Enhancement of Laser to X-Ray Conversion by a Double-Foil Gold Target E-Mail: [email protected] and [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Enhancement of Laser to X-Ray Conversion by a Double-Foil Gold Target E-Mail: Rafael.Ramis@Upm.Es and Yanyunma@126.Com IOP View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences Plasma Physics and Controlled Fusion Plasma Physics and Controlled Fusion Plasma Phys. Control. Fusion Plasma Phys. Control. Fusion 57 (2015) 075011 (7pp) doi:10.1088/0741-3335/57/7/075011 57 Enhancement of laser to x-ray conversion 2015 by a double-foil gold target © 2015 IOP Publishing Ltd Z Y Ge1, R Ramis2, X H Yang1, T P Yu1, B B Xu1, Y Zhao1, H B Zhuo1, Y Y Ma1, W Yu3 and X J Peng4 PPCF 1 College of Science, National University of Defense Technology, Changsha 410073, People’s Republic of China 075011 2 E.T.S.I. Aeronáuticos, Universidad Politécnica de Madrid, Madrid 28040, Spain 3 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, Z Y Ge et al People’s Republic of China 4 Institute of Applied Physics and Computational Mathematics, Beijing 100088, People’s Republic of China Enhancement of laser to x-ray conversion by a double-foil gold target E-mail: [email protected] and [email protected] Printed in the UK Received 30 January 2015, revised 10 May 2015 Accepted for publication 19 May 2015 Published 18 June 2015 PPCF Abstract A novel double-foil configuration is proposed to improve the laser to x-ray conversion 10.1088/0741-3335/57/7/075011 efficiency from laser irradiating a solid target. One-dimensional radiation hydrodynamic simulations show that the total x-ray conversion efficiency for the double-foil target is as high as 54.7%, which has a 10% improvement compared with the normal target. The improvement Papers is mainly due to the enhanced soft x-ray emissions. Influences of the target geometry parameters on the x-ray conversion efficiency are investigated. Detailed energy distributions 0741-3335 and the individual contributions of the two foils to the thermal and kinetic energy terms are presented. It is found that the main energy terms are mostly determined by the first foil, and the enhancement of radiation is attributed to the lower ion kinetic energy of the double-foil target. 7 Keywords: laser-plasma interaction, x-ray generation, radiation hydrodynamics (Some figures may appear in colour only in the online journal) 1. Introduction any kind of x-ray photons in the energy range of 0.1 keV to 10 keV can be obtained by changing the target materials. Laser-produced plasmas as intense x-ray sources have However, the CE of the x-ray generated by a solid target is attracted much interest in recent decades due to their wide limited due to the narrow emission region [21, 22]. Gas targets applications in many fields, such as advanced lithography [1], and doped low-density foam targets have been proposed as x-ray backlighter imaging [2], high energy density physics [3] more efficient x-ray sources owing to their very large emis- and inertial confinement fusion (ICF) [4–6]. One of the major sion region [23–29]. However, the gas targets are restricted goals in these applications is to enhance the x-ray conver- to a small range of photon energy, and the doped low-density sion efficiency (CE) and therefore the x-ray emission inten- foam targets are limited to very few materials because of the sity. Considerable work has been carried out by varying laser complex fabrication techniques. X-ray emissions can be also parameters such as wavelength, pulse profile, pulse duration enhanced by utilizing the vacuum hohlraum targets in ICF and intensity, or using various target materials and structures because the hot, underdense coronal plasma is confined by the in order to achieve higher x-ray radiation [7–17, 18]. hohlraum [30–32]. However, this type of target is not always The conventional method for generating x-rays is the nano- practical since the generated x-rays are also confined inside second laser irradiation of high-Z solid targets, because the the hohlraum. Pre-exploded thin foil can also provide an effi- fabrication of a solid target is very simple and high-Z mate- cient x-ray source that is very close to those obtained from rials exhibit a higher x-ray CE [19, 20]. Moreover, almost gas or doped low-density foam targets [33, 34]. However, the 0741-3335/15/075011+7$33.00 1 © 2015 IOP Publishing Ltd Printed in the UK Plasma Phys. Control. Fusion 57 (2015) 075011 Z Y Ge et al Figure 1. Scheme of the double-foil target. laser parameters and foil thickness should be chosen carefully, those obtained from the normal solid targets [19, 20]. Very otherwise the x-ray emission can only be enhanced by a small long time plasma expansion and detailed non-local thermody- margin, since this scheme changes the target ablation process namic equilibrium (NLTE) atomic physics make a pure ana- from one-sided expansion (thick foil) to two-sided expansion lytical calculation and optimization of this configuration very (pre-exploded thin foil). Rarefaction waves coming from two difficult and not precise enough for designing experiments. sides of the thin foil will destroy the emission region quickly For that purpose, numerical simulations are performed with [35]. To depress the rarefaction wave of the hot coronal plasma the one-dimensional multi-group radiation hydrodynamics generated from the solid targets and enhance the laser to x-ray code Multi-1D [36, 37]. The hydrodynamic equations are CE, new approaches or solutions are required. solved in a Lagrangian formulation with coupled radia- In this paper, a novel double-foil gold target is proposed tion, electron thermal transport and laser energy deposition in order to enhance the laser to x-ray CE further. The double- mechanism of inverse bremsstrahlung. The electron thermal foil target consists of a thin foil and a thick foil as illustrated conduction is described by the interpolation between the in figure 1, which combines the one-sided (second thick foil) Spitzer’s regime and the flux limited regime. The flux limiter and two-sided (first thin foil) expansion together to a three- is set as f = 0.08, which is the same as that used for the anal- sided expansion. The presence of the first thin foil provides ysis of previous experiments [38]. MPQeos code provides the an additional two-sided expanding plasma x-ray source and data of equation of state (EOS) for Au in a tabular form [39]. avoids the direct irradiation of laser pulse on the second foil. Tabulated NLTE opacities divided into 100 energy groups in The second thick foil is mainly ablated by the x-ray radiation the range of 0.1–5 keV are calculated with the atomic physics generated at the rear side of the first thin foil. Collision of the code SNOP [40]. inner-expanding plasmas in the gap between the two foils In the simulations, 1 ns flat-top pulse, p-polarized lasers 14 2 will depress the rarefaction waves in the two foils. Ion kinetic with an intensity of 5 × 10 W cm are supposed to normally energy is then suppressed and converted to electron internal incident on the double-foil gold target from the left side as energy and radiation energy, thus the x-ray CE is enhanced shown in figure 1. The laser wavelength is 351 nm, which remarkably. Compared with the pre-exploded thin foil method, represents the typical frequency-tripled Nd:glass laser in the double-foil target exhibits a higher x-ray CE, and a prepulse experiments (short-wavelength laser always exhibits a higher is not needed anymore. One can also avoid the complex fab- laser to x-ray CE). The thickness of the first thin foil isd 1 = 0.3 rication technique for a gas or doped low-density foam target. μm, and the distance between the two foils is d2 = 400 μm. Au Furthermore, this double-foil target also offers the ability to is chosen as the target material for its high laser to x-ray CE generate a wide range of photon energies as the solid target. and wide applications, especially in ICF. Both the first thin This paper is structured as follows. In section 2, the detail foil and second thick foil (10 μm) have an initial density of 3 7 3 radiation hydrodynamics simulations are presented. Section 3 19.2 g cm− . A 1.92 × 10− g cm− low-density Au gas is filled deals with the influences of the target geometry parameters on in the gap between the two foils because vacuum is not per- the x-ray CE. Finally, we summarize the results and give the mitted in the simulation. For comparison, the laser irradiating conclusions in section 4. normal solid Au target is also simulated. Figure 2 shows the motion of the Lagrangian interfaces of 2. Numerical simulations the double-foil target. The red, blue and black lines represent the first thin foil, the second thick foil and the low-density The construction of a double-foil target can lead to under- Au gas, respectively. The laser pulse coming from the bottom dense plasma conditions that are much more complex than impinges on the target front side and deposits its energy in the 2 Plasma Phys. Control. Fusion 57 (2015) 075011 Z Y Ge et al 0.05 As shown in figure 3(a), for the normal solid target, after getting energy from the incident laser via the inverse 0.04 bremsstrahlung, electron internal energy increases very rap- idly. Then electrons convert their energies to ions primarily 0.03 through coulomb collision, atoms are thus ionized and excited, resulting in the generation of x-ray radiation.
Recommended publications
  • Review of the State of Infrared Detectors for Astronomy in Retrospect of the June 2002 Workshop on Scientific Detectors for Astronomy
    Review of the state of infrared detectors for astronomy in retrospect of the June 2002 Workshop on Scientific Detectors for Astronomy. Gert Fingera and James W. Beleticb a European Southern Obseravatory, D-85748 Garching, Germany b W. M. Keck Observatory 65-1120 Mamalahoa Hwy., Kamuela, Hi 96743, USA ABSTRACT Only two months ago, in June 2002, a workshop on scientific detectors for astronomy was held in Waimea, where for the first time both experts on optical CCD’s and infrared detectors working at the cutting edge of focal plane technology gathered. An overview of new developments in optical detectors such as CCD’s and CMOS devices will be given elsewhere in these proceedings [1]. This paper will focus on infrared detector developments carried out at the European Southern Observatory ESO and will also include selected highlights of infrared focal plane technology as presented at the Waimea workshop. Three main detector developments for ground based astronomers are currently pushing infrared focal plane technology. In the near infrared from 1 to 5 mm two technologies, both aiming for buttable 2Kx2K mosaics, will be reviewed, namely InSb and HgCdTe grown by LPE or MBE on Al2O3, Si or CdZnTe substrates. Blocked impurity band Si:As arrays cover the mid infrared spectral range from 8 to 28 mm. Since the video signal of infrared arrays, contrary to CCD’s, is DC coupled, long exposures with IR arrays are extremely susceptible to drifts and low frequency noise pick- up down to the mHz regime. New techniques to reduce thermal drifts and suppress low frequency noise with on-chip reference pixels will be discussed.
    [Show full text]
  • High Frequency (HF)
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1990-06 High Frequency (HF) radio signal amplitude characteristics, HF receiver site performance criteria, and expanding the dynamic range of HF digital new energy receivers by strong signal elimination Lott, Gus K., Jr. Monterey, California: Naval Postgraduate School http://hdl.handle.net/10945/34806 NPS62-90-006 NAVAL POSTGRADUATE SCHOOL Monterey, ,California DISSERTATION HIGH FREQUENCY (HF) RADIO SIGNAL AMPLITUDE CHARACTERISTICS, HF RECEIVER SITE PERFORMANCE CRITERIA, and EXPANDING THE DYNAMIC RANGE OF HF DIGITAL NEW ENERGY RECEIVERS BY STRONG SIGNAL ELIMINATION by Gus K. lott, Jr. June 1990 Dissertation Supervisor: Stephen Jauregui !)1!tmlmtmOlt tlMm!rJ to tJ.s. eave"ilIE'il Jlcg6iielw olil, 10 piolecl ailicallecl",olog't dU'ie 18S8. Btl,s, refttteste fer litis dOCdiii6i,1 i'lust be ,ele"ed to Sapeihil6iiddiil, 80de «Me, "aial Postg;aduulG Sclleel, MOli'CIG" S,e, 98918 &988 SF 8o'iUiid'ids" PM::; 'zt6lI44,Spawd"d t4aoal \\'&u 'al a a,Sloi,1S eai"i,al'~. 'Nsslal.;gtePl. Be 29S&B &198 .isthe 9aleMBe leclu,sicaf ,.,FO'iciaKe" 6alite., ea,.idiO'. Statio", AlexB •• d.is, VA. !!!eN 8'4!. ,;M.41148 'fl'is dUcO,.Mill W'ilai.,s aliilical data wlrose expo,l is idst,icted by tli6 Arlil! Eurse" SSPItial "at FRIis ee, 1:I.9.e. gec. ii'S1 sl. seq.) 01 tlls Exr;01l ftle!lIi"isllatioli Act 0' 19i'9, as 1tI'I'I0"e!ee!, "Filill ell, W.S.€'I ,0,,,,, 1i!4Q1, III: IIlIiI. 'o'iolatioils of ltrese expo,lla;;s ale subject to 960616 an.iudl pSiiaities.
    [Show full text]
  • AN EMPIRICAL DETERMINATION of the INTERGALACTIC BACKGROUND LIGHT USING NEAR-INFRARED DEEP GALAXY SURVEY DATA out to 5 Μm and the GAMMA-RAY OPACITY of the UNIVERSE
    The Astrophysical Journal, 784:138 (6pp), 2014 April 1 doi:10.1088/0004-637X/784/2/138 C 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A. AN EMPIRICAL DETERMINATION OF THE INTERGALACTIC BACKGROUND LIGHT USING NEAR-INFRARED DEEP GALAXY SURVEY DATA OUT TO 5 μm AND THE GAMMA-RAY OPACITY OF THE UNIVERSE Sean T. Scully1, Matthew A. Malkan2, and Floyd W. Stecker2,3 1 Department of Physics and Astronomy, James Madison University, Harrisonburg, VA 22807, USA 2 Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA; [email protected] 3 Astrophysics Science Division, NASA/Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA Received 2014 January 21; accepted 2014 February 24; published 2014 March 14 ABSTRACT We extend our previous model-independent determination of the intergalactic background light, based purely on galaxy survey data, out to a wavelength of 5 μm. Our approach enables us to constrain the range of photon densities, based on the uncertainties from observationally determined luminosity densities and colors. We further determine a 68% confidence upper and lower limit on the opacity of the universe to γ -rays up to energies of 1.6/(1 + z)TeV. A comparison of our lower limit redshift-dependent opacity curves to the opacity limits derived from the results of both ground-based air Cerenkov telescope and Fermi-LAT observations of PKS 1424+240 allows us to place a new upper limit on the redshift of this source, independent of IBL modeling. Key words: BL Lacertae objects: individual (PKS 1424+240) – diffuse radiation – gamma rays: general Online-only material: color figure <z< 1.
    [Show full text]
  • Absolute Radiant Power Measurement for the Au M Lines of Laser-Plasma Using a Calibrated Broadband Soft X-Ray Spectrometer with Flat-Spectral Response Ph
    Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response Ph. Troussel, B. Villette, B. Emprin, G. Oudot, V. Tassin, F. Bridou, Franck Delmotte, M. Krumrey To cite this version: Ph. Troussel, B. Villette, B. Emprin, G. Oudot, V. Tassin, et al.. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat- spectral response. Review of Scientific Instruments, American Institute of Physics, 2014, 85 (1), pp.013503. 10.1063/1.4846915. hal-01157538 HAL Id: hal-01157538 https://hal.archives-ouvertes.fr/hal-01157538 Submitted on 16 Nov 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW OF SCIENTIFIC INSTRUMENTS 85, 013503 (2014) Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response Ph. Troussel,1 B. Villette,1 B. Emprin,1,2 G. Oudot,1 V. Tassin,1 F. Bridou,2 F. Delmotte,2 and M. Krumrey3 1CEA/DAM/DIF, Bruyères le Châtel, 91297 Arpajon, France 2Laboratoire Charles Fabry, Institut d’Optique, CNRS, University Paris-Sud, 2, Avenue Augustin Fresnel, RD128, 91127 Palaiseau Cedex, France 3Physikalisch-Technische Bundesanstalt (PTB), Abbestr.
    [Show full text]
  • Recent Studies on Hohlraum Energitics and Hohlraum Design
    Recent studies on hohlraum energitics and hohlraum design Ke Lan, Wenyi Huo, Yongsheng Li, Guoli Ren, Xin Li, Xujun Meng, Changshu Wu, Siyang Zou, Xiumei Qiao, Peijun Gu, Wudi Zheng, Dongxian Lai, and Tinggui Feng Institute of Applied Physics and Computational Mathematics, P.O. Box 8009-14 Beijing, 100088, People’s Republic of China, E-mail: [email protected] Abstract In this paper, some recent studies on hohlraum physics at IAPCM (Institute of Applied Physics and Computational Mathematics) were presented, mainly including simulation study on hohlraum physics experiments on SGIII prototype, a novel method for simultaneously determining the maximum radiation temperature and M-band fraction inside a hohlraum, the design of Au + U + Au sandwich hohlraum for 300eV ignition target, and the way to give an initial design of hohlraum size and pertinent drive laser power in order to generate a required radiation profile. 1. Introduction Hohlraum plays a key role in the study of indirect drive inertial fusion, which converts the shaped laser pulse into a symmetrically time-dependent thermal radiation to assure a nearly isentropic compression of capsule to achieve thermonuclear ignition 1-6. Hence, worldwide IFE (Inertial Fusion Energy) scientists have been paying much efforts in the study of hohlraum physics 7-11, and a series of theory for hohlraum have been developed, such as the hohlraum coupling efficiency theory, capsule radiation uniformity theory 5, and plasma-filling model 12 . Inertial Fusion program began in China in 1993. We have laser facilities of SGII in Shanghai and SGIII prototype in Mianyang 13-15 . IAPCM in Beijing mainly engages in simulation and theoretical study of Inertial Fusion.
    [Show full text]
  • The Effect of Gamma Radiation on the Conductivity of Sodium Chloride Michael Claudewell Jon Carlson Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1968 The effect of gamma radiation on the conductivity of sodium chloride Michael Claudewell Jon Carlson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Nuclear Engineering Commons Recommended Citation Carlson, Michael Claudewell Jon, "The effect of gamma radiation on the conductivity of sodium chloride " (1968). Retrospective Theses and Dissertations. 3723. https://lib.dr.iastate.edu/rtd/3723 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microiihned exactly as received 69-4221 CARLSON, Michael Claudewell Jon, 1939- THE EFFECT OF GAMMA RADIATION ON THE CONDUCTIVITY OF SODIUM CHLORIDE. Iowa State University, Ph.D., 1968 Engineering, nuclear University Microfilms, Inc., Ann Arbor, Michigan THE SFFECT OF GAMMA RADIATION ON THE CONDUCTIVITY OF SODIUM CHLORIDE by Michael Claudewell Jon Carlson A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Nuclear Engineering Approved; Signature was redacted for privacy. Signature was redacted for privacy.
    [Show full text]
  • Template BR Rec 2005.Dot
    Report ITU-R M.2442-0 (11/2018) Current and future usage of railway radiocommunication systems between train and trackside M Series Mobile, radiodetermination, amateur and related satellite services ii Rep. ITU-R M.2442-0 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio- frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Reports (Also available online at http://www.itu.int/publ/R-REP/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • Vector Quantization for Spatiotemporal Sub-Band Coding by Pasquale Romano Jr
    Vector Quantization for Spatiotemporal Sub-band Coding by Pasquale Romano Jr. A.B., Computer Science Harvard University Cambridge, Massachusetts 1987 SUBMITTED TO THE MEDIA ARTS AND SCIENCES SECTION IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF MASTER OF SCIENCE AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 1990 @Massachusetts Institute of Technology 1989 All Rights Reserved Signature of the Author . ..... ... .. f Pasquale Romano Jr. Media Arts and Sciences Section September 28, 1989 In Certified by ............ ............. '............... / .... d w....... .p. .. a... Andrew B. Lippan.1u/ Lecturer, Associate Director, Media Laboratory Thesis Supervisor . I P_ Accepted by Stephen A. Benton Chairman Departmental Committee on Graduate Students mAssACHUSETTS INS OF TEcwQLOGY FEIB 27 1990 Rotert Vector Quantization for Spatiotemporal Sub-band Coding by Pasquale Romano Jr. Submitted to the Media Arts and Sciences Section on September 28, 1989 in partial fulfillment of the requirements of the degree of Master of Science at the Massachusetts Institute of Technology Abstract This thesis investigates image coding using a combination of sub-band analysis/synthesis techniques and vector quantization. The design of a vector quantizer for image sub-bands is investigated, and the interplay between multi-rate filter banks and the vector coder is examined. The goal is twofold, first, a vector quantizer that is bounded by a distortion criterion versus an apriori fixed limit is essential to more optimally allocate bits in a sub- band coding system. This is due to the dynamic nature of the energy distribution in the sub-bands. Second, parameters for the vector quantizer that are psychophysically and statistically well matched to the characteristics of image sub-bands must be determined.
    [Show full text]
  • Federal Communications Commission
    Vol. 80 Thursday, No. 127 July 2, 2015 Part IV Federal Communications Commission 47 CFR Parts 2, 15, 80, 90, et al. WRC–12 Radiocommunication Conference (Geneva 2012); Proposed Rule VerDate Sep<11>2014 21:32 Jul 01, 2015 Jkt 235001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\02JYP2.SGM 02JYP2 asabaliauskas on DSK5VPTVN1PROD with PROPOSALS 38316 Federal Register / Vol. 80, No. 127 / Thursday, July 2, 2015 / Proposed Rules FEDERAL COMMUNICATIONS D Electronic Filers: Comments may be audio format), send an email to fcc504@ COMMISSION filed electronically using the Internet by fcc.gov or call the Consumer & accessing the ECFS: http:// Governmental Affairs Bureau at 202– 47 CFR Parts 2, 15, 80, 90, 97, and 101 fjallfoss.fcc.gov/ecfs2/. 418–0530 (voice), 202–418–0432 (tty). D Paper Filers: Parties that choose to [ET Docket No. 15–99; FCC 15–50] Summary of Notice of Proposed file by paper must file an original and Rulemaking WRC–12 Radiocommunication one copy of each filing. If more than one Conference (Geneva 2012) docket or rulemaking number appears in 1. In this Notice of Proposed the caption of this proceeding, filers Rulemaking (WRC–12 NPRM), the AGENCY: Federal Communications must submit two additional copies for Commission proposes to amend parts 2, Commission. each additional docket or rulemaking 15, 80, 90, 97, and 101 of its rules to ACTION: Proposed rule. number. implement allocation decisions from the D Filings can be sent by hand or Final Acts of the World SUMMARY: In this document, the messenger delivery, by commercial Radiocommunication Conference Commission proposes to implement overnight courier, or by first-class or (Geneva, 2012) (WRC–12 Final Acts) and certain allocation changes from the overnight U.S.
    [Show full text]
  • Calibrated Landsat ETM+ Nonthermal-Band Image Mosaics of Afghanistan
    In cooperation with U.S. Agency for International Development Calibrated Landsat ETM+ Nonthermal-Band Image Mosaics of Afghanistan By Philip A. Davis Open-File Report 2006-1345 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 20192 2006 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Davis, P. A., 2006, Calibrated Landsat ETM+ nonthermal-band image mosaics of Afghanistan, U.S. Geological Survey Open-File Report 2006-1345, 18 p. [http://pubs.usgs.gov/of2006/1345/ ]. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. 2 Contents Introduction .........................................................................................................................................................................4 Characteristics of Landsat ETM+ Satellite Image Data ..............................................................................................4
    [Show full text]
  • Introducing the Goes-M Imager
    INTRODUCING THE GOES-M IMAGER Timothy J. Schmit and Elaine M. Prins NOAAlNESDIS Office of Research and Applications Advanced Satellite Products Team Madison, Wisconsin Anthony J. Schreiner Cooperative Institute for Meteorological Studies Madison, Wisconsin ' James J. Gurka NOAAlNESDIS Office of System Development Camp Springs, Maryland Abstract al. 1998; Prins et al. 1998). The current Imager obtains information from four infrared bands (Table 1) and one The latest operational satellite in the GOES series, visible band (Menzel and Purdom 1994). The next satel­ GOES-M, was launched on 23 July 2001. It achieved geo­ lite in the operational GOES series is GOES-12, which stationary orbit on 12 August 2001, and hence is referred was launched 23 July 2001. The GOES-I2/N/OIP Imagers to as GOES-12. The Imager on GOES-12 has been modi­ have been modified to add a band centered at 13.3 f.Lm fied from the previous four imagers in this series. One and improve north-south spatial resolution of a spectral­ change is the addition of a spectral band centered at 13.3 ly modified 6.5 f.Lm band. The addition of the 13.3 f.Lm pm. The GOES-12 Imager also includes a spectrally mod­ band comes at the expense of eliminating the 12 f.Lm band ified 6.5 pm band with an improved spatial resolution on the Imagers. Originally the loss of this band was from 8 km to 4 km at the sub-satellite point. The addition scheduled for only one satellite. However, budgetary con­ of the 13.3 pm band comes at the expense of eliminating straints did not allow for a six-channel imager.
    [Show full text]
  • Band (32.0 Ghz) and X-Band (8.4 Ghz)
    The Characterization of a 34-Meter Beam-Waveguide Antenna at ~-band (32.0 GHz) and X-band (8.4 GHz) David D. Morabito Jet Propulsion Laboratory California Institute of Technology Pasadena, California (Revised Decaber 21, 1998) ABSTRACT New antennas for the NASA Deep Space Network (DSN) have been built to replace the aging antennas of older designs for deep space communications. These new antennas incorporate a new dual-shape design as well as a beam waveguide (BWG), which utilize a series of additional secondary mirrors to relocate the focal point into a stationary room below the main reflector. The advantages of using such a design include increased isolation of the feed package from outside environment tal fact ors such as moisture, wind, and temperature changes and ease of access to the equipment for maintenance, troubleshooting and repair purposes. This article reports on the performance of a beam waveguide antenna at X–band and Ka-band microwave frequencies. The ~-band Antenna Performance Experiment (KaAP) antenna efficiency measurements presented in this article were acquired at the Goldstone DSS-13 ,.+ Research and Development (R&D) beam waveguide (BWG) antenna between December 1993 and November 1995. The measured antenna efficiency and ground station figure-of– merit (gain divided by operating system noise temperature) as a function of elevation angle and their uncertainties are presented. Also described are the station configuration, the measurement technique, the modeling used in the analysis processing, and the historical evolution of the DSS-13 ~-band antenna efficiency measurements as progressive improvements and configuration changes were implemented. 1. INTRODUCTION The Beam-WaveGuide (BWG) design feature had been in use for several years for communications satellite terminals where ease of service outweighed the added noise due to the additional mirrors.
    [Show full text]