ABSTRACT BISHOP, WEST MICHAEL. a Risk

Total Page:16

File Type:pdf, Size:1020Kb

ABSTRACT BISHOP, WEST MICHAEL. a Risk ABSTRACT BISHOP, WEST MICHAEL. A Risk-based Decision Information System for Selecting an Algal Management Program. (Under the direction of Dr. Robert J. Richardson). Freshwater resources are a vital component needed to support numerous human activities. Climate change, water use dynamics, and eutrophication have synergistically promoted nuisance and noxious algal blooms throughout the world. The increasing distribution, duration, and intensity of algal blooms has created unprecedented concerns over safety and usability of freshwater. Some of the largest blooms ever documented have occurred in the recent past. This dissertation is designed to provide a framework to assist in 1) understanding risks associated with nuisance algal infestations and 2) comparatively assessing the efficacy, costs, and collateral risks of different management approaches. The management decision framework consists of characterizing dimensions of the problem, identifying management objectives, and applying research to create a strategic management approach that incorporates risks of no action as well as risks associated with different management strategies. By considering information from the research chapters included herein, an accurate assessment of risks can be conducted in terms of the effectiveness and ecological integrity of management approaches. This research should be used to make informed decisions regarding the choice to manage nuisance algae and the selection of an appropriate management approach. © Copyright 2016 West Michael Bishop All Rights Reserved A Risk-based Decision Information System for Selecting an Algal Management Program by West Michael Bishop A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Crop Science Raleigh, North Carolina 2016 APPROVED BY: _______________________________ _______________________________ Dr. Robert J. Richardson Dr. William F. Hunt III Committee Chair _______________________________ _______________________________ Dr. Travis W. Gannon Dr. JoAnn M. Burkholder DEDICATION I dedicate this dissertation to my children, Emerson Michael and Adelynn Marie Bishop, may they pursue their passion and never settle for pretty good. ii BIOGRAPHY West Michael Bishop grew up in a small town in Michigan. He had a unique love for the natural environment and biological sciences field. Following attainment of a Bachelor of Science in biology from Western Michigan University and internship at University of Wisconsin-Madison, he discovered a passion for the aquatic toxicology field. This led to completion of a Master of Science degree at Clemson University with a focus on nuisance and noxious algal management and preservation of non-target species. A further opportunity to study at North Carolina State University arose with a great water resource scientist, Dr. Richardson, to further advance the science of algal management. iii ACKNOWLEDGMENTS First and foremost, to my committee. Their invaluable guidance, time, and effort to support this research is greatly commended. Thanks to Bill Culpepper and his company, SePRO Corporation, for the unending pursuit of solutions to solve nuisance algal issues and support advancements in research. Unimaginable thanks to Dr. Tyler Koschnick for his vision and continuing guidance; this would not have been possible if not for his actions. My colleagues Ben Willis and Dr. Mark Heilman also provided critical support to advance this research. Numerous other mentors and colleagues helped support this work. Lastly to my wife, Marguerite, for her tireless support of the family through this time and my sister, Dr. Heidi Zubeck, for being a great leader and helping to guide my path. iv TABLE OF CONTENTS LIST OF TABLES ............................................................................................................... viii LIST OF FIGURES ............................................................................................................... xi CHAPTER ONE: Introduction Overview ........................................................................................................................1 Eutrophication and Environmental Conditions ..............................................................2 Water Dynamics.............................................................................................................5 Magnitude of Issue .........................................................................................................7 Regulatory Assessment ..................................................................................................8 Management Overview ..................................................................................................9 Proactive Management.................................................................................................10 Integrated Management ...............................................................................................12 Reactive Management ..................................................................................................13 Organization of Dissertation ........................................................................................16 References ....................................................................................................................18 CHAPTER TWO: Impacts of Phosphorus Inactivation on Algal Assemblage Composition and Water Quality Characteristics in Hypereutrophic Water Resources Abstract ........................................................................................................................28 Introduction ..................................................................................................................29 Materials and Methods .................................................................................................34 Results ..........................................................................................................................38 Discussion ....................................................................................................................42 v Conclusion ...................................................................................................................46 References ....................................................................................................................48 CHAPTER THREE: Sensitivity of Microcystis aeruginosa Strains to Copper and Influence of Phosphorus Abstract ........................................................................................................................79 Introduction ..................................................................................................................80 Methods........................................................................................................................84 Results and Discussion ................................................................................................88 Conclusion ...................................................................................................................94 References ....................................................................................................................96 CHAPTER FOUR: Comparison of Partitioning and Efficacy Between Copper Algaecide Formulations: Refining the Critical Burden Concept Abstract ......................................................................................................................117 Introduction ................................................................................................................118 Materials and Methods ...............................................................................................124 Results ........................................................................................................................129 Discussion ..................................................................................................................133 Conclusion .................................................................................................................142 References ..................................................................................................................145 CHAPTER FIVE: Evaluation of Risks from Copper Algaecide Applications: The Competing Ligand Hypothesis Abstract ......................................................................................................................172 vi Introduction ................................................................................................................173 Materials and Methods ...............................................................................................178 Results ........................................................................................................................183 Discussion ..................................................................................................................186 Conclusion .................................................................................................................194 References ..................................................................................................................196 CHAPTER SIX: Conclusions and a Recommended Decision Information System Framework Background ................................................................................................................224
Recommended publications
  • Rapid Assay Replicate
    Algae Analysis Report and Data Set Customer ID: 000 Tracking Code: 200014-000 Sample ID: Rapid Assay Replicate: . Customer ID: 000 Sample Date: 4/30/2020 Sample Level: Epi Job ID: 1 Station: Sample Station Sample Depth: 0 System Name: Sample Lake Site: Sample Site Preservative: Glutaraldehyde Report Notes: Sample Report Note Division: Bacillariophyta Taxa ID Genus Species Subspecies Variety Form Morph Structure Relative Concentration 1109 Diatoma tenuis . Vegetative 1.00 1000936 Lindavia intermedia . Vegetative 18.00 9123 Nitzschia palea . Vegetative 1.00 1293 Stephanodiscus niagarae . Vegetative 2.00 Summary for Division ~ Bacillariophyta (4 detail records) Sum Total Bacillariophyta 22.00 Division: Chlorophyta Taxa ID Genus Species Subspecies Variety Form Morph Structure Relative Concentration 2683 *Chlorococcaceae spp . 2-9.9 um Vegetative 1.00 spherical 2491 Schroederia judayi . Vegetative 25.00 Summary for Division ~ Chlorophyta (2 detail records) Sum Total Chlorophyta 26.00 = Identification is Uncertain 200014-000 Monday, January 18, 2021 * = Family Level Identification Phytoplankton - Rapid Assay Page 2 of 13 Division: Cryptophyta Taxa ID Genus Species Subspecies Variety Form Morph Structure Relative Concentration 3015 Cryptomonas erosa . Vegetative 15.00 3043 Rhodomonas minuta . nannoplanctica . Vegetative 2.00 Summary for Division ~ Cryptophyta (2 detail records) Sum Total Cryptophyta 17.00 Division: Cyanophyta Taxa ID Genus Species Subspecies Variety Form Morph Structure Relative Concentration 4041 Aphanizomenon flos-aquae .
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Community Characteristics Analysis of Eukaryotic Microplankton Via ITS Gene Metabarcoding Based on Environmental DNA in Lower Reaches of Qiantang River, China
    Open Journal of Animal Sciences, 2021, 11, 105-124 https://www.scirp.org/journal/ojas ISSN Online: 2161-7627 ISSN Print: 2161-7597 Community Characteristics Analysis of Eukaryotic Microplankton via ITS Gene Metabarcoding Based on Environmental DNA in Lower Reaches of Qiantang River, China Aiju Zhang1, Jun Wang1, Yabin Hao1, Shanshi Xiao1, Wei Luo1, Ganxiang Wang2, Zhiming Zhou1 1Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Research Center of East China Sea Fishery Research Institute, Zhejiang Institute of Freshwater Fisheries, Huzhou, China 2Pinghu Fisheries Technology Promotion Center, Pinghu, China How to cite this paper: Zhang, A.J., Wang, Abstract J., Hao, Y.B., Xiao, S.S., Luo, W., Wang, G.X. and Zhou, Z.M. (2021) Community Eukaryotic microplankton plays an important role in water biotic community Characteristics Analysis of Eukaryotic and in maintaining the stability of water ecosystems. Environmental DNA Microplankton via ITS Gene Metabarcod- metabarcoding provides the opportunity to integrate traditional and emerg- ing Based on Environmental DNA in Low- er Reaches of Qiantang River, China. Open ing approaches to discover more new species, and develop molecular biotic Journal of Animal Sciences, 11, 105-124. indices that can be more rapidly, frequently, and robustly used in water qual- https://doi.org/10.4236/ojas.2021.112009 ity assessments. In order to examine assemblages of eukaryotic microplank- ton in lower reaches of Qiantang River, ITS gene metabarcoding technology Received: January 13, 2021 based on environmental DNA was carried out. As a result, various species of Accepted: March 30, 2021 Published: April 2, 2021 phytoplankton, fungi and zooplankton were annotated on.
    [Show full text]
  • Kenneth G. Karol the Lewis B
    Kenneth G. Karol The Lewis B. and Dorothy Cullman Program for Molecular Systematics Studies The New York Botanical Garden Bronx, New York 10458-5126 telephone: (718) 817-8615 e-mail: [email protected] Education Ph.D., Plant Biology. 2004. University of Maryland, College Park, MD Bachelor of Science, Botany. 1992. University of Wisconsin, Madison, WI Professional Experience Assistant Curator. 2007-Present. Cullman Program, The New York Botanical Garden, Bronx, NY Doctoral Faculty. 2007-Present. City University of New York, Plant Sciences Ph.D. Subprogram, Lehman College, Bronx, NY Chair - Phycological Section, Botanical Society of America. 2006-Present. Postdoctoral Fellow. 2006-2007. National Institutes of Health - National Research Service Award, Genomics/Biology, University of Washington, Seattle, WA LBNA Guest Researcher. 2005-present. Department of Energy Joint Genome Institute, Walnut Creek, CA Appointment runs concurrently with ongoing genome projects. Research Associate (post-doc). 2004-2006. US National Science Foundation Tree of Life Program, Biology, University of Washington, Seattle, WA Graduate Student. 1998-2004. Cell Biology and Molecular Genetics, University of Maryland, College Park, MD Research Assistant. 1999-2003. US NSF PEET Program, University of Maryland, College Park, MD Graduate Admissions Committee. 2001 & 2002. Cell Biology and Molecular Genetics, University of Maryland, College Park, MD Executive Committee. 1999-2000. Green Plant Phylogeny Research Coordination Group Biological Research Technician. 1997-1998. Laboratory of Molecular Systematics, National Museum of Natural History, Smithsonian Institution, Washington, DC Contract Researcher. 1997. Laboratory of Molecular Systematics, National Museum of Natural History, Smithsonian Institution, Smithsonian Institution, Washington, DC Research Technician. 1993-1996. Biological Sciences, DePaul University, Chicago, IL Visiting Scientist.
    [Show full text]
  • JERICO-NEXT. Progress Report After Development Of
    Joint European Research Infrastructure network for Coastal Observatory – Novel European eXpertise for coastal observaTories - JERICO-NEXT Deliverable title Progress report after development of microbial and molecular sensors Work Package Title WP 3 Innovation in Technology and Methodology Deliverable number D3.7 Description Progress report after development of microbial and molecular sensors Lead beneficiary IRIS Lead Authors Catherine Boccadoro (IRIS), Wilhelm Petersen (HZG), Bengt Karlson (SMHI), Florent Colas (Ifremer) Contributors Anne Vatland Krøvel, Mari Mæland Nilsen Submitted by Revision number 2.0 Revision Date 06 Oct. 2017 Security Public The JERICO-NEXT project is funded by the European Commission’s H2020 Framework Programme under grant agreement No. 654410 Project coordinator: Ifremer, France. JERICO-NEXT History Revision Date Modification Author Catherine 1.0 04 Oct. 2017 Complete version content added by all authors Boccadoro Catherine 2.0 06 Oct 2017 First revision by all authors Boccadoro Approvals Name Organisation Date Visa Coordinator Farcy Patrick Ifremer 12 octobre 2017 PF Petihakis George HCMR WP Leaders 10 octobre 2017 Delauney Laurent Ifremer PROPRIETARY RIGHTS STATEMENT Reference: JERICO-NEXT-WP3-D3.7- 6 Oct. 2017-V2.0 Page 2/46 JERICO-NEXT THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE JERICO-NEXT CONSORTIUM. NEITHER THIS DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED OR COMMUNICATED EXCEPT WITH THE PRIOR WRITTEN CONSENT OF THE JERICO-NEXT COORDINATOR. Reference: JERICO-NEXT-WP3-D3.7-
    [Show full text]
  • Algal Composition of Microbiotic Crusts from the Central Desert of Baja California, Mexico
    Great Basin Naturalist Volume 58 Number 4 Article 1 10-12-1998 Algal composition of microbiotic crusts from the Central Desert of Baja California, Mexico Valerie R. Flechtner John Carroll University, University Heights, Ohio Jeffrey R. Johansen John Carroll University, University Heights, Ohio William H. Clark Albertson College of Idaho, Caldwell, Idaho Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Flechtner, Valerie R.; Johansen, Jeffrey R.; and Clark, William H. (1998) "Algal composition of microbiotic crusts from the Central Desert of Baja California, Mexico," Great Basin Naturalist: Vol. 58 : No. 4 , Article 1. Available at: https://scholarsarchive.byu.edu/gbn/vol58/iss4/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. The Great Basin Naturalist PUBLISHED AT PROVO, UTAH, BY M.L. BEAN LIFE SCIENCE MUSEUM BRIGHAM YOUNG UNIVERSITY ISSN 0017-3614 VOLUME 58 31 OCTOBER 1998 No.4 Great Basin Naturalist 58(4), © 1998, pp. 295-311 ALGAL COMPOSITION OF MICROBIOTIC CRUSTS FROM THE CENTRAL DESERT OF BAJA CALIFORNIA, MEXICO Valerie R. Flechtner1, Jeffrey R. Johansenl, and William H. Clark2 ABSTRACT.-A total of 66 algal species representing 32 genera were recovered from soils of 10 sites in the Catavifia region of the Central Desert of Baja California, Mexico. The most common species encountered were the cyanophytes Nostoc commune and Schizothrix calcicola, the chlorophyte Myrmecia astigmatica, and the diatoms HantZ8chia amphioxys, Hantzschia amphyQxys f.
    [Show full text]
  • Limnological Information Supporting the Development of Regional Nutrient Criteria for Alaskan Lakes
    LIMNOLOGICAL INFORMATION SUPPORTING THE DEVELOPMENT OF REGIONAL NUTRIENT CRITERIA FOR ALASKAN LAKES Water Quality Monitoring and Trophic Assessment of Seven Lakes in the Matanuska-Susitna Borough J. A. Edmundson REGIONAL INFORMATION REPORT No. 2A03-24 Alaska Department of Fish and Game Division of Commercial Fisheries 333 Raspberry Road Anchorage, Alaska 99518-1599 August 2002 I The Regional Information Report Series was established in 1987 to provide an information access system for all unpublished division reports. These reports frequently serve diverse ad hoc informational purposes or archive basic uninterpreted data. To accommodate timely reporting ofrecently collected information. reports in this series undergo only limited internal review and may contain preliminary data; this information may be subsequently finalized and published in the formal literature. Consequently, these reports should not be cited without prior approval of the author or the Division of Commercial Fisheries. AUTHORS II,'" Jim A. Edmundson is the project leader for Central Region Limnology of the Alaska Department ofFish and Game, Division of Commercial Fisheries, 43961 Kalifornsky Beach Road, Suite B, Soldotna, AK 99669. "..• '''11I11 ,." "J " ,,j Product names used in this report are included for scientific completeness but do not constitute endorsement by Alaska Department of Fish and Game. " il"l I.~ II~ IH ""I' TABLE OF CONTENTS Section Page LIST OF TABLES .iii LIST OF FIGURES iv LIST OF APPENDICES viii ABSTRACT ix INTRODUCTION 1 Objectives . 3 Description of Study Site 3 METHODS 6 Data Gathering 6 Databases, Statistical Analysis, and Trophic State Index 15 RESULTS and DISCUSSION 16 Physical Conditions 16 Chemical Characteristics 22 Nutrients 29 Particulate Organic Carbon '" 34 Phytoplankton 34 Nutrient-Chlorophyll Models 36 Trophic Status 43 CONCLUSIONS and RECOMMENDATIONS 46 ACKN"OWLEDGEMENTS 49 REFERENCES 49 ii ., LIST OF TABLES Table " ;I 1.
    [Show full text]
  • Chloroplast Phylogenomic Analysis of Chlorophyte Green Algae Identifies a Novel Lineage Sister to the Sphaeropleales (Chlorophyceae) Claude Lemieux*, Antony T
    Lemieux et al. BMC Evolutionary Biology (2015) 15:264 DOI 10.1186/s12862-015-0544-5 RESEARCHARTICLE Open Access Chloroplast phylogenomic analysis of chlorophyte green algae identifies a novel lineage sister to the Sphaeropleales (Chlorophyceae) Claude Lemieux*, Antony T. Vincent, Aurélie Labarre, Christian Otis and Monique Turmel Abstract Background: The class Chlorophyceae (Chlorophyta) includes morphologically and ecologically diverse green algae. Most of the documented species belong to the clade formed by the Chlamydomonadales (also called Volvocales) and Sphaeropleales. Although studies based on the nuclear 18S rRNA gene or a few combined genes have shed light on the diversity and phylogenetic structure of the Chlamydomonadales, the positions of many of the monophyletic groups identified remain uncertain. Here, we used a chloroplast phylogenomic approach to delineate the relationships among these lineages. Results: To generate the analyzed amino acid and nucleotide data sets, we sequenced the chloroplast DNAs (cpDNAs) of 24 chlorophycean taxa; these included representatives from 16 of the 21 primary clades previously recognized in the Chlamydomonadales, two taxa from a coccoid lineage (Jenufa) that was suspected to be sister to the Golenkiniaceae, and two sphaeroplealeans. Using Bayesian and/or maximum likelihood inference methods, we analyzed an amino acid data set that was assembled from 69 cpDNA-encoded proteins of 73 core chlorophyte (including 33 chlorophyceans), as well as two nucleotide data sets that were generated from the 69 genes coding for these proteins and 29 RNA-coding genes. The protein and gene phylogenies were congruent and robustly resolved the branching order of most of the investigated lineages. Within the Chlamydomonadales, 22 taxa formed an assemblage of five major clades/lineages.
    [Show full text]
  • Freshwater Algae in Britain and Ireland - Bibliography
    Freshwater algae in Britain and Ireland - Bibliography Floras, monographs, articles with records and environmental information, together with papers dealing with taxonomic/nomenclatural changes since 2003 (previous update of ‘Coded List’) as well as those helpful for identification purposes. Theses are listed only where available online and include unpublished information. Useful websites are listed at the end of the bibliography. Further links to relevant information (catalogues, websites, photocatalogues) can be found on the site managed by the British Phycological Society (http://www.brphycsoc.org/links.lasso). Abbas A, Godward MBE (1964) Cytology in relation to taxonomy in Chaetophorales. Journal of the Linnean Society, Botany 58: 499–597. Abbott J, Emsley F, Hick T, Stubbins J, Turner WB, West W (1886) Contributions to a fauna and flora of West Yorkshire: algae (exclusive of Diatomaceae). Transactions of the Leeds Naturalists' Club and Scientific Association 1: 69–78, pl.1. Acton E (1909) Coccomyxa subellipsoidea, a new member of the Palmellaceae. Annals of Botany 23: 537–573. Acton E (1916a) On the structure and origin of Cladophora-balls. New Phytologist 15: 1–10. Acton E (1916b) On a new penetrating alga. New Phytologist 15: 97–102. Acton E (1916c) Studies on the nuclear division in desmids. 1. Hyalotheca dissiliens (Smith) Bréb. Annals of Botany 30: 379–382. Adams J (1908) A synopsis of Irish algae, freshwater and marine. Proceedings of the Royal Irish Academy 27B: 11–60. Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology and identification. Phycologia 6: 127–166 Allanson BR (1973) The fine structure of the periphyton of Chara sp.
    [Show full text]
  • Soft Algae Species Attributes
    SCCWRP Technical Report #0730 Development of Algal Indices of Biotic Integrity for Southern California Wadeable Streams and Recommendations for their Application, v3 This document is the deliverable for Prop 50 grant Task # 4, which entailed preparation of a draft algal IBI for use in southern California wadeable streams. Abstract Using a large dataset from wadeable streams concentrated in southern California, we developed several Indices of Biotic Integrity (IBIs) consisting of metrics derived from diatom and/or non- diatom (“soft”) algal assemblages including cyanobacteria. Over 100 metrics were screened based on metric score distributions, responsiveness to anthropogenic stress, and repeatability. High-performing metrics were combined into IBIs, which were classified according to the amount of field and laboratory effort required to generate their scores. IBIs were screened for responsiveness to anthropogenic stress, repeatability, mean correlation between component metrics, and indifference to natural gradients. Most IBIs resulted in good separation between the most disturbed and least disturbed (i.e., “reference”) site classes, but they varied in terms of how well they distinguished intermediate-disturbance sites from the other classes, and based on some of the other performance criteria listed. In general, the best performing IBIs were “hybrids”, containing a mix of diatom and soft-algae metrics. Of those tested, the soft-algae-only IBIs were better at distinguishing the intermediate from most highly disturbed site classes, and the diatom- only IBIs were marginally better than soft-algae based IBIs at distinguishing reference-quality from intermediate site classes. The single-assemblage IBIs also differed considerably in terms of the natural gradients to which they were most responsive.
    [Show full text]
  • Botswana), a Subtropical Flood-Pulsed Wetland
    Biodiversity and Biomass of Algae in the Okavango Delta (Botswana), a Subtropical Flood-Pulsed Wetland Thesis submitted for the degree of Doctor of Philosophy by LUCA MARAZZI University College London Department of Geography University College London December 2014 I, LUCA MARAZZI, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. LUCA MARAZZI 2 ABSTRACT In freshwater bodies algae provide key ecosystem services such as food and water purification. This is the first systematic assessment of biodiversity, biomass and distribution patterns of these aquatic primary producers in the Okavango Delta (Botswana), a subtropical flood-pulsed wetland in semiarid Southern Africa. This study delivers the first estimate of algal species and genera richness at the Delta scale; 496 species and 173 genera were observed in 132 samples. A new variety of desmid (Chlorophyta) was discovered, Cosmarium pseudosulcatum var. okavangicum, and species richness estimators suggest that a further few hundred unidentified species likely live in this wetland. Rare species represent 81% of species richness and 30% of total algal biovolume. Species composition is most similar within habitat types, thus varying more significantly at the Delta scale. In seasonally inundated floodplains, algal species / genera richness and diversity are significantly higher than in permanently flooded open water habitats. The annual flood pulse has historically allowed more diverse algal communities to develop and persist in these shallower and warmer environments with higher mean nutrient levels and more substrata and more heterogenous habitats for benthic taxa. These results support the Intermediate Disturbance Hypothesis, Species-Energy Theory and Habitat Heterogeneity Diversity hypotheses.
    [Show full text]
  • Jericonext Deliverable
    Joint European Research Infrastructure network for Coastal Observatory – Novel European eXpertise for coastal observaTories - JERICO-NEXT Deliverable title Progress report after development of microbial and molecular sensors Work Package Title WP 3 Innovation in Technology and Methodology Deliverable number D3.7 Description Progress report after development of microbial and molecular sensors Lead beneficiary IRIS Lead Authors Catherine Boccadoro (IRIS), Wilhelm Petersen (HZG), Bengt Karlson (SMHI), Florent Colas (Ifremer) Contributors Anne Vatland Krøvel, Mari Mæland Nilsen Submitted by Revision number 2.0 Revision Date 06 Oct. 2017 Security Public The JERICO-NEXT project is funded by the European Commission’s H2020 Framework Programme under grant agreement No. 654410 Project coordinator: Ifremer, France. JERICO-NEXT History Revision Date Modification Author Catherine 1.0 04 Oct. 2017 Complete version content added by all authors Boccadoro Catherine 2.0 06 Oct 2017 First revision by all authors Boccadoro Approvals Name Organisation Date Visa Coordinator Farcy Patrick Ifremer 12 octobre 2017 PF Petihakis George HCMR WP Leaders 10 octobre 2017 Delauney Laurent Ifremer PROPRIETARY RIGHTS STATEMENT Reference: JERICO-NEXT-WP3-D3.7-4 Oct. 2017-V2.0 Page 2/46 JERICO-NEXT THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE JERICO-NEXT CONSORTIUM. NEITHER THIS DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED OR COMMUNICATED EXCEPT WITH THE PRIOR WRITTEN CONSENT OF THE JERICO-NEXT COORDINATOR. Reference: JERICO-NEXT-WP3-D3.7-4
    [Show full text]