energies Review Recovery and Utilization of Lignin Monomers as Part of the Biorefinery Approach Kirsten M. Davis 1, Marjorie Rover 2, Robert C. Brown 3, Xianglan Bai 3, Zhiyou Wen 4 and Laura R. Jarboe 1,* 1 Chemical and Biological Engineering, Iowa State University, Ames, IA 50014, USA;
[email protected] 2 Bioeconomy Institute, Iowa State University, Ames, IA 50014, USA;
[email protected] 3 Mechanical Engineering, Iowa State University, Ames, IA 50014, USA;
[email protected] (R.C.B.);
[email protected] (X.B.) 4 Food Science & Human Nutrition, Iowa State University, Ames, IA 50014, USA;
[email protected] * Correspondence:
[email protected]; Tel.: +1-515-294-2319 Academic Editor: Dimitris S. Argyropoulos Received: 15 June 2016; Accepted: 22 September 2016; Published: 10 October 2016 Abstract: Lignin is a substantial component of lignocellulosic biomass but is under-utilized relative to the cellulose and hemicellulose components. Historically, lignin has been burned as a source of process heat, but this heat is usually in excess of the process energy demands. Current models indicate that development of an economically competitive biorefinery system requires adding value to lignin beyond process heat. This addition of value, also known as lignin valorization, requires economically viable processes for separating the lignin from the other biomass components, depolymerizing the lignin into monomeric subunits, and then upgrading these monomers to a value-added product. The fact that lignin’s biological role is to provide biomass with structural integrity means that this heteropolymer can be difficult to depolymerize. However, there are chemical and biological routes to upgrade lignin from its native form to compounds of industrial value.