Simultaneous Determination of Six Bioactive Components of Total

Total Page:16

File Type:pdf, Size:1020Kb

Simultaneous Determination of Six Bioactive Components of Total Revista Brasileira de Farmacognosia 28 (2018) 156–164 ww w.elsevier.com/locate/bjp Original Article Simultaneous determination of six bioactive components of total flavonoids of Scorzonera austriaca in rat tissues by LC-MS/MS: application to a tissue distribution study a,b a a a a Sixi Zhang , Yang Xie , Jing Wang , Yanmei Geng , Yu Zhou , a a,∗ Chengxin Sun , Guangshu Wang a School of Pharmaceutical Sciences, Jilin University, Changchun, PR China b Department of Pharmacy, The First Hospital of Jilin University, Changchun, PR China a a b s t r a c t r t i c l e i n f o Article history: A liquid chromatography-tandem mass spectrometry method was developed and validated for Received 1 September 2017 simultaneous determination of six bioactive constituents including vitexin, orientin, isoorientin, 2 -O- Accepted 5 January 2018 ␤ d - -xylopyranosyl isoorientin, 2 -O-␤-d-xylopyranosyl isovitexin, and 6-C-l-␣-arabipyranosyl vitexin Available online 21 February 2018 in rats’ various tissues using isoquercitrin as the internal standard. Biological samples were pretreated by protein precipitation with acetonitrile. Chromatographic separation was carried out on a C18 col- Keywords: umn with a gradient mobile phase consisting of acetonitrile and 0.1% aqueous formic acid. All analytes Scorzonera austriaca and internal standard were quantitated through electrospray ionization in negative ion selected reaction LC-MS/MS monitoring mode. The mass transitions were as follows: m/z 431 → 311 for vitexin, m/z 447 → 327 for Rat plasma orientin or isoorientin, m/z 579 → 459 for 2 -O-␤-d-xylopyranosyl isoorientin, m/z 563 → 293 for 2 -O-␤- Tissue distribution d -xylopyranosyl isovitexin, m/z 563 → 353 for 6-C-l-␣-arabipyranosyl vitexin, and m/z 463 → 300 for the internal standard, respectively. The lower limits of quantification for the six analytes in different tissue homogenates were 0.8–2.2 ng/ml. The validated assay was successfully applied to a tissue distribution study of the six components in rats after intravenous administration of total flavonoids of Scorzonera aus- triaca Willd; Asteraceae. The results of the tissue distribution study showed that the high concentrations of six components were mainly in the kidney. © 2018 Sociedade Brasileira de Farmacognosia. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Introduction components, and total flavonoids from S. austriaca elicit significant anti-HBV and hepatoprotective effects (Xie et al., 2015; Zhang Scorzonera austriaca Wild., Asteraceae, is a perennial herb et al., 2015). Based on the previous pharmacological researches, widely distributed in the northwestern regions of China and flavonoids (vitexin (1), orientin (2), isoorientin (3), 2 -O-␤-d- usually recommended for the treatments of fever, enteri- xylopyranosyl isoorientin (4), 2 -O-␤-d-xylopyranosyl isovitexin tis, pregnant vomiting, carbuncle, mastitis, and swelling (Li (5), or 6-C-l-␣-arabipyranosyl vitexin (6)) manifest a variety et al., 1992, 1997). Modern research found that the major of pharmacological properties, including anti-inflammatory, constituents of S. austriaca include flavonoids, sesquiterpenes, anti-tumor, antiplatelet, antithrombotic, neuroprotective, and car- triterpenes, and steroids (Li et al., 2004; Zhu et al., 2009; Wu et al., dioprotective effects (Wang et al., 2015; Lee and Bae, 2015; Liu et al., 2011). Flavonoids are generally regarded as the major bioactive 2016). ∗ Corresponding author. E-mail: wgs@jlu.edu.cn (G. Wang). https://doi.org/10.1016/j.bjp.2018.01.004 0102-695X/© 2018 Sociedade Brasileira de Farmacognosia. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/). S. Zhang et al. / Revista Brasileira de Farmacognosia 28 (2018) 156–164 157 Until now, there are several studies were reported the ␤ d determination of vitexin (1), orientin (2), isoorientin (3), 2 -O- - - decreasing A to 5% in 0.5 min, keeping constant for 5 min. The ␤ d xylopyranosyl isoorientin (4), 2 -O- - -xylopyranosyl isovitexin flow rate was 0.80 ml/min with a split ratio of 1:1 and the sam- l ␣ (5), or 6-C- - -arabipyranosyl vitexin (6) separately in biological ple injection volume was 10 ␮l. The total runtime was 20 min for samples with the method of HPLC, HPLC-MS/MS, and UPLC-MS/MS each sample run. (Li et al., 2008a,b; Yan et al., 2013; Huang et al., 2012). In our MS detection was performed on a TSQ Quantum Ultra triple previous investigations, we investigated the pharmacokinetic of quadrupole mass spectrometer (Thermo Scientific, San Jose, CA, these six flavonoid glycosides in rat plasma (Zhang et al., 2017). USA) equipped with an ESI source in the negative ionization mode. − However, simultaneous determination of tissue distributions of The [M–H] ions were used as the precursor for quantification in these six flavonoid glycosides in vivo has not been reported. Here, selected reaction monitoring (SRM) mode. The optimized tube lens a rapid liquid chromatography-tandem mass spectrometry (LC- and collision energy for six analytes and IS are shown in Table 1. MS/MS) method has been developed for the determination of 1, Other parameters of MS analysis were as follows: spray voltage ◦ 2, 3, 4, 5, or 6 in rat tissues after intravenous administration of total 3.0 kV, vaporizer temperature 300 C, sheath gas (nitrogen) pres- flavonoids of S. austriaca. sure, 35 AU; auxiliary gas (nitrogen) pressure, 10 AU; and capillary ◦ TM temperature, 270 C. Xcalibur 2.2 Software was used for acquir- Materials and methods ing and processing data. Preparation of standard and quality control (QC) samples Chemicals and reagents Mixed stock solution containing 200 ␮g/ml of 1 and 2, 80 ␮g/ml Standard substances of 1, 2, 3, 4, 5, and 6 were previously iso- of 3, 220 ␮g/ml of 4, 5, and 6 was prepared in methanol. The stock lated from Scorzonera austriaca Wild., Asteraceae, in our laboratory, solution of the six analytes was diluted with methanol to make and identified by MS and NMR spectra. Total flavonoids of S. aus- a series of composited standard solutions. The stock solution of triaca were prepared as previously described (Zhang et al., 2017), the IS was diluted to a concentration of 200 ng/ml with methanol and the contents of the six components in the total flavonoids as working solution. The samples of standard calibration curves of S. austriaca were assayed by LC-MS/MS as described in Zhang were prepared by spiking 10 ␮l of the above working solutions et al. The internal standard (IS) isoquercitrin (7) was purchased into 190 ␮l of blank tissue homogenate. The concentrations were from the National Institute for the Control of Pharmaceutical and in the range of 2–2000 ng/ml for 1 and 2, 0.8–800 ng/ml for 3, Biological Products (Beijing, China). Acetonitrile and methanol of 2.2–2200 ng/ml for 4, 5, and 6, respectively. QC samples at low, mid- HPLC grade were purchased from Tedia company (Fairfield, OH, dle and high concentrations (4, 50 and 1600 ng/ml for 1 and 2; 1.6, USA). HPLC grade formic acid was obtained from Tianjin Kemiou 20 and 640 ng/ml for 3; 4.4, 55 and 1760 ng/ml for 4, 5, and 6) were Chemical Reagent Co., Ltd. (Tianjin, China). Deionized water was also prepared by the same operation listed above. All standards purchased from Wahaha Co., Ltd. (Hangzhou, China). ◦ were stored at −20 C before analysis. LC-MS/MS conditions Sample preparation ® Chromatographic separation was conducted on a Diamonsil The tissue homogenate sample (50 ␮l) was mixed with 150 ␮l C18 column (4.6 × 250 mm, 5.0 ␮m ID) preceded by a Thermo acetonitrile containing 200 ng/ml isoquercitrin (7). The mixture Universal Filter 4.6/4 mm HPLC precolumn. The gradient elution was then vortex-mixed for 40 s and centrifugation at 14,850 × g ◦ consisted of acetonitrile (mobile phase A) and 0.1% aqueous formic for 10 min at 8 C. The supernatant was transferred into another acid (mobile phase B) was set as follows: starting at 5% A–95%B, clean eppendorf tube and evaporated to dryness under a nitrogen ◦ increasing A to 20% in 5 min, maintaining 20% A for 9.5 min; then stream in a water bath at 45 C. Finally, the residue was dissolved Table 1 MS/MS parameters for quantifications of six analytes and Internal Standard. Analyte Precursor to product ion (m/z) transition Tube lens (V) Collision energy (eV) Vitexin 431 → 311 88 25 Orientin or isoorientin 447 → 327 80 25 2 -O-␤-d-xylopyranosyl isoorientin 579 → 459 102 50 2 -O-␤-d-xylopyranosyl isovitexin 563 → 293 89 38 6-C-l-␣-arabipyranosyl vitexin 563 → 353 109 38 Internal standard 463 → 300 80 30 158 S. Zhang et al. / Revista Brasileira de Farmacognosia 28 (2018) 156–164 ␮ in 80 l of acetonitrile-water (20:80, v/v) with vortex-mixing for and on three consecutive days, respectively. Extraction recovery 20 s, and centrifugation process was repeated. An aliquot of 10 ␮l was assessed by comparing the responses of extracted QC samples was injected into the LC-MS/MS system for analysis. with those of post-extraction blank tissue homogenates spiked with equivalent concentrations using six replicates. The matrix effect was calculated by comparing the peak areas obtained from Method validation samples where the extracted matrix was spiked with standard solutions to those obtained from the pure reference standard According to the FDA bioanalytical method validation guide solutions at the same concentration. Stability studies in different (U.S. Food and Drug Administration, 2001), the LC-MS/MS method tissue homogenate samples were performed at three QC levels was validated in terms of selectivity, sensitivity, linearity, precision under different storage conditions: Short-term temperature and accuracy, matrix effect and extraction recovery, carryover stability was determined by analyzing QC samples left at room and stability.
Recommended publications
  • (Hordeum Vulgare L.) Seedlings Via Their
    Ra et al. Appl Biol Chem (2020) 63:38 https://doi.org/10.1186/s13765-020-00519-9 NOTE Open Access Evaluation of antihypertensive polyphenols of barley (Hordeum vulgare L.) seedlings via their efects on angiotensin-converting enzyme (ACE) inhibition Ji‑Eun Ra1, So‑Yeun Woo2, Hui Jin3, Mi Ja Lee2, Hyun Young Kim2, Hyeonmi Ham2, Ill‑Min Chung1 and Woo Duck Seo2* Abstract Angiotensin‑converting enzyme (ACE) is an important therapeutic target in the regulation of high blood pressure. This study was conducted to investigate the alterations in blood pressure associated with ACE inhibition activity of the polyphenols (1–10), including 3‑O‑feruloylquinic acid (1), lutonarin (2), saponarin (3), isoorientin (4), orientin (5), isovitexin (6), isoorientin‑7‑O‑[6‑sinapoyl]‑glucoside (7), isoorientin‑7‑O‑[6‑feruloyl]‑glucoside (8), isovitexin‑7‑O‑ [6‑sinapoyl]‑glucoside (9), and isovitexin‑7‑O‑[6‑feruloyl]‑glucoside (10), isolated from barley seedlings (BS). All the isolated polyphenols exhibited comparable IC50 values of ACE inhibition activity (7.3–43.8 µM) with quercetin (25.2 0.2 µM) as a positive control, and their inhibition kinetic models were identifed as noncompetitive inhibition. ± Especially, compound 4 was revealed to be an outstanding ACE inhibitor (IC50 7.3 0.1 µM, Ki 6.6 0.1 µM). Based on the compound structure–activity relationships, the free hydroxyl groups of =favone± ‑moieties =and glucose± connec‑ tions at the A ring of the favone moieties were important factors for inhibition of ACE. The alcohol extract of BS also 1 demonstrated potent ACE inhibition activity (66.5% 2.2% at 5000 µg mL− ).
    [Show full text]
  • Antioxidant and Inhibition of Elastase Effect of Scutellarein and Apigenin
    American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) ISSN (Print) 2313-4410, ISSN (Online) 2313-4402 © Global Society of Scientific Research and Researchers http://asrjetsjournal.org/ Antioxidant and Inhibition of Elastase Effect of Scutellarein and Apigenin Leo Tjermina*, I Nyoman Ehrich Listerb, Ali Napiah Nasutionc, Ermi Girsangd a,b,cFaculty of Medicine, University of Prima Indonesia, Medan, North Sumatera, Indonesia dFaculty of Public Health, University of Prima Indonesia, Medan, North Sumatera, Indonesia aEmail: leotjermin@yahoo.com Abstract Aging process in the skin was begun from the time when one is born, especially skin. Cutaneous aging can be caused by intrinsic and/or extrinsic factors. Wrinkles, thinning, and roughening of skin are part of skin aging. It becomes important looking for natural sources to prevent aging process. Apigenin and Scutellarein are potential phytochemistry which have antioxidant and anti-elastase effects. The purpose of this study is investigate antioxidant and anti-elastase effects of Apigenin and Flavonoid. Determination of Antioxidant Activity of Apigenin and Scutellarien was using FRAP Methods while anti-elastase activity was determined by inhibition of Elastase from Porcine Pancreas. The result of this study was expressed by Mean ± SD and analyzed by One Way analysis of variance (ANOVA) and Turkey HSD Post Hoc Test as a Further Analysis. Both of Scutellarein or Apigenin had the most potent antioxidant activity at the highest concentration (50 µg/ml). The FRAP Activity of Scutellarein or Apigenin at Highest concentration are 250.22 ±2.3 and 29.05 ±5.88 µg Fe (II), respectively. Antioxidant activity of Scutellarein are more potent than apigenin at various concentration and was shown differences at P value < 0.05.
    [Show full text]
  • A Cytotoxic C-Glycosylated Derivative of Apigenin from the Leaves Of
    Revista Brasileira de Farmacognosia 26 (2016) 763–766 ww w.elsevier.com/locate/bjp Short communication A cytotoxic C-glycosylated derivative of apigenin from the leaves of Ocimum basilicum var. thyrsiflorum a,b,∗ c,d Mohamed I.S. Abdelhady , Amira Abdel Motaal a Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt b Pharmacognosy Department, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia c Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt d Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo, Egypt a b s t r a c t a r t i c l e i n f o Article history: The standardized 80% ethanolic extract of the leaves of Ocimum basilicum var. thyrsiflorum (L.) Benth., Received 12 February 2016 Lamiaceae, growing in KSA, exhibited a significant antioxidant activity compared to the ethyl acetate and Accepted 7 June 2016 butanol extracts, which was correlated to its higher phenolic and flavonoid contents. Chromatographic Available online 20 July 2016 separation of the 80% ethanol extract resulted in the isolation of ten known compounds; cinnamic acid, gallic acid, methylgallate, ellagic acid, methyl ellagic acid, apigenin, luteolin, vitexin, isovitexin, and 3 -O- Keywords: acetylvitexin. Compound 3 -O-acetylvitexin, a C-glycosylated derivative of apigenin, was isolated for the Ocimum basilicum first time from genus Ocimum. The 80% ethanolic extract and 3 -O-acetylvitexin showed significant cyto- HCT116 toxic activities against the HCT human colon cancer cell line [IC values 22.3 ± 1.1 and 16.8 ± 2.0 ␮g/ml Cytotoxic 116 50 ␮ Antioxidant (35.4 M), respectively].
    [Show full text]
  • Characterization of C-Glycosidic Flavonoids from Brazilian Passiflora Species Using Lc/Ms Exact Mass Measurement
    CHARACTERIZATION OF C-GLYCOSIDIC FLAVONOIDS FROM BRAZILIAN PASSIFLORA SPECIES USING LC/MS EXACT MASS MEASUREMENT 1 2 2 NOTE M. McCullagh , C.A.M. Pereira , J.H. Yariwake 1Waters Corporation, Floats Road, Wythenshawe, Manchester, M23 9LZ, UK 2Universidade de São Paulo, Instituto de Química de São Carlos, São Carlos, SP, Brazil OVERVIEW This application note describes the analysis of extracts Recently issues have arisen with Kava Kava, a natural from Passiflora species using real time centroid exact health product, which is used for its anti-depressant and mass measurement. The system used comprised of an anti-anxiety properties. Investigations into the safety of LCT™ orthogonal acceleration (oa-TOF) time of flight Kava have taken place within several European mass spectrometer with LockSpray™ source, Waters® countries, including Germany, U.K., Switzerland, 2996 PDA and Waters Alliance® HT 2795 France, Spain and parts of Scandinavia. In Switzerland Separations Module. and Germany cases of liver damage were reported. In Application the US the FDA has investigated Kava's safety, where INTRODUCTION as in Canada the public were advised not to take the EU Directive 2001/83/EC will regulate and produce a supplement until product safety could be assured. The set of harmonized assessment criteria for the efficacy Kava market in Germany alone is $25m. Proving the and safety "Herbal Medicinal Products for traditional efficacy of such a product is economically viable. use". The current and future E.U. member states will Such issues illustrate how regulation currently affects produce and abide by this directive, making 28 states the natural health product market and also why new in total.
    [Show full text]
  • Supplementary Materials Evodiamine Inhibits Both Stem Cell and Non-Stem
    Supplementary materials Evodiamine inhibits both stem cell and non-stem-cell populations in human cancer cells by targeting heat shock protein 70 Seung Yeob Hyun, Huong Thuy Le, Hye-Young Min, Honglan Pei, Yijae Lim, Injae Song, Yen T. K. Nguyen, Suckchang Hong, Byung Woo Han, Ho-Young Lee - 1 - Table S1. Short tandem repeat (STR) DNA profiles for human cancer cell lines used in this study. MDA-MB-231 Marker H1299 H460 A549 HCT116 (MDA231) Amelogenin XX XY XY XX XX D8S1179 10, 13 12 13, 14 10, 14, 15 13 D21S11 32.2 30 29 29, 30 30, 33.2 D7S820 10 9, 12 8, 11 11, 12 8 CSF1PO 12 11, 12 10, 12 7, 10 12, 13 D3S1358 17 15, 18 16 12, 16, 17 16 TH01 6, 9.3 9.3 8, 9.3 8, 9 7, 9.3 D13S317 12 13 11 10, 12 13 D16S539 12, 13 9 11, 12 11, 13 12 D2S1338 23, 24 17, 25 24 16 21 D19S433 14 14 13 11, 12 11, 14 vWA 16, 18 17 14 17, 22 15 TPOX 8 8 8, 11 8, 9 8, 9 D18S51 16 13, 15 14, 17 15, 17 11, 16 D5S818 11 9, 10 11 10, 11 12 FGA 20 21, 23 23 18, 23 22, 23 - 2 - Table S2. Antibodies used in this study. Catalogue Target Vendor Clone Dilution ratio Application1) Number 1:1000 (WB) ADI-SPA- 1:50 (IHC) HSP70 Enzo C92F3A-5 WB, IHC, IF, IP 810-F 1:50 (IF) 1 :1000 (IP) ADI-SPA- HSP90 Enzo 9D2 1:1000 WB 840-F 1:1000 (WB) Oct4 Abcam ab19857 WB, IF 1:100 (IF) Nanog Cell Signaling 4903S D73G4 1:1000 WB Sox2 Abcam ab97959 1:1000 WB ADI-SRA- Hop Enzo DS14F5 1:1000 WB 1500-F HIF-1α BD 610958 54/HIF-1α 1:1000 WB pAkt (S473) Cell Signaling 4060S D9E 1:1000 WB Akt Cell Signaling 9272S 1:1000 WB pMEK Cell Signaling 9121S 1:1000 WB (S217/221) MEK Cell Signaling 9122S 1:1000
    [Show full text]
  • Potential Enhancement of Dietary Isothiocyanates Combination on Biological Activities
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses July 2017 POTENTIAL ENHANCEMENT OF DIETARY ISOTHIOCYANATES COMBINATION ON BIOLOGICAL ACTIVITIES Kanyasiri Rakariyatham University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Biology Commons, and the Food Science Commons Recommended Citation Rakariyatham, Kanyasiri, "POTENTIAL ENHANCEMENT OF DIETARY ISOTHIOCYANATES COMBINATION ON BIOLOGICAL ACTIVITIES" (2017). Doctoral Dissertations. 963. https://doi.org/10.7275/9959223.0 https://scholarworks.umass.edu/dissertations_2/963 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu. POTENTIAL ENHANCEMENT OF DIETARY ISOTHIOCYANATES COMBINATION ON BIOLOGICAL ACTIVITIES A Dissertation Presented by KANYASIRI RAKARIYATHAM Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2017 Food Science © Copyright by Kanyasiri Rakariyatham 2017 All Rights Reserved POTENTIAL ENHANCEMENT OF DIETARY ISOTHIOCYANATES COMBINATION ON BIOLOGICAL ACTIVITIES A Dissertation Presented by KANYASIRI RAKARIYATHAM Approved as to style and content by: _________________________________________
    [Show full text]
  • Cytotoxic Activities of Flavonoids from Centaurea Scoparia
    Hindawi Publishing Corporation e Scientific World Journal Volume 2014, Article ID 274207, 7 pages http://dx.doi.org/10.1155/2014/274207 Research Article Cytotoxic Activities of Flavonoids from Centaurea scoparia Sayed A. Ahmed and Emadeldin M. Kamel Chemistry Department, Faculty of Science, Beni Suef University, Salah Salem Street, P.O. Box 62514, Beni Suef 62514, Egypt Correspondence should be addressed to Sayed A. Ahmed; sayed.hassan@science.bsu.edu.eg Received 17 January 2014; Accepted 22 May 2014; Published 11 June 2014 Academic Editor: Diego Savoia Copyright © 2014 S. A. Ahmed and E. M. Kamel. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Phytochemical studies on the ethanolic extract of the aerial parts of Centaurea scoparia ledtotheisolationof two new flavonoids, 3 ,4 -dihydroxy-(3 ,4 -dihydro-3 -hydroxy-4 -acetoxy)-2 ,2 -dimethylpyrano-(5 ,6 :7,8)-flavone-3-O-- D-glucopyranoside (1)and3,3,4 -trihydroxy-(3 ,4 -dihydro-3 ,4 -dihydroxy)-2 ,2 -dimethylpyrano-(5 ,6 :7,8)-flavone (2), along with eight known flavonoids isolated for the first time from this plant, cynaroside (3), Apigetrin (4), centaureidin (5), oroxylin A(6), 5,7-dihydroxy-3 ,4 ,5 -trimethoxyflavone (7), atalantoflavone (8), 5-hydroxy-3 ,4 ,8-trimethoxy-2 ,2 -dimethylpyrano (5 ,6 :6,7)-flavone (9), and 3 ,4 ,5,8-tetramethoxy-2 ,2 -dimethylpyrano (5 ,6 :6,7)-flavone (10). The structures of the isolated compounds were elucidated by means of spectroscopic tools including 1D and 2D NMR, UV,IR, and mass spectroscopy.
    [Show full text]
  • The Phytochemistry of Cherokee Aromatic Medicinal Plants
    medicines Review The Phytochemistry of Cherokee Aromatic Medicinal Plants William N. Setzer 1,2 1 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; wsetzer@chemistry.uah.edu; Tel.: +1-256-824-6519 2 Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA Received: 25 October 2018; Accepted: 8 November 2018; Published: 12 November 2018 Abstract: Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines. Keywords: Cherokee; Native American; traditional herbal medicine; chemical constituents; pharmacology 1. Introduction Natural products have been an important source of medicinal agents throughout history and modern medicine continues to rely on traditional knowledge for treatment of human maladies [1]. Traditional medicines such as Traditional Chinese Medicine [2], Ayurvedic [3], and medicinal plants from Latin America [4] have proven to be rich resources of biologically active compounds and potential new drugs.
    [Show full text]
  • In Vitro Metabolism of Six C-Glycosidic Flavonoids from Passiflora Incarnata L
    International Journal of Molecular Sciences Article In Vitro Metabolism of Six C-Glycosidic Flavonoids from Passiflora incarnata L. Martina Tremmel 1, Josef Kiermaier 2 and Jörg Heilmann 1,* 1 Department of Pharmaceutical Biology, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany; martina.tremmel@chemie.uni-regensburg.de 2 Department of Central Analytics, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany; josef.kiermaier@ur.de * Correspondence: joerg.heilmann@chemie.uni-regensburg.de Abstract: Several medical plants, such as Passiflora incarnata L., contain C-glycosylated flavonoids, which may contribute to their efficacy. Information regarding the bioavailability and metabolism of these compounds is essential, but not sufficiently available. Therefore, the metabolism of the C-glycosylated flavones orientin, isoorientin, schaftoside, isoschaftoside, vitexin, and isovitexin was investigated using the Caco-2 cell line as an in vitro intestinal and epithelial metabolism model. Isovitexin, orientin, and isoorientin showed broad ranges of phase I and II metabolites containing hy- droxylated, methoxylated, and sulfated compounds, whereas schaftoside, isoschaftoside, and vitexin underwent poor metabolism. All metabolites were identified via UHPLC-MS or UHPLC-MS/MS using compound libraries containing all conceivable metabolites. Some structures were confirmed via UHPLC-MS experiments with reference compounds after a cleavage reaction using glucuronidase and sulfatase. Of particular interest is the observed cleavage of the C–C bonds between sugar and aglycone residues in isovitexin, orientin, and isoorientin, resulting in unexpected glucuronidated or sulfated luteolin and apigenin derivatives. These findings indicate that C-glycosidic flavones can be Citation: Tremmel, M.; Kiermaier, J.; highly metabolized in the intestine.
    [Show full text]
  • Herbal Principles in Cosmetics Properties and Mechanisms of Action Traditional Herbal Medicines for Modern Times
    Traditional Herbal Medicines for Modern Times Herbal Principles in Cosmetics Properties and Mechanisms of Action Traditional Herbal Medicines for Modern Times Each volume in this series provides academia, health sciences, and the herbal medicines industry with in-depth coverage of the herbal remedies for infectious diseases, certain medical conditions, or the plant medicines of a particular country. Series Editor: Dr. Roland Hardman Volume 1 Shengmai San, edited by Kam-Ming Ko Volume 2 Rasayana: Ayurvedic Herbs for Rejuvenation and Longevity, by H.S. Puri Volume 3 Sho-Saiko-To: (Xiao-Chai-Hu-Tang) Scientific Evaluation and Clinical Applications, by Yukio Ogihara and Masaki Aburada Volume 4 Traditional Medicinal Plants and Malaria, edited by Merlin Willcox, Gerard Bodeker, and Philippe Rasoanaivo Volume 5 Juzen-taiho-to (Shi-Quan-Da-Bu-Tang): Scientific Evaluation and Clinical Applications, edited by Haruki Yamada and Ikuo Saiki Volume 6 Traditional Medicines for Modern Times: Antidiabetic Plants, edited by Amala Soumyanath Volume 7 Bupleurum Species: Scientific Evaluation and Clinical Applications, edited by Sheng-Li Pan Traditional Herbal Medicines for Modern Times Herbal Principles in Cosmetics Properties and Mechanisms of Action Bruno Burlando, Luisella Verotta, Laura Cornara, and Elisa Bottini-Massa Cover art design by Carlo Del Vecchio. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2010 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-13: 978-1-4398-1214-3 (Ebook-PDF) This book contains information obtained from authentic and highly regarded sources.
    [Show full text]
  • WO 2012/159639 Al 29 November 2012 (29.11.2012)
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/159639 Al 29 November 2012 (29.11.2012) (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A23L 1/30 (2006.01) A61K 36/48 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, A61K 36/185 (2006.01) A61K 36/8962 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, A61K 36/63 (2006.01) A61K 36/54 (2006.01) HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, A61K 36/23 (2006.01) A61K 36/71 (2006.01) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, A61K 36/9066 (2006.01) A61K 36/886 (2006.01) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, A61K 36/28 (2006.01) A61K 36/53 (2006.01) OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, A61K 36/82 (2006.01) A61K 36/64 (2006.01) SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, A61K 36/67 (2006.01) TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (21) International Application Number: (84) Designated States (unless otherwise indicated, for every PCT/EG20 12/0000 18 kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (22) International Filing Date: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 22 May 2012 (22.05.2012) TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (25) Filing Language: English EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (26) Publication Language: English TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, (30) Priority Data: ML, MR, NE, SN, TD, TG).
    [Show full text]
  • Important Flavonoids and Their Role As a Therapeutic Agent
    molecules Review Important Flavonoids and Their Role as a Therapeutic Agent Asad Ullah 1 , Sidra Munir 1 , Syed Lal Badshah 1,* , Noreen Khan 1, Lubna Ghani 2, Benjamin Gabriel Poulson 3 , Abdul-Hamid Emwas 4 and Mariusz Jaremko 3,* 1 Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; asad_icp@yahoo.com (A.U.); saries92@gmail.com (S.M.); noreenkhattak777@gmail.com (N.K.) 2 Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir 13230, Pakistan; lubnaghani41@gmail.com 3 Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; benjamingabriel.poulson@kaust.edu.sa 4 Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; abdelhamid.emwas@kaust.edu.sa * Correspondence: shahbiochemist@gmail.com (S.L.B.); mariusz.jaremko@kaust.edu.sa (M.J.) Received: 20 September 2020; Accepted: 1 November 2020; Published: 11 November 2020 Abstract: Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models.
    [Show full text]