Chapter 1 of Artificial Intelligence: a Modern Approach
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Evolution of Intelligence
Review From Homo Sapiens to Robo Sapiens: The Evolution of Intelligence Anat Ringel Raveh * and Boaz Tamir * Faculty of interdisciplinary studies, S.T.S. Program, Bar-Ilan University, Ramat-Gan 5290002, Israel; [email protected] (A.R.R.); [email protected] (B.T.) Received: 30 October 2018; Accepted: 18 December 2018; Published: 21 December 2018 Abstract: In this paper, we present a review of recent developments in artificial intelligence (AI) towards the possibility of an artificial intelligence equal that of human intelligence. AI technology has always shown a stepwise increase in its capacity and complexity. The last step took place several years ago with the increased progress in deep neural network technology. Each such step goes hand in hand with our understanding of ourselves and our understanding of human cognition. Indeed, AI was always about the question of understanding human nature. AI percolates into our lives, changing our environment. We believe that the next few steps in AI technology, and in our understanding of human behavior, will bring about much more powerful machines that are flexible enough to resemble human behavior. In this context, there are two research fields: Artificial Social Intelligence (ASI) and General Artificial Intelligence (AGI). The authors also allude to one of the main challenges for AI, embodied cognition, and explain how it can viewed as an opportunity for further progress in AI research. Keywords: Artificial Intelligence (AI); artificial general intelligence (AGI); artificial social intelligence (ASI); social sciences; singularity; complexity; embodied cognition; value alignment 1. Introduction 1.1. From Intelligence to Super-Intelligence In this paper we present a review of recent developments in AI towards the possibility of an artificial intelligence equals that of human intelligence. -
Ontology-Based Approach to Semantically Enhanced Question Answering for Closed Domain: a Review
information Review Ontology-Based Approach to Semantically Enhanced Question Answering for Closed Domain: A Review Ammar Arbaaeen 1,∗ and Asadullah Shah 2 1 Department of Computer Science, Faculty of Information and Communication Technology, International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia 2 Faculty of Information and Communication Technology, International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia; [email protected] * Correspondence: [email protected] Abstract: For many users of natural language processing (NLP), it can be challenging to obtain concise, accurate and precise answers to a question. Systems such as question answering (QA) enable users to ask questions and receive feedback in the form of quick answers to questions posed in natural language, rather than in the form of lists of documents delivered by search engines. This task is challenging and involves complex semantic annotation and knowledge representation. This study reviews the literature detailing ontology-based methods that semantically enhance QA for a closed domain, by presenting a literature review of the relevant studies published between 2000 and 2020. The review reports that 83 of the 124 papers considered acknowledge the QA approach, and recommend its development and evaluation using different methods. These methods are evaluated according to accuracy, precision, and recall. An ontological approach to semantically enhancing QA is found to be adopted in a limited way, as many of the studies reviewed concentrated instead on Citation: Arbaaeen, A.; Shah, A. NLP and information retrieval (IR) processing. While the majority of the studies reviewed focus on Ontology-Based Approach to open domains, this study investigates the closed domain. -
Knowledge Elicitation: Methods, Tools and Techniques Nigel R
This is a pre-publication version of a paper that will appear as Shadbolt, N. R., & Smart, P. R. (2015) Knowledge Elicitation. In J. R. Wilson & S. Sharples (Eds.), Evaluation of Human Work (4th ed.). CRC Press, Boca Raton, Florida, USA. (http://www.amazon.co.uk/Evaluation-Human-Work-Fourth- Wilson/dp/1466559616/). Knowledge Elicitation: Methods, Tools and Techniques Nigel R. Shadbolt1 and Paul R. Smart1 1Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK. Introduction Knowledge elicitation consists of a set of techniques and methods that attempt to elicit the knowledge of a domain expert1, typically through some form of direct interaction with the expert. Knowledge elicitation is a sub-process of knowledge acquisition (which deals with the acquisition or capture of knowledge from any source), and knowledge acquisition is, in turn, a sub-process of knowledge engineering (which is a discipline that has evolved to support the whole process of specifying, developing and deploying knowledge-based systems). Although the elicitation, representation and transmission of knowledge can be considered a fundamental human activity – one that has arguably shaped the entire course of human cognitive and social evolution (Gaines, 2013) – knowledge elicitation had its formal beginnings in the early to mid 1980s in the context of knowledge engineering for expert systems2. These systems aimed to emulate the performance of experts within narrowly specified domains of interest3, and it initially seemed that the design of such systems would draw its inspiration from the broader programme of research into artificial intelligence. In the early days of artificial intelligence, much of the research effort was based around the discovery of general principles of intelligent behaviour. -
A Framework for Representing Knowledge Marvin Minsky MIT-AI Laboratory Memo 306, June, 1974. Reprinted in the Psychology of Comp
A Framework for Representing Knowledge Marvin Minsky MIT-AI Laboratory Memo 306, June, 1974. Reprinted in The Psychology of Computer Vision, P. Winston (Ed.), McGraw-Hill, 1975. Shorter versions in J. Haugeland, Ed., Mind Design, MIT Press, 1981, and in Cognitive Science, Collins, Allan and Edward E. Smith (eds.) Morgan-Kaufmann, 1992 ISBN 55860-013-2] FRAMES It seems to me that the ingredients of most theories both in Artificial Intelligence and in Psychology have been on the whole too minute, local, and unstructured to account–either practically or phenomenologically–for the effectiveness of common-sense thought. The "chunks" of reasoning, language, memory, and "perception" ought to be larger and more structured; their factual and procedural contents must be more intimately connected in order to explain the apparent power and speed of mental activities. Similar feelings seem to be emerging in several centers working on theories of intelligence. They take one form in the proposal of Papert and myself (1972) to sub-structure knowledge into "micro-worlds"; another form in the "Problem-spaces" of Newell and Simon (1972); and yet another in new, large structures that theorists like Schank (1974), Abelson (1974), and Norman (1972) assign to linguistic objects. I see all these as moving away from the traditional attempts both by behavioristic psychologists and by logic-oriented students of Artificial Intelligence in trying to represent knowledge as collections of separate, simple fragments. I try here to bring together several of these issues by pretending to have a unified, coherent theory. The paper raises more questions than it answers, and I have tried to note the theory's deficiencies. -
Evolutionary Psychology As of September 15
Evolutionary Psychology In its broad sense, the term ‘evolutionary psychology’ stands for any attempt to adopt an evolutionary perspective on human behavior by supplementing psychology with the central tenets of evolutionary biology. The underlying idea is that since our mind is the way it is at least in part because of our evolutionary past, evolutionary theory can aid our understanding not only of the human body, but also of the human mind. In the narrow sense, Evolutionary Psychology (with capital ‘E’ and ‘P’, to distinguish it from evolutionary psychology in the broad sense) is an adaptationist program which regards our mind as an integrated collection of cognitive mechanisms that are adaptations , i.e., the result of evolution by natural selection. Adaptations are traits present today because they helped to solve recurrent adaptive problems in the past. Evolutionary Psychology is interested in those adaptations that have evolved in response to characteristically human adaptive problems like choosing and securing a mate, recognizing emotional expressions, acquiring a language, distinguishing kin from non-kin, detecting cheaters or remembering the location of edible plants. Its purpose is to discover and explain the cognitive mechanisms that guide current human behavior because they have been selected for as solutions to these adaptive problems in the evolutionary environment of our ancestors. 1. Historic and Systematic Roots 1a. The Computational Model of the Mind 1b. The Modularity of Mind 1c. Adaptationism 2. Key Concepts and Arguments 2a. Adaptation and Adaptivity 1 2b. Functional Analysis 2c. The Environment of Evolutionary Adaptedness 2d. Domain-specificity and Modularity 2e. Human Nature 3. -
Eye on the Prize
AI Magazine Volume 16 Number 2 (1995) (© AAAI) Articles Eye on the Prize Nils J. Nilsson ■ In its early stages, the field of AI had as its main sufficiently powerful to solve large problems goal the invention of computer programs having of real-world consequence. In their efforts to the general problem-solving abilities of humans. get past the barrier separating toy problems Along the way, a major shift of emphasis devel- from real ones, AI researchers became oped from general-purpose programs toward per- absorbed in two important diversions from formance programs, ones whose competence was their original goal of developing general, highly specialized and limited to particular areas intelligent systems. One diversion was toward of expertise. In this article, I claim that AI is now developing performance programs, ones whose at the beginning of another transition, one that competence was highly specialized and limit- will reinvigorate efforts to build programs of gen- eral, humanlike competence. These programs will ed to particular areas of expertise. Another use specialized performance programs as tools, diversion was toward refining specialized much like humans do. techniques beyond those required for general- purpose intelligence. In this article, I specu- ver 40 years ago, soon after the birth late about the reasons for these diversions of electronic computers, people began and then describe growing forces that are Oto think that human levels of intelli- pushing AI to resume work on its original gence might someday be realized in computer goal of building programs of general, human- programs. Alan Turing (1950) was among the like competence. -
Decision-Making with Artificial Intelligence in the Social Context Responsibility, Accountability and Public Perception with Examples from the Banking Industry
watchit Expertenforum 2. Veröffentlichung Decision-Making with Artificial Intelligence in the Social Context Responsibility, Accountability and Public Perception with Examples from the Banking Industry Udo Milkau and Jürgen Bott BD 2-MOS-Umschlag-RZ.indd 1 09.08.19 08:51 Impressum DHBW Mosbach Lohrtalweg 10 74821 Mosbach www.mosbach.dhbw.de/watchit www.digital-banking-studieren.de Decision-Making with Artificial Intelligence in the Social Context Responsibility, Accountability and Public Perception with Examples from the Banking Industry von Udo Milkau und Jürgen Bott Herausgeber: Jens Saffenreuther Dirk Saller Wolf Wössner Mosbach, im August 2019 BD 2-MOS-Umschlag-RZ.indd 2 09.08.19 08:51 BD 2 - MOS - Innen - RZ_HH.indd 1 02.08.2019 10:37:52 Decision-Making with Artificial Intelligence in the Social Context 1 Decision-Making with Artificial Intelligence in the Social Context Responsibility, Accountability and Public Perception with Examples from the Banking Industry Udo Milkau and Jürgen Bott Udo Milkau received his PhD at Goethe University, Frankfurt, and worked as a research scientist at major European research centres, including CERN, CEA de Saclay and GSI, and has been a part-time lecturer at Goethe University Frankfurt and Frankfurt School of Finance and Management. He is Chief Digital Officer, Transaction Banking at DZ BANK, Frankfurt, and is chairman of the Digitalisation Work- ing Group and member of the Payments Services Working Group of the European Association of Co- operative Banks (EACB) in Brussels. Jürgen Bott is professor of finance management at the University of Applied Sciences in Kaiserslau- tern. As visiting professor and guest lecturer, he has associations with several other universities and business schools, e.g. -
Artificial Intelligence [R18a1205] Lecture Notes B.Tech Iii Year
ARTIFICIAL INTELLIGENCE [R18A1205] LECTURE NOTES B.TECH III YEAR – I SEM (R18) (2020-2021) MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) Recognized under 2(f) and 12 (B) of UGC ACT 1956 (Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified) Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY III Year B. Tech CSE ‐ I Sem L T/P/D C 3 -/-/- 3 (R18A1205) ARTIFICIAL INTELLIGENCE OBJECTIVES: To Learn the significance of intelligence systems. To understand the concepts of heuristic search techniques &logic programming. To know the various knowledge representation techniques. UNIT - I Introduction: AI problems, Agents and Environments, Structure of Agents, Problem Solving Agents Basic Search Strategies: Problem Spaces, Uninformed Search (Breadth-First, Depth-First Search, Depth-first with Iterative Deepening), Heuristic Search (Hill Climbing, Generic Best-First, A*), Constraint Satisfaction (Backtracking, Local Search) UNIT - II Advanced Search: Constructing Search Trees, Stochastic Search, A* Search Implementation, Minimax Search, Alpha-Beta Pruning Basic Knowledge Representation and Reasoning: Propositional Logic, First-Order Logic, Forward Chaining and Backward Chaining, Introduction to Probabilistic Reasoning, Bayes Theorem UNIT – III Advanced Knowledge Representation and Reasoning: Knowledge Representation Issues, Nonmonotonic Reasoning, Other Knowledge Representation Schemes Reasoning Under Uncertainty: Basic probability, Acting Under Uncertainty, Bayes’ Rule, Representing Knowledge in an Uncertain Domain, Bayesian Networks UNIT - IV Learning: What Is Learning? Rote Learning, Learning by Taking Advice, Learning in Problem Solving, Learning from Examples, Winston’s Learning Program, Decision Trees. UNIT - V Expert Systems: Representing and Using Domain Knowledge, Shell, Explanation, Knowledge Acquisition. -
The 'General Problem Solver' Does Not
ARTICLE The “General Problem Solver” Does Not Exist: Mortimer Taube and the Art of AI Criticism Shunryu Colin Garvey, Stanford University Institute for Human-Centered AI, USA This article reconfigures the history of artificial intelligence (AI) and its accompanying tradition of criticism by excavating the work of Mortimer Taube, a pioneer in information and library sciences, whose magnum opus, Computers and Common Sense: The Myth of Thinking Machines (1961), has been mostly forgotten. To convey the essence of his distinctive critique, the article focuses on Taube’s attack on the general problem solver (GPS), the second major AI program. After examining his analysis of the social construction of this and other “thinking machines,” it concludes that, despite technical changes in AI, much of Taube’s criticism remains relevant today. Moreover, his status as an “information processing” insider who criticized AI on behalf of the public good challenges the boundaries and focus of most critiques of AI from the past half-century. In sum, Taube’s work offers an alternative model from which contemporary AI workers and critics can learn much. EXPOSED INTELLIGENCE RESEARCH (TAUBE, discovered Mortimer Taube in a footnote to the 1961). READERS WHO HAVE BEEN penultimate chapter of Computers and Thought EXPOSED TO THIS BOOK SHOULD (1963), the first collected volume of articles in the REFER TO REVIEWS OF IT BY RICHARD I 1 nascent field of “artificial intelligence” (AI). The chap- LAING (1962) AND WALTER R. REITMAN ter, “Attitudes toward Intelligent Machines,” by Paul (1962), PARTICULARLY THE FORMER.2 Armer, then head of the Computer Sciences Depart- ment of the RAND Corporation, is a partisan consider- ation of the social aspects of AI. -
The Philosophy of W. Ross Ashby 149 Peter M
The Mechanical Mind in History edited by Philip Husbands, Owen Holland, and Michael Wheeler A Bradford Book The MIT Press Cambridgg Massachusetts London, England Contents Preface vii I Introduction: The Mechanical Mind 1 Philip Husbands, Michael Wheeler, and Owen Holland 2 Charles Babbage and the Emergence of Automated Reason 19 Seth Bullock 3 D'Arcy Thompson: A Grandfather of A-Life 41 Margaret A. Boden 4 Alan Turing's Mind Machines 6"1 Donald Michie 5 What Did Alan Turing Mean by "Machine"? 75 Andrew Hodges 6 The Ratio Club: A Hub of British Cybernetics 91 Philip Husbands and Owen Holland 7 From Mechanisms of Adaptation to lntelligence Amplifiers: The Philosophy of W. Ross Ashby 149 Peter M. Asaro 8 Gordon Pask and His Maverick Machines 185 Jon Bird and Ezequiei Di Paolo 9 Santiago Dreaming 213 Andy Beckett 10 Steps Toward the Synthetic Method: Symbolic Information Processing and Self-Organizing Systems in Early Artificial Intelligence Modeling 21g Roberto Cordeschi 7 From Mechanisms of Adaptation to Intelligence Amplifiers: The Philosophy of W. Ross Ashby Peter M. Asaro During the last few years it has become apparent that the concept of ‘‘machine’’ must be very greatly extended if it is to include the most modern developments. Es- pecially is this true if we are studying the brain and attempting to identify the type of mechanism that is responsible for the brain’s outstanding powers of thought and action. It has become apparent that when we used to doubt whether the brain could be a machine, our doubts were due chiefly to the fact that by ‘‘machine’’ we under- stood some mechanism of very simple type. -
Artificial Intelligence Has Enjoyed Tre- List of Offshoot Technologies, from Time Mendous Success Over the Last Twenty five Sharing to Functional Programming
AI Magazine Volume 26 Number 4 (2006)(2005) (© AAAI) 25th Anniversary Issue Artificial Intelligence: The Next Twenty-Five Years Edited by Matthew Stone and Haym Hirsh ■ Through this collection of programmatic state- that celebrates the exciting new work that AI ments from key figures in the field, we chart the researchers are currently engaged in. At the progress of AI and survey current and future direc- same time, we hope to help to articulate, to tions for AI research and the AI community. readers thinking of taking up AI research, the rewards that practitioners can expect to find in our mature discipline. And even if you’re a stranger to AI, we think you’ll enjoy this inside e know—with a title like that, you’re peek at the ways AI researchers talk about what expecting something awful. You’re they really do. on the lookout for fanciful prognos- W We asked our contributors to comment on tications about technology: Someday comput- goals that drive current research in AI; on ways ers will fit in a suitcase and have a whole our current questions grow out of our past re- megabyte of memory. And you’re wary of lurid sults; on interactions that tie us together as a Hollywood visions of “the day the robots field; and on principles that can help to repre- come”: A spiderlike machine pins you to the sent our profession to society at large. We have wall and targets a point four inches behind your eyes with long and disturbing spikes. Your excerpted here from the responses we received last memory before it uploads you is of it ask- and edited them together to bring out some of ing, with some alien but unmistakable existen- the most distinctive themes. -
How to Do Research at the MIT AI Lab
Massachusetts Institute of Technology Artificial Intelligence Laboratory AI Working Paper 316 October, 1988 How to do Research At the MIT AI Lab by a whole bunch of current, former, and honorary MIT AI Lab graduate students David Chapman, Editor Version 1.3, September, 1988. Abstract This document presumptuously purports to explain how to do re- search. We give heuristics that may be useful in picking up the specific skills needed for research (reading, writing, programming) and for understanding and enjoying the process itself (methodol- ogy, topic and advisor selection, and emotional factors). Copyright °c 1987, 1988 by the authors. A. I. Laboratory Working Papers are produced for internal circulation, and may contain information that is, for example, too preliminary or too detailed for formal publication. It is not intended that they should be considered papers to which reference can be made in the literature. Contents 1 Introduction 1 2 Reading AI 2 3 Getting connected 4 4 Learning other fields 7 5 Notebooks 11 6 Writing 11 7 Talks 18 8 Programming 20 9 Advisors 22 10 The thesis 26 11 Research methodology 30 12 Emotional factors 31 1 Introduction What is this? There’s no guaranteed recipe for success at research. This doc- ument collects a lot of informal rules-of-thumb advice that may help. Who’s it for? This document is written for new graduate students at the MIT AI Laboratory. However, it may be useful to many others doing research in AI at other institutions. People even in other fields have found parts of it useful.