8). ......... ........... 50 3.1 Kd-Tree: A typical Kd-Tree (K = 2) viewed as both a binary tree and a subdivided 2 dimensional space. ................. 57 3.2 Variance "Cardiogram": Variance of selected sub-bands plotted as a function of time for the test sequence "Alley". ........ .... 62 3.3 Histograms of selected sub-bands. Top Left: Histogram of the LH channel of pyramid level 1. Top Right: Histogram of the LH channel of pyramid level 2. Bottom: Histogram of the LH channel of pyramid level 3. Note that all of the above originate from a selected pyramid assembled from the test sequence "Table Tennis" ...... 63 3.4 Edge Orientation: Probability distribution of the angle (with re- spect to horizontal) of edges for an outdoor scene containing man-made structures (from F. Kretz). ........................ 66 4.1 Contrast sensitivity as a function of spatial frequency for the red-green chromatic grating and a green monochromatic grating [30] ............................... 69 4.2 Contrast sensitivity as a function of spatial frequency for the blue-yellow chromatic grating and a yellow monochromatic grating [30] .................. 69 4.3 Gaussian decimation/interpolation filter applied to the chromi- nance channels. Top: Impulse response. Bottom: Magnitude re- sponse........... .................................... 74 4.4 Top Row: Luminance. Middle Row: I. Bottom Row: Q 75 5.1 High Level Codec Block Diagram. .. .... ... .... .... 8 1 5.2 Encoder. ................. .. ... .... ... .... 82 5.3 Decoder. ................. ..... ...... ..... 83 5.4 Partitioned Luminance Spectrum. .... ...... ..... .. 86 5.5 Retained Luminance Sub-bands. .. .... .... 5.6 Excerpts From the Test Sequence "Alley" ..... 5.7 Excerpts From the Test Sequence "Table Tennis" List of Tables 2.1 Bit rate and vector quantizer parameters for bands 2-4 resulting from the 13 tap analysis/synthesis filter bank. Note: Maximum error clamped to specific SN R 's. ........ ........ ....... 43 2.2 Bit rate and vector quantizer parameters for bands 2-4 resulting from the 7
Recommended publications
  • Review of the State of Infrared Detectors for Astronomy in Retrospect of the June 2002 Workshop on Scientific Detectors for Astronomy
    Review of the state of infrared detectors for astronomy in retrospect of the June 2002 Workshop on Scientific Detectors for Astronomy. Gert Fingera and James W. Beleticb a European Southern Obseravatory, D-85748 Garching, Germany b W. M. Keck Observatory 65-1120 Mamalahoa Hwy., Kamuela, Hi 96743, USA ABSTRACT Only two months ago, in June 2002, a workshop on scientific detectors for astronomy was held in Waimea, where for the first time both experts on optical CCD’s and infrared detectors working at the cutting edge of focal plane technology gathered. An overview of new developments in optical detectors such as CCD’s and CMOS devices will be given elsewhere in these proceedings [1]. This paper will focus on infrared detector developments carried out at the European Southern Observatory ESO and will also include selected highlights of infrared focal plane technology as presented at the Waimea workshop. Three main detector developments for ground based astronomers are currently pushing infrared focal plane technology. In the near infrared from 1 to 5 mm two technologies, both aiming for buttable 2Kx2K mosaics, will be reviewed, namely InSb and HgCdTe grown by LPE or MBE on Al2O3, Si or CdZnTe substrates. Blocked impurity band Si:As arrays cover the mid infrared spectral range from 8 to 28 mm. Since the video signal of infrared arrays, contrary to CCD’s, is DC coupled, long exposures with IR arrays are extremely susceptible to drifts and low frequency noise pick- up down to the mHz regime. New techniques to reduce thermal drifts and suppress low frequency noise with on-chip reference pixels will be discussed.
    [Show full text]
  • Absolute Radiant Power Measurement for the Au M Lines of Laser-Plasma Using a Calibrated Broadband Soft X-Ray Spectrometer with Flat-Spectral Response Ph
    Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response Ph. Troussel, B. Villette, B. Emprin, G. Oudot, V. Tassin, F. Bridou, Franck Delmotte, M. Krumrey To cite this version: Ph. Troussel, B. Villette, B. Emprin, G. Oudot, V. Tassin, et al.. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat- spectral response. Review of Scientific Instruments, American Institute of Physics, 2014, 85 (1), pp.013503. 10.1063/1.4846915. hal-01157538 HAL Id: hal-01157538 https://hal.archives-ouvertes.fr/hal-01157538 Submitted on 16 Nov 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW OF SCIENTIFIC INSTRUMENTS 85, 013503 (2014) Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response Ph. Troussel,1 B. Villette,1 B. Emprin,1,2 G. Oudot,1 V. Tassin,1 F. Bridou,2 F. Delmotte,2 and M. Krumrey3 1CEA/DAM/DIF, Bruyères le Châtel, 91297 Arpajon, France 2Laboratoire Charles Fabry, Institut d’Optique, CNRS, University Paris-Sud, 2, Avenue Augustin Fresnel, RD128, 91127 Palaiseau Cedex, France 3Physikalisch-Technische Bundesanstalt (PTB), Abbestr.
    [Show full text]
  • Template BR Rec 2005.Dot
    Report ITU-R M.2442-0 (11/2018) Current and future usage of railway radiocommunication systems between train and trackside M Series Mobile, radiodetermination, amateur and related satellite services ii Rep. ITU-R M.2442-0 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio- frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Reports (Also available online at http://www.itu.int/publ/R-REP/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • Federal Communications Commission
    Vol. 80 Thursday, No. 127 July 2, 2015 Part IV Federal Communications Commission 47 CFR Parts 2, 15, 80, 90, et al. WRC–12 Radiocommunication Conference (Geneva 2012); Proposed Rule VerDate Sep<11>2014 21:32 Jul 01, 2015 Jkt 235001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\02JYP2.SGM 02JYP2 asabaliauskas on DSK5VPTVN1PROD with PROPOSALS 38316 Federal Register / Vol. 80, No. 127 / Thursday, July 2, 2015 / Proposed Rules FEDERAL COMMUNICATIONS D Electronic Filers: Comments may be audio format), send an email to fcc504@ COMMISSION filed electronically using the Internet by fcc.gov or call the Consumer & accessing the ECFS: http:// Governmental Affairs Bureau at 202– 47 CFR Parts 2, 15, 80, 90, 97, and 101 fjallfoss.fcc.gov/ecfs2/. 418–0530 (voice), 202–418–0432 (tty). D Paper Filers: Parties that choose to [ET Docket No. 15–99; FCC 15–50] Summary of Notice of Proposed file by paper must file an original and Rulemaking WRC–12 Radiocommunication one copy of each filing. If more than one Conference (Geneva 2012) docket or rulemaking number appears in 1. In this Notice of Proposed the caption of this proceeding, filers Rulemaking (WRC–12 NPRM), the AGENCY: Federal Communications must submit two additional copies for Commission proposes to amend parts 2, Commission. each additional docket or rulemaking 15, 80, 90, 97, and 101 of its rules to ACTION: Proposed rule. number. implement allocation decisions from the D Filings can be sent by hand or Final Acts of the World SUMMARY: In this document, the messenger delivery, by commercial Radiocommunication Conference Commission proposes to implement overnight courier, or by first-class or (Geneva, 2012) (WRC–12 Final Acts) and certain allocation changes from the overnight U.S.
    [Show full text]
  • Enhancement of Laser to X-Ray Conversion by a Double-Foil Gold Target E-Mail: [email protected] and [email protected]
    IOP View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences Plasma Physics and Controlled Fusion Plasma Physics and Controlled Fusion Plasma Phys. Control. Fusion Plasma Phys. Control. Fusion 57 (2015) 075011 (7pp) doi:10.1088/0741-3335/57/7/075011 57 Enhancement of laser to x-ray conversion 2015 by a double-foil gold target © 2015 IOP Publishing Ltd Z Y Ge1, R Ramis2, X H Yang1, T P Yu1, B B Xu1, Y Zhao1, H B Zhuo1, Y Y Ma1, W Yu3 and X J Peng4 PPCF 1 College of Science, National University of Defense Technology, Changsha 410073, People’s Republic of China 075011 2 E.T.S.I. Aeronáuticos, Universidad Politécnica de Madrid, Madrid 28040, Spain 3 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, Z Y Ge et al People’s Republic of China 4 Institute of Applied Physics and Computational Mathematics, Beijing 100088, People’s Republic of China Enhancement of laser to x-ray conversion by a double-foil gold target E-mail: [email protected] and [email protected] Printed in the UK Received 30 January 2015, revised 10 May 2015 Accepted for publication 19 May 2015 Published 18 June 2015 PPCF Abstract A novel double-foil configuration is proposed to improve the laser to x-ray conversion 10.1088/0741-3335/57/7/075011 efficiency from laser irradiating a solid target. One-dimensional radiation hydrodynamic simulations show that the total x-ray conversion efficiency for the double-foil target is as high as 54.7%, which has a 10% improvement compared with the normal target.
    [Show full text]
  • Calibrated Landsat ETM+ Nonthermal-Band Image Mosaics of Afghanistan
    In cooperation with U.S. Agency for International Development Calibrated Landsat ETM+ Nonthermal-Band Image Mosaics of Afghanistan By Philip A. Davis Open-File Report 2006-1345 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 20192 2006 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Davis, P. A., 2006, Calibrated Landsat ETM+ nonthermal-band image mosaics of Afghanistan, U.S. Geological Survey Open-File Report 2006-1345, 18 p. [http://pubs.usgs.gov/of2006/1345/ ]. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. 2 Contents Introduction .........................................................................................................................................................................4 Characteristics of Landsat ETM+ Satellite Image Data ..............................................................................................4
    [Show full text]
  • Introducing the Goes-M Imager
    INTRODUCING THE GOES-M IMAGER Timothy J. Schmit and Elaine M. Prins NOAAlNESDIS Office of Research and Applications Advanced Satellite Products Team Madison, Wisconsin Anthony J. Schreiner Cooperative Institute for Meteorological Studies Madison, Wisconsin ' James J. Gurka NOAAlNESDIS Office of System Development Camp Springs, Maryland Abstract al. 1998; Prins et al. 1998). The current Imager obtains information from four infrared bands (Table 1) and one The latest operational satellite in the GOES series, visible band (Menzel and Purdom 1994). The next satel­ GOES-M, was launched on 23 July 2001. It achieved geo­ lite in the operational GOES series is GOES-12, which stationary orbit on 12 August 2001, and hence is referred was launched 23 July 2001. The GOES-I2/N/OIP Imagers to as GOES-12. The Imager on GOES-12 has been modi­ have been modified to add a band centered at 13.3 f.Lm fied from the previous four imagers in this series. One and improve north-south spatial resolution of a spectral­ change is the addition of a spectral band centered at 13.3 ly modified 6.5 f.Lm band. The addition of the 13.3 f.Lm pm. The GOES-12 Imager also includes a spectrally mod­ band comes at the expense of eliminating the 12 f.Lm band ified 6.5 pm band with an improved spatial resolution on the Imagers. Originally the loss of this band was from 8 km to 4 km at the sub-satellite point. The addition scheduled for only one satellite. However, budgetary con­ of the 13.3 pm band comes at the expense of eliminating straints did not allow for a six-channel imager.
    [Show full text]
  • Thz Low Resolution Spectroscopy for Astronomy Gordon J
    IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, VOL. 1, NO. 1, SEPTEMBER 2011 241 THz Low Resolution Spectroscopy for Astronomy Gordon J. Stacey (Invited Paper) Abstract—The THz spectral regime provides a wide range of new astrophysical discoveries, Section IV is a discussion of the spectral lines that are invaluable probes of star formation and merits of direct detection systems, Section V gives examples of AGN activity in galaxies both in the local Universe and at the moderate resolving power direct detection systems that are used earliest times. We review the utility of these lines, give examples of the science they deliver, and detail the properties of successful for astrophysical experiments today, and Section VI discusses low resolution direct detection spectrometers for work in the THz some of the prospects for future work. regime. We finish with a discussion of the exciting new science we expect with the next direct detection generation spectrometers on II. ASTROPHYSICAL PROBES WITHIN THE THZ BANDS new facilities such as SOFIA, CCAT, SPICA, and ALMA. A. Fine-Structure Lines Index Terms—Direct detection receivers, extragalactic spec- troscopy, fine-structure lines, TH spectroscopy. Atoms or ions with ground state electronic configurations that contain valence electrons will have their configurations ordered by the residual electrostatic interaction into terms that differ in I. INTRODUCTION the total (vector) orbital angular momentum and HE THz spectrum, here loosely defined as frequencies total (vector) spin angular momentum .Theseterms T between 600 GHz and 6 THz, contains a plethora of are donated by , where the superscript is equivalent readily detectable spectral lines that are important diagnostics to the number of levels into which the term is split, and P de- for both the physical and chemical conditions of the gas and notes the total orbital angular momentum of the electronic term the sources of energy within astrophysical environments.
    [Show full text]
  • 1.1-Μm Band Extended Wide-Bandwidth Wavelength-Swept Laser Based on Polygonal Scanning Wavelength Filter
    sensors Communication 1.1-µm Band Extended Wide-Bandwidth Wavelength-Swept Laser Based on Polygonal Scanning Wavelength Filter Gi Hyen Lee 1,†, Soyeon Ahn 1,†, Jinhwa Gene 2 and Min Yong Jeon 1,2,* 1 Department of Physics, College of Natural Sciences, Chungnam National University, 99 Daehak-ro Yuseong-gu, Daejeon 34134, Korea; [email protected] (G.H.L.); [email protected] (S.A.) 2 Institute of Quantum Systems (IQS), Chungnam National University, 99 Daehak-ro Yuseong-gu, Daejeon 34134, Korea; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: We demonstrated a 1.1-µm band extended wideband wavelength-swept laser (WSL) that combined two semiconductor optical amplifiers (SOAs) based on a polygonal scanning wavelength filter. The center wavelengths of the two SOAs were 1020 nm and 1140 nm, respectively. Two SOAs were connected in parallel in the form of a Mach-Zehnder interferometer. At a scanning speed of 1.8 kHz, the 10-dB bandwidth of the spectral output and the average power were approximately 228 nm and 16.88 mW, respectively. Owing to the nonlinear effect of the SOA, a decrease was observed in the bandwidth according to the scanning speed. Moreover, the intensity of the WSL decreased because the oscillation time was smaller than the buildup time. In addition, a cholesteric liquid crystal (CLC) cell was fabricated as an application of WSL, and the dynamic change of the first-order reflection of the CLC cell in the 1-µm band was observed using the WSL. The pitch Citation: Lee, G.-H.; Ahn, S.; Gene, J.; jumps of the reflection band occurred according to the electric field applied to the CLC cell, and Jeon, M.-Y.
    [Show full text]
  • Mid-Infrared Astronomy with the E-ELT: Performance of METIS
    Mid-infrared astronomy with the E-ELT: Performance of METIS S. Kendrewa, L. Jolissainta, B. Brandla, R. Lenzenb, E. Pantinc, A. Glassed, J. Blommaerte, L. Venemaf, R. Siebenmorgeng, F. Molsterh aLeiden Observatory, University of Leiden, PO Box 9513, 2300 RA Leiden, Netherlands; b Max Planck Institute for Astronomy, K¨onigstuhl 17, 69117 Heidelberg, Germany; cCEA Saclay, Gif-sur-Yvette, 91191 cedex, France; dUK Astronomy Technology Centre, Royal Observatory of Edinburgh, Blackford Hill, Edingburgh EH9 3HJ, United Kingdom; eKatholieke Universiteit Leuven, Institute of Astronomy, Celestijnenlaan 200D Bus 2401, 3001 Leuven, Belgium; fAstron, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, Netherlands; gESO, Karl SchwarzschildStrasse 2, 85748 Garching, Germany. hNOVA,PO Box 9513, 2300 RA Leiden, Netherlands. ABSTRACT We present results of performance modelling for METIS, the Mid-infrared European Extremely Large Telescope Imager and Spectrograph. Designed by a consortium of NOVA (Netherlands), UK Astronomy Technology Centre (UK), MPIA Heidelberg (Germany), CEA Saclay (France) and KU Leuven (Belgium), METIS will cover the atmospheric windows in L, M and N-band and will offer imaging, medium-resolution slit spectroscopy (R 1000- 3000) and high-resolution integral field spectroscopy (R 100,000). Our model uses a detailed set of∼ input parameters for site characteristics and atmospheric profiles,∼ optical design, thermal background and the most up-to-date IR detector specifications. We show that METIS will bring an orders-of-magnitude level improvement in sensitivity and resolution over current ground-based IR facilities, bringing mid-IR sensitivities to the micro- Jansky regime. As the only proposed E-ELT instrument to cover this entire spectral region, and the only mid-IR high-resolution integral field unit planned on the ground or in space, METIS will open up a huge discovery space in IR astronomy in the next decade.
    [Show full text]
  • GREAT: the SOFIA High-Frequency Heterodyne Instrument
    A&A 542, L1 (2012) Astronomy DOI: 10.1051/0004-6361/201218811 & c ESO 2012 Astrophysics GREAT: early science results Special feature Letter to the Editor GREAT: the SOFIA high-frequency heterodyne instrument S. Heyminck1,U.U.Graf2,R.Güsten1, J. Stutzki2,H.W.Hübers3,4, and P. Hartogh5 1 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany e-mail: [email protected] 2 I. Physikalisches Institut der Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany 3 Deutsches Zentrum für Luft- und Raumfahrt, Institut für Planetenforschung, Rutherfordstraße 2, 12489 Berlin, Germany 4 Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany 5 Max-Planck-Institut für Sonnensystemforschung, Max-Planck-Straße 2, 37191 Katlenburg-Lindau, Germany Received 12 January 2012 / Accepted 1 March 2012 ABSTRACT We describe the design and construction of GREAT (German REceiver for Astronomy at Terahertz frequencies) operated on the Stratospheric Observatory For Infrared Astronomy (SOFIA). GREAT is a modular dual-color heterodyne instrument for high- resolution far-infrared (FIR) spectroscopy. Selected for SOFIA’s Early Science demonstration, the instrument has successfully per- formed three Short and more than a dozen Basic Science flights since first light was recorded on its April 1, 2011 commissioning flight. We report on the in-flight performance and operation of the receiver that – in various flight configurations, with three different detector channels – observed in several science-defined frequency windows between 1.25 and 2.5 THz. The receiver optics was ver- ified to be diffraction-limited as designed, with nominal efficiencies; receiver sensitivities are state-of-the-art, with excellent system stability.
    [Show full text]
  • L-Band 3G Ground-Air Communication System Interference Study Produced For: Eurocontrol Against Works Order No: 3121 Report No: 72/06/R/319/R December 2006 – Issue 1
    L-Band 3G Ground-Air Communication System Interference Study Produced for: Eurocontrol Against Works Order No: 3121 Report No: 72/06/R/319/R December 2006 – Issue 1 Roke Manor Research Ltd Roke Manor, Romsey Hampshire, SO51 0ZN, UK T: +44 (0)1794 833000 F: +44 (0)1794 833433 [email protected] www.roke.co.uk Approved to BS EN ISO 9001 (incl. TickIT), Reg. No Q05609 The information contained herein is the property of Roke Manor Research Limited and is supplied without liability for errors or omissions. No part may be reproduced, disclosed or used except as authorised by contract or other written permission. The copyright and the foregoing restriction on reproduction, disclosure and use extend to all media in which the information may be embodied. Copy No. ……… This page intentionally left blank L-Band 3G Ground-Air Communication System Interference Study Report No: 72/06/R/319/R Authors: December 2006 – Issue 1 Z. Dobrosavljevic Produced for: Eurocontrol A. Arumugam Against Works Order No: 3121 Approved By KW Richardson ………………………………………………. Project Manager Roke Manor Research Limited The information contained herein is the property of Roke Manor Research Roke Manor, Romsey, Hampshire, SO51 0ZN, UK Limited and is supplied without liability for errors or omissions. No part may be reproduced, disclosed or used except as authorised by contract or other Tel: +44 (0)1794 833000 Fax: +44 (0)1794 833433 written permission. The copyright and the foregoing restriction on Web: http://www.roke.co.uk Email: [email protected] reproduction, disclosure and use extend to all media in which the information Approved to BS EN ISO 9001 (incl.
    [Show full text]