Invasive Plant Species Thresholds in the Forests of Robinson Crusoe Island, Chile

Total Page:16

File Type:pdf, Size:1020Kb

Invasive Plant Species Thresholds in the Forests of Robinson Crusoe Island, Chile Plant Ecology & Diversity ISSN: 1755-0874 (Print) 1755-1668 (Online) Journal homepage: https://www.tandfonline.com/loi/tped20 Invasive plant species thresholds in the forests of Robinson Crusoe Island, Chile Rodrigo Vargas-Gaete, Christian Salas-Eljatib, Stefanie M. Gärtner, Osvaldo J. Vidal, Jan R. Bannister & Aníbal Pauchard To cite this article: Rodrigo Vargas-Gaete, Christian Salas-Eljatib, Stefanie M. Gärtner, Osvaldo J. Vidal, Jan R. Bannister & Aníbal Pauchard (2018) Invasive plant species thresholds in the forests of Robinson Crusoe Island, Chile, Plant Ecology & Diversity, 11:2, 205-215, DOI: 10.1080/17550874.2018.1444109 To link to this article: https://doi.org/10.1080/17550874.2018.1444109 Accepted author version posted online: 08 Mar 2018. Published online: 09 Mar 2018. Submit your article to this journal Article views: 96 View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tped20 PLANT ECOLOGY & DIVERSITY 2018, VOL. 11, NO. 2, 205–215 https://doi.org/10.1080/17550874.2018.1444109 Invasive plant species thresholds in the forests of Robinson Crusoe Island, Chile Rodrigo Vargas-Gaete a, Christian Salas-Eljatiba, Stefanie M. Gärtnerb, Osvaldo J. Vidalc, Jan R. Bannisterd and Aníbal Paucharde,f aDepartamento de Ciencias Forestales, Universidad de La Frontera, Temuco, Chile; bBlack Forest National Park, Seebach, Germany; cInstituto de la Patagonia, Universidad de Magallanes, Punta Arenas, Chile; dInstituto Forestal, Valdivia, Chile; eFacultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile; fInstituto de Ecologia y Biodiversidad, Santiago, Chile ABSTRACT ARTICLE HISTORY Background: Invasion by exotic plants worldwide can lead to the loss of native species, (Received 17 February 2017; particularly on islands with a high proportion of endemic plants, such as Robinson Crusoe Accepted 20 February 2018) Island (RCI). KEYWORDS Aims: We studied the two most invasive exotic plant species occurring in the forest of RCI: Aristotelia; canopy gaps; Aristotelia chilensis and Rubus ulmifolius. We aimed at establishing thresholds for environ- Juan Fernández Islands; mental and microsite variables related to invasion. restoration; regression trees; Methods: Environmental and forest understorey variables, including canopy gaps and inva- Rubus sive species cover were measured in non-invaded and invaded forest sites. We expected more invasion in plots located close to invasive shrublands, and in large gaps with high solar radiation. Results: We found no relationship between the distance to invasive shrublands and invasion probability. Solar radiation tended to be slightly related with a higher cover of R. ulmifolius, the most abundant invasive exotic plant in RCI forests. Overall, the cover of native ferns appeared to inhibit invasion. Conclusions: The identification of variable thresholds related to invasion can be useful for guiding management decisions. Our results suggest that management should consider monitoring forest canopy gap formation and promote the establishment of ferns to reduce the probability of invasive species establishing. Introduction the loss of species dependent on natural forest characteristics and composition, such as birds The ecological impact of invasive plant spe- (Minden et al. 2010) and smaller vascular cies on native communities they invade has species. These impacts are particularly strik- been well documented, especially on islands ing on island ecosystems where invasive plant (Hejda et al. 2009;Vilàetal.2011). Invasive species can be particularly successful due to plant species are those introduced by humans the high availability of resources and niches into a region in which they did not evolve and and the fact that native species are usually wheretheycancompetewithnativespecies, specialists that are easily displaced by exotics alter natural habitats and affect nutrient (Daehler et al. 2004). cycling and/or interfere with native food Most plant invasions occur in forests altered webs, impacting on the natural resources and by human disturbances, open canopy and/or may affect economic activities (Heleno et al. canopy gaps (Totland et al. 2005; Baret et al. 2010). Invasive plants may prevent tree seed- 2008). Canopy gaps caused by the death and ling recruitment in forest by direct competi- fall of trees or large branches are the dominant tion for light, water, nutrients and/or space small-scale disturbance in temperate forests (Burnham and Lee 2010). Furthermore, inva- (Oliver and Larson 1990; Schliemann and sive species may persist for several years in Bockheim 2011). Such disturbances increase seedbanks or as seedlings (Vilà et al. 2011), resource availability, and facilitate the coloni- and they can promote the expansion of other sation by species with greater competitive abil- exotic invasive species (Vargas et al. 2013) ities than the natives (Prieur-Richard and leading to changes in forest structure and Lavorel 2000). Canopy gaps provide safe sites CONTACT Rodrigo Vargas-Gaete [email protected] © 2018 Botanical Society of Scotland and Taylor & Francis 206 R. VARGAS-GAETE ET AL. for tree species to germinate, particularly light- and biotic factors promoting invasion at the demanding taxa (Yamamoto 2000). microsite scale, remained unclear. Consequently, invasive species may take Understanding which environmental and micro- advantage of these areas with higher radiation site variables are important for invasion success to establish (Funk 2013;Driscolletal.2016). is fundamental for scientific and management/ This process occurs in several island ecosys- conservation purposes, including forest restora- tems worldwide where invasive plants establish tion in the Juan Fernandez Archipelago, as well in canopy gaps, affecting forest regeneration, as on other islands with natural forest remnants. leading to fragmentation, loss of forest area We regard microsite as the space where a plant is and eventually to species extinctions (Baret rooted, above which its foliage develops and et al. 2008;Vargasetal.2013;Denslow expands, i.e., a space of similar environmental 2003). Thus, it is relevant to understand conditions such as: vegetation cover, sunlight, which environmental and microsite variables temperature, soil and physical characteristics promote plant invasions on island ecosystems (Whittaker and Levin 1977). Identifying envir- so that their impact on biodiversity could be onmental and microsite variables could help to reduced. understand the biotic resistance to exotic species Robinson Crusoe Island (RCI) (33° 38` 29” S invasion within natural communities (Levine 78° 50` 28” W, Juan Fernández Archipelago) has et al. 2004). Some variables have been considered the highest rate of plant endemism in the world important to explain invasion in forest commu- − (1.9 species km 2) Bernadello et al. 2006). nities worldwide. They include the distance to Canopy gaps affect, on average, 22 ± 15.8% of roads, distance to the nearest large source of the native forests (Smith-Ramírez et al. 2017). propagules of invasive species (Von Holle and The montane forests of RCI (Greimler et al. Simberloff 2005) and the forest canopy cover, 2002), referred to as Myrtisylva due to the dom- which relates with solar radiation that usually inance of Nothomyrcia fernandeziana of the correlates with invasive species presence Myrtaceae (Danton 2006), covers an area of (Pauchard and Alaback 2004; Reinhart et al. 1,015 ha (Smith-Ramírez et al. 2013). This forest 2006). Similarly, the proportion of forest gaps contains around 50 to 60 endemic vascular plant and the time since gap formation (i.e., gap age) species (ca. 70% endemism) and is the main have also been found to be related to invasion, habitat of critically endangered plant and bird because the probability of invasion tends to species (Hahn et al. 2011; Vargas et al. 2011). increase with time (Burnham and Lee 2010). Plant invasion in the forests of RCI mainly Defining thresholds of ecological variables involves two exotic plant species: Aristotelia chi- related with the occurrence of a given species lensis and Rubus ulmifolius, that arrived from can be very useful to guide management activ- continental Chile around 1864 and 1927, respec- ities (Hothorn and Müller 2010). Thresholds go tively (Dirnbörk et al. 2003). The fleshy fruits of a little further than just identifying a positive or these invasive plants are principally spread into negative relationship of a predictor variable with, the forest gaps by gravity, wind and the native for example, the presence of an endangered spe- austral thrush (Turdus falcklandii) (Mora and cies (Müller and Butler 2010). They provide a Smith-Ramírez 2016). Once established, both limit to the relationship found, hence an invasive species spread vegetatively, often by sto- improvement in actions can be used to promote lons (R. ulmifolius), quickly occupying the dis- or prevent certain species (e.g., number of stand- turbed area. In canopy gaps, where invasive ing dead trees snags for birds, microsites for tree species dominate, the abundance (−69%) and regeneration; Müller and Bütler 2010; Vargas richness (−28%) of native plants are reduced et al. 2013). Although there exists a large body (Lara et al. 2014) and can even lead to the local of knowledge about environmental and microsite extinction of some native species in some characteristics that invasive species generally instances (Vargas et al. 2013). prefer (e.g., vacant
Recommended publications
  • The Vegetation of Robinson Crusoe Island (Isla Masatierra), Juan
    The Vegetation ofRobinson Crusoe Island (Isla Masatierra), Juan Fernandez Archipelago, Chile1 Josef Greimler,2,3 Patricio Lopez 5., 4 Tod F. Stuessy, 2and Thomas Dirnbiick5 Abstract: Robinson Crusoe Island of the Juan Fernandez Archipelago, as is the case with many oceanic islands, has experienced strong human disturbances through exploitation ofresources and introduction of alien biota. To understand these impacts and for purposes of diversity and resource management, an accu­ rate assessment of the composition and structure of plant communities was made. We analyzed the vegetation with 106 releves (vegetation records) and subsequent Twinspan ordination and produced a detailed colored map at 1: 30,000. The resultant map units are (1) endemic upper montane forest, (2) endemic lower montane forest, (3) Ugni molinae shrubland, (4) Rubus ulmifolius­ Aristotelia chilensis shrubland, (5) fern assemblages, (6) Libertia chilensis assem­ blage, (7) Acaena argentea assemblage, (8) native grassland, (9) weed assemblages, (10) tall ruderals, and (11) cultivated Eucalyptus, Cupressus, and Pinus. Mosaic patterns consisting of several communities are recognized as mixed units: (12) combined upper and lower montane endemic forest with aliens, (13) scattered native vegetation among rocks at higher elevations, (14) scattered grassland and weeds among rocks at lower elevations, and (15) grassland with Acaena argentea. Two categories are included that are not vegetation units: (16) rocks and eroded areas, and (17) settlement and airfield. Endemic forests at lower elevations and in drier zones of the island are under strong pressure from three woody species, Aristotelia chilensis, Rubus ulmifolius, and Ugni molinae. The latter invades native forests by ascending dry slopes and ridges.
    [Show full text]
  • Aristotelia Chilensis
    Vergara et al. Nutrition Journal (2015) 14:27 DOI 10.1186/s12937-015-0008-1 SHORT REPORT Open Access The intake of maqui (Aristotelia chilensis) berry extract normalizes H2O2 and IL-6 concentrations in exhaled breath condensate from healthy smokers - an explorative study Daniela Vergara, Daniela Ávila, Elizabeth Escobar, Catalina Carrasco-Pozo, Andrés Sánchez and Martin Gotteland* Abstract Background: Respiratory diseases are associated with pulmonary oxidative stress and inflammatory processes. Though studies in animal models suggest that dietary polyphenols improve lung injury, no intervention studies were carried out in humans. The aim of this study was to determine whether the intake of an anthocyanin-rich maqui extract improved H2O2 and IL-6 concentrations in exhaled breath condensates (EBCs) from asymptomatic smokers. Findings: 15 asymptomatic smokers with mild cigarette smoking (3 pack-year [2.4 - 7.7]) (mean [CI95%]) were recruited in this exploratory longitudinal study. They ingested 2 g of maqui extract (polyphenol content = 5.18 ± 2.00 g GAE/100 g; FRAP value = 27.1 ± 2.0 mmol Fe++/100 g), twice daily for two weeks. EBCs were collected before and after treatment and the changes in H2O2 and IL-6 concentrations were determined by fluorimetry and Elisa, respectively. The EBC contents of H2O2 and IL-6 H2O2 before and after treatment in smokers were also compared with those determined in single EBC samples from 8 healthy non-smokers subjects. At baseline, the H2O2 concentrations were higher and those of IL-6 lower in the smokers than in the non-smokers. Maqui extract significantly decreased H2O2 (p < 0.0002) and increased IL-6 (p < 0.004) in the EBC from smokers.
    [Show full text]
  • Interactions Among Introduced Ungulates, Plants, and Pollinators: a Field Study in the Temperate Forest of the Southern Andes
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2002 Interactions among Introduced Ungulates, Plants, and Pollinators: A Field Study in the Temperate Forest of the Southern Andes Diego P. Vazquez University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Ecology and Evolutionary Biology Commons Recommended Citation Vazquez, Diego P., "Interactions among Introduced Ungulates, Plants, and Pollinators: A Field Study in the Temperate Forest of the Southern Andes. " PhD diss., University of Tennessee, 2002. https://trace.tennessee.edu/utk_graddiss/2169 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Diego P. Vazquez entitled "Interactions among Introduced Ungulates, Plants, and Pollinators: A Field Study in the Temperate Forest of the Southern Andes." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Ecology and Evolutionary Biology. Daniel Simberloff, Major Professor We have read this dissertation and recommend its acceptance: David Buehler, Louis Gross, Jake Welzin Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a dissertation written by Diego P.
    [Show full text]
  • Frugivory and Seed Dispersal Role of the Yellow-Striped Brush-Finch (Atlapetes Citrinellus), an Endemic Emberizid of Argentina
    Emu 2014 © BirdLife Australia 2014 © BirdLife Australia 2014 doi:10.1071/MU14033_AC Supplementary material: Emu, 2014, 114(4), 343–351 Frugivory and seed dispersal role of the Yellow-striped Brush-Finch (Atlapetes citrinellus), an endemic emberizid of Argentina Román A. RuggeraA,B,D, M. Daniela GomezA,C and Pedro G. BlendingerA,B AConsejo Nacional de Investigaciones Científicas y Técnicas, Crisóstomo Álvarez 722, 4000 San Miguel de Tucumán, Tucumán, Argentina. BInstituto de Ecología Regional, Universidad Nacional de Tucumán, C.C. 34, 4107 Yerba Buena, Tucumán, Argentina. CFacultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600 San Salvador de Jujuy, Jujuy, Argentina. DCorresponding author. Email: [email protected] Page 1 of 9 Emu 2014 © BirdLife Australia 2014 © BirdLife Australia 2014 doi:10.1071/MU14033_AC Fig. S1. The location of the Austral Yungas in north-western Argentina, and our field study sites. 1, Chorro de Loros (24°43′45.6′′S, 64°40′30′′W , 1020 m ASL); 2, Pozo Verde (24°45′24′′S, 64°41′38.4′′W, 1309 m ASL); 3, Santa Bárbara (24°05′53.4′′S, 64°26′56.4′′W, 1870 m ASL); 4, San Javier (26°76′S, 65°33′W, 900 m ASL); 5, La Florida (27°13′37.2′′S, 65°37′28.2′′W, 455 m ASL); 6, Los Chorizos (27°15′S, 65°53′19.8′′W, 1120 m ASL); 7, Quebrada del Portugués (27°01′46.2′′S, 65°46′26.4′′W, 1584 m ASL). Modified with permission from Fundación Proyungas (http://siga.proyungas.org.ar/wp- content/uploads/2013/12/Sectores-Yungas-y-protecci%C3%B3n.jpg, accessed 2 June 2012).
    [Show full text]
  • Rubus Laciniatus Willd. (Rosaceae), an Introduced Species New in the Flora of Serbia and the Balkans
    42 (2): (2018) 255-258 Short Communication Rubus laciniatus Willd. (Rosaceae), an introduced species new in the flora of Serbia and the Balkans Zoran Krivošej1✳, Danijela Prodanović2, Nusret Preljević3 and Bojana Veljković3 1 University of Priština, Faculty of Natural Science, Lole Ribara 29, 38220 Kosovska Mitrovica, Serbia 2 University of Priština, Faculty of Agriculture Lešak, Kopaonička bb, 38219 Lešak, Serbia 3 State University of Novi Pazar, Department of Biomedical Sciences, Vuka Karadžića bb, 36300 Novi Pazar, Serbia ABSTRACT: Rubus laciniatus has been found as a species new for the flora of Serbia during floristic investigation in the Ibar river valley. It was found on serpentine terrains near the town of Raška (SW Serbia). This is the single known locality of the given species on the Balkan Peninsula. Data on morphology, distribution, and habitat preferences of the species are provided, and the possible pathways of its introduction in Serbia are assessed. Keywords: Rubus laciniatus, blackberry, new record, Ibar river valley Received: 20 March 2018 Revision accepted: 11 July 2018 UDC: 634.71:581.95(497.11) (292.464) DOI: 10.5281/zenodo.1468362 One of the largest of plant genera, Rubus L. (Rosaceae) be in Southwest China (Lu 1983), since it is geologically has worldwide distribution and is variously classified archaic and was not seriously covered by glaciers dur- into 12 or 15 subgenera (Jennings 1988). According to ing the Quaternary (Gu et al. 1993). In Europe, the ge- The Plant List (2013), 1568 species are accepted on the nus Rubus has its centre of diversity in the Atlantic and global level and there are also 5162 unresolved names.
    [Show full text]
  • Literature Cited
    Literature Cited Robert W. Kiger, Editor This is a consolidated list of all works cited in volume 9, whether as selected references, in text, or in nomenclatural contexts. In citations of articles, both here and in the taxonomic treatments, and also in nomenclatural citations, the titles of serials are rendered in the forms recommended in G. D. R. Bridson and E. R. Smith (1991), Bridson (2004), and Bridson and D. W. Brown (http://fmhibd.library.cmu.edu/fmi/iwp/cgi?-db=BPH_Online&-loadframes). When those forms are abbreviated, as most are, cross references to the corresponding full serial titles are interpolated here alphabetically by abbreviated form. In nomenclatural citations (only), book titles are rendered in the abbreviated forms recommended in F. A. Stafleu and R. S. Cowan (1976–1988) and Stafleu et al. (1992–2009). Here, those abbreviated forms are indicated parenthetically following the full citations of the corresponding works, and cross references to the full citations are interpolated in the list alphabetically by abbreviated form. Two or more works published in the same year by the same author or group of coauthors will be distinguished uniquely and consistently throughout all volumes of Flora of North America by lower-case letters (b, c, d, ...) suffixed to the date for the second and subsequent works in the set. The suffixes are assigned in order of editorial encounter and do not reflect chronological sequence of publication. The first work by any particular author or group from any given year carries the implicit date suffix “a”; thus, the sequence of explicit suffixes begins with “b”.
    [Show full text]
  • Elicitation of Phenylpropanoids in Maqui (Aristotelia Chilensis [Mol.] Stuntz) Plants Micropropagated in Photomixotrophic Temporary Immersion Bioreactors (Tibs)
    Elicitation of Phenylpropanoids in Maqui (Aristotelia chilensis [Mol.] Stuntz) Plants Micropropagated in Photomixotrophic Temporary Immersion Bioreactors (TIBs). Giulia E Trentini University of Modena and Reggio Emilia: Universita degli Studi di Modena e Reggio Emilia Makarena Rojas Catholic University of the Maule: Universidad Catolica del Maule Daniela Gajardo Catholic University of the Maule: Universidad Catolica del Maule Débora Alburquenque Catholic University of the Maule: Universidad Catolica del Maule Evelyn Villagra Catholic University of the Maule: Universidad Catolica del Maule Aleydis Gómez Catholic University of the Maule: Universidad Catolica del Maule Laura Arru University of Modena and Reggio Emilia: Universita degli Studi di Modena e Reggio Emilia Ariel D Arencibia ( [email protected] ) Universidad Catolica del Maule https://orcid.org/0000-0002-7631-1329 Research Article Keywords: Temporary immersion bioreactors, photomixotrophic cultures, phenylpropanoids, ABA, Aristotelia chilensis Posted Date: March 2nd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-255813/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/24 Abstract A biotechnological system for the production of plants biomass and phenylpropanoids of maqui was developed in photomixotrophic TIBs. The in vitro maqui multiplication was evaluated using combinations of TDZ and BAP in TIBs 1L capacity. Treatment of MS basal supplemented with TDZ 1 mg/l shows the best results for the variables fresh weight and multiplication rate. Photomixotrophic conditions were standardized in media with 3%, 2%, 1%, 0% sucrose at a light intensity of 100 µM m− 2s− 1. The treatments reduced in sucrose (1% and 2%) and air supplemented with 0.4 MPa CO2 do not differ signicantly in biomass production (fresh weight per cluster of plants) compared to the control treatment with sucrose 3% and standard air.
    [Show full text]
  • Maqui [Aristotelia Chilensis (Mol.) Stuntz]-The Amazing Chilean Tree: a Review
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/236935127 Maqui [Aristotelia chilensis (Mol.) Stuntz]-the Amazing Chilean Tree: A Review Article in Journal of Agricultural Science and Technology · August 2011 CITATIONS READS 11 1,837 4 authors, including: E. Misle Estrella Garrido Universidad Católica delMaule 33 PUBLICATIONS 162 CITATIONS 17 PUBLICATIONS 128 CITATIONS SEE PROFILE SEE PROFILE All content following this page was uploaded by E. Misle on 01 June 2014. The user has requested enhancement of the downloaded file. Journal of Agricultural Science and Technology B 1 (2011) 473-482 Earlier title: Journal of Agricultural Science and Technology, ISSN 1939-1250 Maqui [Aristotelia chilensis (Mol.) Stuntz]-the Amazing Chilean Tree: A Review E. Misle, E. Garrido, H. Contardo and W. González Department of Agrarian Sciences and Forestry, Catholic University of Maule, Los Niches km 6. 3341695, Curicó, Chile Received: December 7, 2010 / Published: August 20, 2011. Abstract: A. chilensis (Elaeocarpaceae) is commonly known as maqui, a species widely distributed in Chile. The plant participates in the structure of the Chilean temperate rainforest, currently being found mainly as fragmented forest. Maqui has been listed as the plant with the highest content of phenols when compared with other berries. Multiplication by both, seeds and vegetative has been obtained, opening the possibility to cultivate the plant. Leaves of maqui have been traditionally used in the native herbal medicine to treat diverse ailments. Studies indicate the presence of indolic alkaloids, flavonoids, cyaniding glucosides, delfidine, malvidine, petunidine, cumarines and triterpenes. Recent studies support therapeutic properties of maqui leaves, concluding that extracts obtained with polar solvents showed stabilizing capacity of free radicals and antioxidant capacity of plasma in humans.
    [Show full text]
  • POLYPHENOL CONTENT and ANTIOXIDANT ACTIVITY of MAQUI (Aristotelia Chilensis [MOLINA] STUNTZ) DURING FRUIT DEVELOPMENT and MATURATION in CENTRAL CHILE
    SCIENTIFIC NOTE POLYPHENOL CONTENT AND ANTIOXIDANT ACTIVITY OF MAQUI (Aristotelia chilensis [MOLINA] STUNTZ) DURING FRUIT DEVELOPMENT AND MATURATION IN CENTRAL CHILE Carolina Fredes1*, Gloria Montenegro1, Juan Pablo Zoffoli1, Miguel Gómez1, and Paz Robert2 Maqui (Aristotelia chilensis [Molina] Stuntz, Elaeocarpaceae) is a Chilean native species which produces small berries that are mainly collected from the wild. The health benefits of maqui fruit are attributed to their high polyphenol content as well as their wide variety of anthocyanins and flavonols. One of the main factors that affect the polyphenol content in fruit is the maturity stage at harvest. The objective of this study was to determine total phenol and total anthocyanin content and antioxidant activity (by ferric reducing ability of plasma [FRAP] assay) of maqui fruits harvested at different fruit maturity stages from two wild populations located in Central Chile. Each maturity stage was determined by days from fruit set, berry size, and soluble solids. Total phenol content declined while total anthocyanin content increased from the green to light red stage. Nevertheless, both total phenol and anthocyanin content increased from the light red to dark purple stage. The highest anthocyanin content and antioxidant activity was found in the late maturity stage (dark purple). The results show that ripening in maqui fruit can be expected with 1100 growing degree-days (91 d after fruit set) in Central Chile. At this moment of harvest, fruits with 18-19 °Brix have the highest anthocyanin content and antioxidant activity (FRAP). This study constitutes the first advances in the understanding of maqui fruit ripening and corresponding antioxidant activity.
    [Show full text]
  • Rubus Pharmacology: Antiquity to the Present Kim E
    Rubus Pharmacology: Antiquity to the Present Kim E. Hummer U.S. Department of Agriculture, Agricultural Research Service, National Clonal Germplasm Repository, 33447 Peoria Road, Corvallis, OR 97333 Additional index words. ancient and traditional, medicine, blackberries, raspberries, Rubus Abstract. The genus Rubus L., indigenous to six continents, includes blackberries, raspberries, and their hybrids and is commonly referred to as brambles or briers. Rubus species were a food and medicinal source for native peoples soon after the Ice Age. This short article presents only a sample of the wealth of historical reports of medicinal uses for Rubus. Brambles were documented in the writings of the ancient Greeks: Aeschylus, Hippocrates, Krataeus, Dioscorides, and Galen; Romans: Cato, Ovid, and Pliny the Elder; Asian medicinal traditions; traditional Chinese medicine; and the Ayurvedic tradition of India. Folk traditions of native peoples throughout the world have also applied Rubus for multiple medicinal uses. Although in modern times Rubus is grown for its delicious and vitamin-rich fruit for fresh and processed product consumption, the ancients used the whole plant and its parts. Stems, branches, roots, leaves, and flowers were used in decoctions, infusions, plasters, oil or wine extractions, and condensates. Decoctions of branches were applied to stop diarrhea, dye hair, prevent vaginal discharge, and as an antivenom for snakebites. Leaves were chewed to strengthen gums and plastered to constrain shingles, head scurf, prolapsed eyes, and hemorrhoids. Flowers triturated with oil reduced eye inflammations and cooled skin rashes; infusions with water or wine aided stomach ailments. Greeks and Romans recorded female applications, whereas the Chinese described uses in male disorders.
    [Show full text]
  • Natural Environment Study Addendum
    Natural Environment Study Addendum State Route 1 HOV Lanes Tier I Corridor Analysis of High Occupancy Vehicle (HOV) Lanes and Transportation System Management (TSM) Alternatives (05 SCR-1-PM 7.24-16.13) and Tier II Build Project Analysis 41st Avenue to Soquel Avenue/Drive Auxiliary Lanes and Chanticleer Avenue Pedestrian-Bicycle Overcrossing (05 SCR-1-PM 13.5-14.9) EA 0C7300 April 2018 For individuals with sensory disabilities, this document is available in Braille, large print, on audiocassette, or computer disk. To obtain a copy in one of these alternate formats, please call or write to Caltrans, Attn: Matt Fowler, California Department of Transportation – District 5, 50 Higuera Street, San Luis Obispo, CA 93401; 805-542-4603 Voice, or use the California Relay Service 1 (800) 735-2929 (TTY), 1 (800) 735-2929 (Voice), or 711. This page intentionally left blank. State Route 1 HOV Lanes Project Natural Environmental Study Addendum CONTENTS 1 INTRODUCTION ................................................................................................................................ 1 1.1 NATURAL ENVIRONMENT STUDY ADDENDUM METHODS .......................................... 1 2 RESOURCES AND IMPACTS EVALUATION............................................................................... 1 2.1 SPECIAL-STATUS PLANT SPECIES ....................................................................................... 1 2.2 SPECIAL STATUS ANIMAL SPECIES .................................................................................... 3 2.2.1 California
    [Show full text]
  • Vascular Plants of Santa Cruz County, California
    ANNOTATED CHECKLIST of the VASCULAR PLANTS of SANTA CRUZ COUNTY, CALIFORNIA SECOND EDITION Dylan Neubauer Artwork by Tim Hyland & Maps by Ben Pease CALIFORNIA NATIVE PLANT SOCIETY, SANTA CRUZ COUNTY CHAPTER Copyright © 2013 by Dylan Neubauer All rights reserved. No part of this publication may be reproduced without written permission from the author. Design & Production by Dylan Neubauer Artwork by Tim Hyland Maps by Ben Pease, Pease Press Cartography (peasepress.com) Cover photos (Eschscholzia californica & Big Willow Gulch, Swanton) by Dylan Neubauer California Native Plant Society Santa Cruz County Chapter P.O. Box 1622 Santa Cruz, CA 95061 To order, please go to www.cruzcps.org For other correspondence, write to Dylan Neubauer [email protected] ISBN: 978-0-615-85493-9 Printed on recycled paper by Community Printers, Santa Cruz, CA For Tim Forsell, who appreciates the tiny ones ... Nobody sees a flower, really— it is so small— we haven’t time, and to see takes time, like to have a friend takes time. —GEORGIA O’KEEFFE CONTENTS ~ u Acknowledgments / 1 u Santa Cruz County Map / 2–3 u Introduction / 4 u Checklist Conventions / 8 u Floristic Regions Map / 12 u Checklist Format, Checklist Symbols, & Region Codes / 13 u Checklist Lycophytes / 14 Ferns / 14 Gymnosperms / 15 Nymphaeales / 16 Magnoliids / 16 Ceratophyllales / 16 Eudicots / 16 Monocots / 61 u Appendices 1. Listed Taxa / 76 2. Endemic Taxa / 78 3. Taxa Extirpated in County / 79 4. Taxa Not Currently Recognized / 80 5. Undescribed Taxa / 82 6. Most Invasive Non-native Taxa / 83 7. Rejected Taxa / 84 8. Notes / 86 u References / 152 u Index to Families & Genera / 154 u Floristic Regions Map with USGS Quad Overlay / 166 “True science teaches, above all, to doubt and be ignorant.” —MIGUEL DE UNAMUNO 1 ~ACKNOWLEDGMENTS ~ ANY THANKS TO THE GENEROUS DONORS without whom this publication would not M have been possible—and to the numerous individuals, organizations, insti- tutions, and agencies that so willingly gave of their time and expertise.
    [Show full text]