NIH Public Access Author Manuscript Bioorg Med Chem
NIH Public Access Author Manuscript Bioorg Med Chem. Author manuscript; available in PMC 2013 February 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Bioorg Med Chem. 2012 February 1; 20(3): 1291–1297. doi:10.1016/j.bmc.2011.12.019. Multi-receptor drug design: Haloperidol as a scaffold for the design and synthesis of atypical antipsychotic agents Kwakye Pepraha, Xue Y. Zhua, Suresh V. K. Eyunnia, Vincent Setolab, Bryan L. Rothb, and Seth Y. Ablordeppey*,a aDivision of Basic Pharmaceutical Sciences, Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, USA bDepartment of Pharmacology, Medicinal Chemistry and Psychiatry, University of North Carolina at Chapel Hill, School of Medicine, NC 27599, USA Abstract Using haloperidol as a scaffold, new agents were designed to investigate the structural contributions of various groups to binding at CNS receptors associated with atypical antipsychotic pharmacology. It is clear that each pharmacophoric group, the butyrophenone, the piperidine and the 4-chlorophenyl moieties contributes to changes in binding to the receptors of interest. This strategy has resulted in the identification of several new agents, compounds 16, 18, 19, 23, 24 and 25, with binding profiles which satisfy our stated criteria for agents to act as potential atypical antipsychotics. This research demonstrates that haloperidol can serve as a useful lead in the identification and design of new agents that target multiple receptors
[Show full text]