A Framework for Representing Knowledge Marvin Minsky MIT-AI Laboratory Memo 306, June, 1974. Reprinted in the Psychology of Comp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Computational Attitude in Music Theory
The Computational Attitude in Music Theory Eamonn Bell Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Eamonn Bell All rights reserved ABSTRACT The Computational Attitude in Music Theory Eamonn Bell Music studies’s turn to computation during the twentieth century has engendered particular habits of thought about music, habits that remain in operation long after the music scholar has stepped away from the computer. The computational attitude is a way of thinking about music that is learned at the computer but can be applied away from it. It may be manifest in actual computer use, or in invocations of computationalism, a theory of mind whose influence on twentieth-century music theory is palpable. It may also be manifest in more informal discussions about music, which make liberal use of computational metaphors. In Chapter 1, I describe this attitude, the stakes for considering the computer as one of its instruments, and the kinds of historical sources and methodologies we might draw on to chart its ascendance. The remainder of this dissertation considers distinct and varied cases from the mid-twentieth century in which computers or computationalist musical ideas were used to pursue new musical objects, to quantify and classify musical scores as data, and to instantiate a generally music-structuralist mode of analysis. I present an account of the decades-long effort to prepare an exhaustive and accurate catalog of the all-interval twelve-tone series (Chapter 2). This problem was first posed in the 1920s but was not solved until 1959, when the composer Hanns Jelinek collaborated with the computer engineer Heinz Zemanek to jointly develop and run a computer program. -
Mccarthy As Scientist and Engineer, with Personal Recollections
Articles McCarthy as Scientist and Engineer, with Personal Recollections Edward Feigenbaum n John McCarthy, professor emeritus of com - n the late 1950s and early 1960s, there were very few people puter science at Stanford University, died on actually doing AI research — mostly the handful of founders October 24, 2011. McCarthy, a past president (John McCarthy, Marvin Minsky, and Oliver Selfridge in of AAAI and an AAAI Fellow, helped design the I Boston, Allen Newell and Herbert Simon in Pittsburgh) plus foundation of today’s internet-based computing their students, and that included me. Everyone knew everyone and is widely credited with coining the term, artificial intelligence. This remembrance by else, and saw them at the few conference panels that were held. Edward Feigenbaum, also a past president of At one of those conferences, I met John. We renewed contact AAAI and a professor emeritus of computer sci - upon his rearrival at Stanford, and that was to have major con - ence at Stanford University, was delivered at the sequences for my professional life. I was a faculty member at the celebration of John McCarthy’s accomplish - University of California, Berkeley, teaching the first AI courses ments, held at Stanford on 25 March 2012. at that university, and John was doing the same at Stanford. As – AI Magazine Stanford moved toward a computer science department under the leadership of George Forsythe, John suggested to George, and then supported, the idea of hiring me into the founding fac - ulty of the department. Since we were both Advanced Research Project Agency (ARPA) contract awardees, we quickly formed a close bond concerning ARPA-sponsored AI research and gradu - ate student teaching. -
Arxiv:2106.11534V1 [Cs.DL] 22 Jun 2021 2 Nanjing University of Science and Technology, Nanjing, China 3 University of Southampton, Southampton, U.K
Noname manuscript No. (will be inserted by the editor) Turing Award elites revisited: patterns of productivity, collaboration, authorship and impact Yinyu Jin1 · Sha Yuan1∗ · Zhou Shao2, 4 · Wendy Hall3 · Jie Tang4 Received: date / Accepted: date Abstract The Turing Award is recognized as the most influential and presti- gious award in the field of computer science(CS). With the rise of the science of science (SciSci), a large amount of bibliographic data has been analyzed in an attempt to understand the hidden mechanism of scientific evolution. These include the analysis of the Nobel Prize, including physics, chemistry, medicine, etc. In this article, we extract and analyze the data of 72 Turing Award lau- reates from the complete bibliographic data, fill the gap in the lack of Turing Award analysis, and discover the development characteristics of computer sci- ence as an independent discipline. First, we show most Turing Award laureates have long-term and high-quality educational backgrounds, and more than 61% of them have a degree in mathematics, which indicates that mathematics has played a significant role in the development of computer science. Secondly, the data shows that not all scholars have high productivity and high h-index; that is, the number of publications and h-index is not the leading indicator for evaluating the Turing Award. Third, the average age of awardees has increased from 40 to around 70 in recent years. This may be because new breakthroughs take longer, and some new technologies need time to prove their influence. Besides, we have also found that in the past ten years, international collabo- ration has experienced explosive growth, showing a new paradigm in the form of collaboration. -
WHY PEOPLE THINK COMPUTERS CAN't Marvin
WHY PEOPLE THINK COMPUTERS CAN'T Marvin Minsky, MIT First published in AI Magazine, vol. 3 no. 4, Fall 1982. Reprinted in Technology Review, Nov/Dec 1983, and in The Computer Culture, (Donnelly, Ed.) Associated Univ. Presses, Cranbury NJ, 1985 Most people think computers will never be able to think. That is, really think. Not now or ever. To be sure, most people also agree that computers can do many things that a person would have to be thinking to do. Then how could a machine seem to think but not actually think? Well, setting aside the question of what thinking actually is, I think that most of us would answer that by saying that in these cases, what the computer is doing is merely a superficial imitation of human intelligence. It has been designed to obey certain simple commands, and then it has been provided with programs composed of those commands. Because of this, the computer has to obey those commands, but without any idea of what's happening. Indeed, when computers first appeared, most of their designers intended them for nothing only to do huge, mindless computations. That's why the things were called "computers". Yet even then, a few pioneers -- especially Alan Turing -- envisioned what's now called "Artificial Intelligence" - or "AI". They saw that computers might possibly go beyond arithmetic, and maybe imitate the processes that go on inside human brains. Today, with robots everywhere in industry and movie films, most people think Al has gone much further than it has. Yet still, "computer experts" say machines will never really think. -
The Qualia Manifesto (C) Ken Mogi 1998 [email protected] the Qualia Manifesto Summar
The Qualia Manifesto (c) Ken Mogi 1998 [email protected] http://www.qualia-manifesto.com The Qualia Manifesto Summary It is the greatest intellectual challenge for humanity at present to elucidate the first principles behind the fact that there is such a thing as a subjectiveexperience. The hallmark of our subjective experiences is qualia. It is the challenge to find the natural law behind the neural generation of qualia which constitute the percepts in our mind, or to go beyond the metaphor of a "correspondence" between physical and mental processes. This challenge is necessary to go beyond the present paradigm of natural sciences which is based on the so-called objective point of view of description. In order to pin down the origin of qualia, we need to incorporate the subjective point of view in a non-trivial manner. The clarification of the nature of the way how qualia in our mind are invoked by the physical processes in the brain and how the "subjectivity" structure which supports qualia is originated is an essential step in making compatible the subjective and objective points of view. The elucidation of the origin of qualia rich subjectivity is important not only as an activity in the natural sciences, but also as a foundation and the ultimate justification of the whole world of the liberal arts. Bridging the gap between the two cultures (C.P.Snow) is made possible only through a clear understanding of the origin of qualia and subjectivity. Qualia symbolize the essential intellectual challenge for the humanity in the future. -
A Programming and Problem-Solving Seminar
Dcccm bcr 1983 Report No. STAN-B-83-990 A Programming and Problem-Solving Seminar bY John D. Hobby and Donald E. Knuth Department of Computer Science Stanford University Stanford, CA 94305 . -_ -_y-- _ - Computer Science Department A PROGRAMMING AND PROBLEM-SOLVING SEMINAR bY John D. Hobby and Donald E. Knuth This report contains edited transcripts of the discussions held in Stanford’s course CS204, Problem Seminar, during autumn quarter 1982. Since the topics span a large range of ideas in computer science, and since most of the important research paradigms and programming paradigms were touched on during the discussions, these notes may be ‘of interest to graduate students of computer science at other universities, as well as to their professors and to professional people in the “real world.” The present report is the fifth in a series of such transcripts, continuing the tradi- tion established in STAN-CS-77-606 (Michael J. Clancy, 1977), STAN-CS-79-707 (Chris Van’ Wyk, 1979), STAN-CS-81-863 (Allan A. Miller, 1981), STAN-CS-83-989 (Joseph S. Weening, 1983). The production of this report was partially supported by National Science Foundation grant MCS-8300984. Table of Contents Index to problems in the five seminar transcripts . 3 Cast of characters . 4 Intro due tion . ..*.................................. 5 Problem l-Bulgarian Solitaire ........................................................ 6 October 5 ........................................................................ 6 October 7 ....................................................................... -
Transforming Ad Hoc EDA to Algorithmic EDA
Transforming Ad Hoc EDA to Algorithmic EDA Jason Cong Chancellor’s Professor, UCLA Director, Center for Domain-Specific Computing 1 The Early Years 蔡高中學 成功大學 麻省理工 學 院 Choikou Middle School National Cheng Kung University MIT Macau Taiwan USA 1952 1956 1958 2 Graduate Study at MIT (1958 – 1963) ▪ MS thesis: A Study in Machine-Aided Learning − A pioneer work in distant learning ▪ Advisor: Ronald Howard 3 Graduate Study at MIT ▪ PhD thesis: “Some Memory Aspects of Finite Automata” (1963) ▪ Advisor: Dean Arden − Professor of EE, MIT, 1956-1964 − Involved with Whirlwind Project − Also PhD advisor of Jack Dennis ▪ Jack was PhD advisor of Randy Bryant -- another Phil Kaufman Award Recipient (2009) 4 Side Story: Dean Arden’s Visit to UIUC in 1992 I am glad that I have better students than you 5 Side Story: Dean Arden’s Visit to UIUC in 1992 I feel blessed that I had a better advisor than all of you 6 Two Important Books in Computer Science in 1968 ▪ The Art of Computer Programming, Vol. 1, Fundamental Algorithms, Donald E. Knuth, 1968 ▪ Introduction to Combinatorial Mathematics, C. L. Liu, 1968 7 Sample Chapters in “Introduction to Combinatorial Mathematics” ▪ Chapter 3: Recurrence Relations ▪ Chapter 6: Fundamental Concepts in the Theory of Graphs ▪ Chapter 7: Trees, Circuits, and Cut-sets ▪ Chapter 10: Transport Networks ▪ Chapter 11: Matching Theory ▪ Chapter 12: Linear Programming ▪ Chapter 13: Dynamic Programming 8 Project MAC ▪ Project MAC (Project on Mathematics and Computation) was launched 7/1/1963 − Backronymed for Multiple Access Computer, -
The Logic of Qualia 1 Introduction
The Logic of Qualia Drew McDermott, 2014-08-14 Draft! Comments welcome! Do not quote! Abstract: Logic is useful as a neutral formalism for expressing the contents of mental representations. It can be used to extract crisp conclusions regarding the higher- order theory of phenomenal consciousness developed in (McDermott, 2001, 2007). A key aspect of conscious perceptions is their connection to the distinction between appearance and reality. Perceptions must often be corrected. To do so requires that the logic of perception be able to represent the logical structure of judgment events, that is, to include the formulas of the logic as objects to be reasoned about. However, there is a limit to how finely humans can examine their own represen- tations. Terms representing primary and secondary qualities seemed to be locked, so that the numbers (or levels of neural activation) that are their essence are not directly accessible. Humans feel a need to invoke “intrinsic,” “nonrelational” prop- erties of many secondary qualities — their qualia — to “explicate” how we compare and discriminate among them, although this is not actually how the comparisons are accomplished. This model of qualia explains several things: It accounts for the difference between “normal” and “introspective” access to a perceptual module in terms of quotation. It dissolves Jackson’s knowledge argument by explaining what Mary learns as a fictional but undoubtable belief structure. It makes spectrum in- version logically impossible by providing a degree of freedom between the physical structure of the brain and the representations it contains that redescribes putative cases of spectrum inversion as alternative but equivalent ways of mapping physical states to representational states. -
Chapter 1 of Artificial Intelligence: a Modern Approach
1 INTRODUCTION In which we try to explain why we consider artificial intelligence to be a subject most worthy of study, and in which we try to decide what exactly it is, this being a good thing to decide before embarking. INTELLIGENCE We call ourselves Homo sapiens—man the wise—because our intelligence is so important to us. For thousands of years, we have tried to understand how we think; that is, how a mere handful of matter can perceive, understand, predict, and manipulate a world far larger and ARTIFICIAL INTELLIGENCE more complicated than itself. The field of artificial intelligence, or AI, goes further still: it attempts not just to understand but also to build intelligent entities. AI is one of the newest fields in science and engineering. Work started in earnest soon after World War II, and the name itself was coined in 1956. Along with molecular biology, AI is regularly cited as the “field I would most like to be in” by scientists in other disciplines. A student in physics might reasonably feel that all the good ideas have already been taken by Galileo, Newton, Einstein, and the rest. AI, on the other hand, still has openings for several full-time Einsteins and Edisons. AI currently encompasses a huge variety of subfields, ranging from the general (learning and perception) to the specific, such as playing chess, proving mathematical theorems, writing poetry, driving a car on a crowded street, and diagnosing diseases. AI is relevant to any intellectual task; it is truly a universal field. 1.1 WHAT IS AI? We have claimed that AI is exciting, but we have not said what it is. -
Building the Second Mind, 1961-1980: from the Ascendancy of ARPA to the Advent of Commercial Expert Systems Copyright 2013 Rebecca E
Building the Second Mind, 1961-1980: From the Ascendancy of ARPA to the Advent of Commercial Expert Systems copyright 2013 Rebecca E. Skinner ISBN 978 09894543-4-6 Forward Part I. Introduction Preface Chapter 1. Introduction: The Status Quo of AI in 1961 Part II. Twin Bolts of Lightning Chapter 2. The Integrated Circuit Chapter 3. The Advanced Research Projects Agency and the Foundation of the IPTO Chapter 4. Hardware, Systems and Applications in the 1960s Part II. The Belle Epoque of the 1960s Chapter 5. MIT: Work in AI in the Early and Mid-1960s Chapter 6. CMU: From the General Problem Solver to the Physical Symbol System and Production Systems Chapter 7. Stanford University and SRI Part III. The Challenges of 1970 Chapter 8. The Mansfield Amendment, “The Heilmeier Era”, and the Crisis in Research Funding Chapter 9. The AI Culture Wars: the War Inside AI and Academia Chapter 10. The AI Culture Wars: Popular Culture Part IV. Big Ideas and Hardware Improvements in the 1970s invert these and put the hardware chapter first Chapter 11. AI at MIT in the 1970s: The Semantic Fallout of NLR and Vision Chapter 12. Hardware, Software, and Applications in the 1970s Chapter 13. Big Ideas in the 1970s Chapter 14. Conclusion: the Status Quo in 1980 Chapter 15. Acknowledgements Bibliography Endnotes Forward to the Beta Edition This book continues the story initiated in Building the Second Mind: 1956 and the Origins of Artificial Intelligence Computing. Building the Second Mind, 1961-1980: From the Establishment of ARPA to the Advent of Commercial Expert Systems continues this story, through to the fortunate phase of the second decade of AI computing. -
Introduction of the Class of 2020
National Academy of Engineering October 4, 2020 CLASS OF 2020 Members and International Members CLASS OF 2020 MEMBERS Class of 2020: Members In February 2020 the members of the NAE elected 86 new members and 18 new international members. Election to the NAE is one of the highest professional distinctions conferred on engineers. The main criteria for membership in the National Academy of Engineering are outstanding personal contributions and accomplishments in one or both of the following categories: 1. Engineering research, practice, or education, including, where appropriate, significant contributions to the engineering literature. 2020 2. Pioneering of new and developing fields of technology, making major advancements in traditional fields of engineering, or MEMBERS developing/implementing innovative approaches to engineering education, or providing engineering leadership of major endeavors. The following pages feature the names, photographs, and election citations of each newly elected member and international member. The numbers following their names denote primary and secondary NAE section affiliations. Dr. Lilia A. Abron (4) Dr. Saeed D. Barbat (10) President and Chief Executive Officer Executive Technical Leader Safety, Policy, and CLASS OF PEER Consultants, P.C. Vehicle Analytical Tools Ford Motor Company For leadership in providing technology-driven sustainable housing and environmental For leadership in automotive safety and engineering solutions in the United States and contributions to the science of crashworthiness, South Africa. occupant protection, and biomechanics. Ms. Eleanor J. Allen (4) Dr. Peter J. Basser (2) Chief Executive Officer NIH Senior Investigator Water for People Section on Quantitative Imaging & Tissue Sciences For leadership and advocacy in making clean National Institutes of Health National Institute of water and sanitation systems accessible to Child Health and Human Development people around the world. -
' MACSYMA Users' Conference
' MACSYMA Users'Conference Held at University of California Berkeley, California July 27-29, 1977 I TECH LIBRARY KAFB, NY NASA CP-2012 Proceedings of the 1977 MACSYMA Users’ Conference Sponsored by Massachusetts Institute of Technology, University of California at Berkeley, NASA Langley Research Center and held at Berkeley, California July 27-29, 1977 Scientific and TechnicalInformation Office 1977 NATIONALAERONAUTICS AND SPACE ADMINISTRATION NA5A Washington, D.C. FOREWORD The technical programof the 1977 MACSPMA Users' Conference, held at Berkeley,California, from July 27 to July 29, 1977, consisted of the 45 contributedpapers reported in.this publicationand of a workshop.The work- shop was designed to promote an exchange of information between implementers and users of the MACSYMA computersystem and to help guide future developments. I The response to the call for papers has well exceeded the early estimates of the conference organizers; and the high quality and broad ra.ngeof topics of thepapers submitted has been most satisfying. A bibliography of papers concerned with the MACSYMA system is included at the endof this publication. We would like to thank the members of the programcommittee, the many referees, and the secretarial and technical staffs at the University of California at Berkeley and at the Laboratory for Computer Science, Massachusetts Instituteof Technology, for shepherding the many papersthrough the submission- to-publicationprocess. We are especiallyappreciative of theburden. carried by .V. Ellen Lewis of M. I. T. for serving as expert in document preparation from computer-readableto camera-ready copy for several papers. This conference originated as the result of an organizing session called by Joel Moses of M.I.T.