CS Gas Exposure in a Crowded Night Club: the Consequences for an Accident and Emergency Department
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CS Gas (2-Chlorobenzylidene Malononitrole) General Information
CS Gas (2-chlorobenzylidene malononitrole) General Information Key Points 2-chlorobenzylidene malononitrole or “CS” is a white crystalline solid when pure it is used by UK police forces as a temporary incapacitant spray when released, CS gas will disperse into the atmosphere in a matter of minutes exposure to CS gas may cause intense tear production, eye pain, chest tightness, coughing and sneezing skin contact will lead to burning and stinging with possible redness and blistering treatment is rarely needed because people usually recover within 15-20 minutes physical injury to the eyes may occur if CS gas is sprayed directly into them at a very close range PHE publications gateway number: 2014790 Published: October 2018 Compendium of Chemical Hazards: CS Gas (2-chlorobenzylidene malononitrole) Public Health Questions What is CS gas and what is it used for? 2-chlorobenzylidene malononitrole or “CS” is a white crystalline solid when pure. The substance causes irritation in humans and is used by UK police forces as a temporary incapacitant spray to subdue persons who pose a risk to themselves and/or the police officers and others in the vicinity. It may be dispersed in a smoke cloud or dissolved into liquid (e.g. the solvent methyl iso-butyl ketone) to be used as a spray. The CS spray carried by some UK police forces contains 5% 2-chlorobenzylidene malononitrole. It is also used by the military in training operations and for testing gas masks. These substances may be referred to as CS or tear spray/gas (not to be confused with PAVA spray which is also be referred to as tear spray/gas). -
Pepperspray, CS, & Other 'Less-Lethal' Weapons
CONTENTS: Protective Measures: p.26-27 Pepperspray: p.2-9, 14-15 Chemical Data Table: p.30 CS/CN: p.10-16 Risk Groups: p.14-15 When to do what / Other Gas Types: p. 12 Asthma: p.14 treatment algorithm: p.4 Rubber Bullets: p.19-21 Nightsticks/Batons: p.17 LAW: p.6 Concussion Grenades: p.22 CR: p.12 VOFIBA: p.7 Fear: p.24 CA: p.12 Making Remedies: p.13 Tasers: p.18 DM: p.12 Sample Card for Handing Out: Shamelessly adapted from the Black Cross Radical Health Collective, www.blackcrosscollective.org If your condition is worsening, go to an emergency room. Basic preparations: Stick with your buddy. Pepperspray, CS, & Other Work with an affinity group. Bring water. Vulnerable people like asthmatics may want to “Less-Lethal” Weapons (your logo here) avoid chemical weapons. You must remove small children from the area BEFORE Used by Rioting Police to Suppress Dissent chemical weapons are used. Check out our w h e n P o l i t r i c k s & Te l e v i s i o n f a i l t o d o s o . website <www.---.org> for lots more info on how to prepare. v3.3 Useful Numbers: Serious injuries: If you don’t know how to treat Medical Emergency: 911 an injury, get a medic, or call 911. Don’t treat Copwatch: 123-4560 someone if you don’t know how. If you are Convergence Ctr Aid Station:123-4567 injured by the police, get to a nurse practitioner, Aftercare Clinic: 123-4568 physician’s assistant, or doctor immediately Legal Team: 123-4565 and have your injury documented in case you Public Defenders: 123-4569 decide to sue. -
Chronic Pelvic Pain M
Guidelines on Chronic Pelvic Pain M. Fall (chair), A.P. Baranowski, S. Elneil, D. Engeler, J. Hughes, E.J. Messelink, F. Oberpenning, A.C. de C. Williams © European Association of Urology 2008 TABLE OF CONTENTS PAGE 1. INTRODUCTION 5 1.1 The guideline 5 1.1.1 Publication history 5 1.2 Level of evidence and grade recommendations 5 1.3 References 6 1.4 Definition of pain (World Health Organization [WHO]) 6 1.4.1 Innervation of the urogenital system 7 1.4.2 References 8 1.5 Pain evaluation and measurement 8 1.5.1 Pain evaluation 8 1.5.2 Pain measurement 8 1.5.3 References 9 2. CHRONIC PELVIC PAIN 9 2.1 Background 9 2.1.1 Introduction to urogenital pain syndromes 9 2.2 Definitions of chronic pelvic pain and terminology (Table 4) 11 2.3 Classification of chronic pelvic pain syndromes 12 Table 3: EAU classification of chronic urogenital pain syndromes (page 10) Table 4: Definitions of chronic pain terminology (page 11) Table 5: ESSIC classification of types of bladder pain syndrome according to the results of cystoscopy with hydrodistension and of biopsies (page 13) 2.4 References 13 2.5 An algorithm for chronic pelvic pain diagnosis and treatment 13 2.5.1 How to use the algorithm 13 2.6 Prostate pain syndrome (PPS) 15 2.6.1 Introduction 16 2.6.2 Definition 16 2.6.3 Pathogenesis 16 2.6.4 Diagnosis 17 2.6.5 Treatment 17 2.6.5.1 Alpha-blockers 17 2.6.5.2 Antibiotic therapy 17 2.6.5.3 Non-steroidal anti-inflammatory drugs (NSAIDs) 17 2.6.5.4 Corticosteroids 17 2.6.5.5 Opioids 17 2.6.5.6 5-alpha-reductase inhibitors 18 2.6.5.7 Allopurinol 18 2.6.5.8 -
Camp Delta Standard Operating Procedures (SOP)
UNCLASSIFIED//FOR OFFICIAL USE ONLY Camp Delta Standard Operating Procedures (SOP) Headquarters, Joint Task Force - Guantanamo (JTF-GTMO) Guantanamo Bay, Cuba 28 March 2003 UNCLASSIFIED//FOR OFFICIAL USE ONLY UNCLASSIFIED//FOR OFFICIAL USE ONLY Intentionally Left Blank Camp Delta SOP 28 March 2003 UNCLASSIFIED//FOR OFFICIAL USE ONLY UNCLASSIFIED//FOR OFFICIAL USE ONLY Headquarters Joint Detention Operations Group (JDOG) Joint Task Force Guantanamo (JTF-GTMO) Guantanamo Bay, Cuba Effective 28 March 2003 28 March 2003 Camp Delta Standard Operating Procedures (SOP) By Order of the Commander procedures established herein apply to Supplementation. the services and agencies that Supplementation of this SOP and function in, and support thereof, establishment of command or local GEOFFREY D. MILLER detainee operations at JTF-GTMO in forms is prohibited without prior Major General, United States Army general and Camp Delta specifically. approval of the JDOG Commander, JTF-GTMO Applicability. This is a multi- Commander. service, multi-agency set of standard Suggested Improvements. Users Official: operating procedures. It applies to the are invited to send comments and Army, Navy, Air Force, Marine suggested improvements through ADOLPH MCQUEEN Corps, and Coast Guard as well as their chain of command to the Colonel, Military Police United States Government JDOG S3 for proper consideration Commander, JDOG organizations and international non- and staffing. governmental organizations operating Interim Changes. Policies and inside Camp Delta 1 - 3. procedures will be reviewed every History. This is a revised update to Proponent and exception authority. 120 days. Any interim changes the Joint Task Force Guantanamo The proponent of this set of operating will be signed by the JDOG (JTF-GTMO) standard operating procedures and special orders is the Commander and posted to the front procedures (SOP) for Camp Delta. -
Chapter Four – TRPA1 Channels: Chemical and Temperature Sensitivity
CHAPTER FOUR TRPA1 Channels: Chemical and Temperature Sensitivity Willem J. Laursen1,2, Sviatoslav N. Bagriantsev1,* and Elena O. Gracheva1,2,* 1Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA 2Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA *Corresponding author: E-mail: [email protected], [email protected] Contents 1. Introduction 90 2. Activation and Regulation of TRPA1 by Chemical Compounds 91 2.1 Chemical activation of TRPA1 by covalent modification 91 2.2 Noncovalent activation of TRPA1 97 2.3 Receptor-operated activation of TRPA1 99 3. Temperature Sensitivity of TRPA1 101 3.1 TRPA1 in mammals 101 3.2 TRPA1 in insects and worms 103 3.3 TRPA1 in fish, birds, reptiles, and amphibians 103 3.4 TRPA1: Molecular mechanism of temperature sensitivity 104 Acknowledgments 107 References 107 Abstract Transient receptor potential ankyrin 1 (TRPA1) is a polymodal excitatory ion channel found in sensory neurons of different organisms, ranging from worms to humans. Since its discovery as an uncharacterized transmembrane protein in human fibroblasts, TRPA1 has become one of the most intensively studied ion channels. Its function has been linked to regulation of heat and cold perception, mechanosensitivity, hearing, inflam- mation, pain, circadian rhythms, chemoreception, and other processes. Some of these proposed functions remain controversial, while others have gathered considerable experimental support. A truly polymodal ion channel, TRPA1 is activated by various stimuli, including electrophilic chemicals, oxygen, temperature, and mechanical force, yet the molecular mechanism of TRPA1 gating remains obscure. In this review, we discuss recent advances in the understanding of TRPA1 physiology, pharmacology, and molecular function. -
G Protein-Coupled Receptors As Therapeutic Targets for Multiple Sclerosis
npg GPCRs as therapeutic targets for MS Cell Research (2012) 22:1108-1128. 1108 © 2012 IBCB, SIBS, CAS All rights reserved 1001-0602/12 $ 32.00 npg REVIEW www.nature.com/cr G protein-coupled receptors as therapeutic targets for multiple sclerosis Changsheng Du1, Xin Xie1, 2 1Laboratory of Receptor-Based BioMedicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sci- ences and Technology, Tongji University, Shanghai 200092, China; 2State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Pudong New District, Shanghai 201203, China G protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones, neurotransmit- ters and environmental stimulants. They are considered as the most successful therapeutic targets for a broad spec- trum of diseases. Multiple sclerosis (MS) is an inflammatory disease that is characterized by immune-mediated de- myelination and degeneration of the central nervous system (CNS). It is the leading cause of non-traumatic disability in young adults. Great progress has been made over the past few decades in understanding the pathogenesis of MS. Numerous data from animal and clinical studies indicate that many GPCRs are critically involved in various aspects of MS pathogenesis, including antigen presentation, cytokine production, T-cell differentiation, T-cell proliferation, T-cell invasion, etc. In this review, we summarize the recent findings regarding the expression or functional changes of GPCRs in MS patients or animal models, and the influences of GPCRs on disease severity upon genetic or phar- macological manipulations. -
The Emerging Role of Transient Receptor Potential Channels in Chronic Lung Disease
BACK TO BASICS | TRANSIENT RECEPTOR POTENTIAL CHANNELS IN CHRONIC LUNG DISEASE The emerging role of transient receptor potential channels in chronic lung disease Maria G. Belvisi and Mark A. Birrell Affiliation: Respiratory Pharmacology Group, Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK. Correspondence: Maria G. Belvisi, Respiratory Pharmacology Group, Airway Disease Section, National Heart and Lung Institute, Imperial College, Exhibition Road, London SW7 2AZ, UK. E-mail: [email protected] @ERSpublications Transient receptor potential channels are emerging as novel targets for chronic lung diseases with a high unmet need http://ow.ly/GHeR30b3hIy Cite this article as: Belvisi MG, Birrell MA. The emerging role of transient receptor potential channels in chronic lung disease. Eur Respir J 2017; 50: 1601357 [https://doi.org/10.1183/13993003.01357-2016]. ABSTRACT Chronic lung diseases such as asthma, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis are a major and increasing global health burden with a high unmet need. Drug discovery efforts in this area have been largely disappointing and so new therapeutic targets are needed. Transient receptor potential ion channels are emerging as possible therapeutic targets, given their widespread expression in the lung, their role in the modulation of inflammatory and structural changes and in the production of respiratory symptoms, such as bronchospasm and cough, seen in chronic lung disease. Received: Jan 08 2017 | Accepted after revision: April 14 2017 Conflict of interest: Disclosures can be found alongside this article at erj.ersjournals.com Copyright ©ERS 2017 https://doi.org/10.1183/13993003.01357-2016 Eur Respir J 2017; 50: 1601357 TRANSIENT RECEPTOR POTENTIAL CHANNELS IN CHRONIC LUNG DISEASE | M.G. -
Nerve Agent - Lntellipedia Page 1 Of9 Doc ID : 6637155 (U) Nerve Agent
This document is made available through the declassification efforts and research of John Greenewald, Jr., creator of: The Black Vault The Black Vault is the largest online Freedom of Information Act (FOIA) document clearinghouse in the world. The research efforts here are responsible for the declassification of MILLIONS of pages released by the U.S. Government & Military. Discover the Truth at: http://www.theblackvault.com Nerve Agent - lntellipedia Page 1 of9 Doc ID : 6637155 (U) Nerve Agent UNCLASSIFIED From lntellipedia Nerve Agents (also known as nerve gases, though these chemicals are liquid at room temperature) are a class of phosphorus-containing organic chemicals (organophosphates) that disrupt the mechanism by which nerves transfer messages to organs. The disruption is caused by blocking acetylcholinesterase, an enzyme that normally relaxes the activity of acetylcholine, a neurotransmitter. ...--------- --- -·---- - --- -·-- --- --- Contents • 1 Overview • 2 Biological Effects • 2.1 Mechanism of Action • 2.2 Antidotes • 3 Classes • 3.1 G-Series • 3.2 V-Series • 3.3 Novichok Agents • 3.4 Insecticides • 4 History • 4.1 The Discovery ofNerve Agents • 4.2 The Nazi Mass Production ofTabun • 4.3 Nerve Agents in Nazi Germany • 4.4 The Secret Gets Out • 4.5 Since World War II • 4.6 Ocean Disposal of Chemical Weapons • 5 Popular Culture • 6 References and External Links --------------- ----·-- - Overview As chemical weapons, they are classified as weapons of mass destruction by the United Nations according to UN Resolution 687, and their production and stockpiling was outlawed by the Chemical Weapons Convention of 1993; the Chemical Weapons Convention officially took effect on April 291997. Poisoning by a nerve agent leads to contraction of pupils, profuse salivation, convulsions, involuntary urination and defecation, and eventual death by asphyxiation as control is lost over respiratory muscles. -
* * * Chemical Agent * * * Instructor's Manual
If you have issues viewing or accessing this file contact us at NCJRS.gov. · --. -----;-:-.. -----:-~------ '~~~v:~r.·t..~ ._.,.. ~Q" .._L_~ •.• ~,,,,,.'.,J-· .. f.\...('.1..-":I- f1 tn\. ~ L. " .:,"."~ .. ,. • ~ \::'J\.,;;)\ rl~ lL/{PS-'1 J National Institute of Corrections Community Corrections Division * * * CHEMICAL AGENT * * * INSTRUCTOR'S MANUAL J. RICHARD FAULKNER, JR. CORRECTIONAL PROGRAM SPECIALIST NATIONAL INSTITUTE OF CORRECTIONS WASIHNGTON, DC 20534 202-307-3106 - ext.138 , ' • 146592 U.S. Department of Justice National Institute of Justice This document has been reproduced exactly as received from the person or organization originating it. Points of view or opinions stated In tl]!::; document are those of the authors and do not necessarily represent the official position or policies of the National Institute of Justice. Permission to reproduce this "'"P 'J' ... material has been granted by Public Domain/NrC u.s. Department of Justice to the National Criminal Justice Reference Service (NCJRS). • Further reproduction outside of the NCJRS system reqllires permission of the f ._kt owner, • . : . , u.s. Deparbnent of Justice • National mstimte of Corrections Wtulringttm, DC 20534 CHEMICAL AGENTS Dangerous conditions that are present in communities have raised the level of awareness of officers. In many jurisdictions, officers have demanded more training in self protection and the authority to carry lethal weapons. This concern is a real one and administrators are having to address issues of officer safety. The problem is not a simple one that can be solved with a new policy. Because this involves safety, in fact the very lives of staff, the matter is extremely serious. Training must be adopted to fit policy and not violate the goals, scope and mission of the agency. -
Pepper Spray: What Do We Have to Expect?
Pepper Spray: What Do We Have to Expect? Assoc. Prof. Mehmet Akif KARAMERCAN, MD Gazi University School of Medicine Department of Emergency Medicine Presentation Plan • History • Pepper Spray • Tear Gas • Symptoms • Medical Treatment • If you are the victim ??? History • PEPPER SPRAY ▫ OC (oleoresin of capsicum) (Most Commonly Used Compound) • TEAR GAS ▫ CN (chloroacetophenone) (German scientists 1870 World War I and II) ▫ CS (orthochlorobenzalmalononitrile) (US Army adopted in 1959) ▫ CR (dibenzoxazepine) (British Ministry of Defence 1950-1960) History of Pepper Spray • Red Chili Pepper was being used for self defense in ancient India - China - Japan (Ninjas). ▫ Throw it at the faces of their enemies, opponents, or intruders. • Japan Tukagawa Empire police used a weapon called the "metsubishi." • Accepted as a weapon ▫ incapacitate a person temporarily. • Pepper as a weapon 14th and 15th century for slavery rampant and became a popular method for torturing people (criminals, slaves). History of Pepper Spray • 1980's The USA Postal Workers started using pepper sprays against dogs, bears and other pets and became a legalized non-lethal weapon ▫ Pepper spray is also known as oleoresin of capsicum (OC) spray • The FBI in 1987 endorse it as an official chemical agent and it took 4 years it could be legally accepted by law enforcement agency. Pepper Spray • The active ingredient in pepper spray is capsaicin, which is a chemical derived from the fruit of plants of chilis. • Extraction of Oleoresin Capsicum from peppers ▫ capsicum to be finely ground, capsaicin is then extracted using an organic solvent (ethanol). The solvent is then evaporated, remaining waxlike resin is the Oleoresin Capsicum • Propylene Glycol is used to suspend the OC in water, pressurized to make it aerosol in Pepper Spray. -
Half Way Down the Trail to Hell
Half Way Down The Trail To Hell A Wartime Remembrance in Three Parts By Stephen E. Kirkland i Prologue “The danger, being around veterans, the memories are so selective and so heroic that you’ve got to be careful talking to a guy like me.” George Herbert Walker Bush A while back I discovered the Library of Congress is conducting a program called The Veterans History Project. The mission of the project is the collection and preservation of veteran’s wartime recollections and documents before they are lost forever. Like many wartime veterans, I concentrated on getting on with my life. I needed a job that would allow me to marry, buy a house and raise a family. I didn’t feel anything I had experienced in Vietnam would contribute to these goals, and I felt that, for the most part, people who hadn’t served didn’t know or even care what I had seen or done. The country’s attitude was different than with the Gulf War veterans and I deflected the few inquires that were made, especially the ones that contained the words “Did ya’ kill anybody?” I was too busy dealing with the present to spend a lot of time staring into the past. Now, almost four decades after returning home, the time has come to look back and try to recreate a piece of personal history, albeit history filtered though my water colored memories. I’ve relied on a number of sources for this remembrance, not the least of which were letters that I wrote home. -
Toxic Materials to Cornea INTRODUCTION
International Journal of Veterinary and Animal Research Uluslararası Veteriner ve Hayvan Araştırmaları Dergisi E-ISSN: 2651-3609 2(1): 06-10, 2019 Toxic Materials to Cornea Eren Ekici1, Ender Yarsan2* 1Ankara Ulucanlar Eye Training and Research Hospital, Department of Ophtalmology, Ankara, Turkey 2Ankara University Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Ankara, Turkey *Corresponding Author Received: February 12, 2019 E-mail:[email protected] Accepted: March 6, 2019 Abstract Every day; many chemical agents, materials or medicines whether in the pharmaceutical industry or daily life are offered for consuming for human beings. At this point, it has great importance that if the substances threaten heath or not. Because the toxicity of materials can lead to many target organ damage. The eye, together with many anatomical layers that make it up is among the target organs exposed to toxicity. In this review, we handled the classification, effects and treatment methods of toxic materials on the corneal layer of the eye. Keywords: Cornea, toxic materials, chemicals, eye INTRODUCTION and materials known to be toxic in high-risk situations (ie Toxic material is a chemical substance that breaks down aminoglycosides, some glaucoma medications, antivirals, normal physiological and biochemical mechanisms when chronic disease, dry eyes and patients on multiple topical it enters the living organism (human and warm-blooded therapies) is effective to protect from toxicity (Dart, 2003). animals) through mouth, respiration, skin, and infection, or Table 1: Classification by route of exposure and time course. causes the death of the creature in an excess amount. For Local action, immediate corneal toxicity; there are many methods of classification Examples effects based on the disease, route of exposure and duration or agent Caustic chemicals Acids and alkalis (Grant, 1986).