The Effects of Combining Guaiacol and Syringol on Their Pyrolysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11 -
Lavender- and Lavandin-Distilled Straws: an Untapped Feedstock With
Lesage‑Meessen et al. Biotechnol Biofuels (2018) 11:217 https://doi.org/10.1186/s13068-018-1218-5 Biotechnology for Biofuels RESEARCH Open Access Lavender‑ and lavandin‑distilled straws: an untapped feedstock with great potential for the production of high‑added value compounds and fungal enzymes Laurence Lesage‑Meessen1, Marine Bou1, Christian Ginies2, Didier Chevret3, David Navarro1, Elodie Drula1,4, Estelle Bonnin5, José C. del Río6, Elise Odinot1, Alexandra Bisotto1, Jean‑Guy Berrin1, Jean‑Claude Sigoillot1, Craig B. Faulds1 and Anne Lomascolo1* Abstract Background: Lavender (Lavandula angustifolia) and lavandin (a sterile hybrid of L. angustifolia L. latifolia) essential oils are among those most commonly used in the world for various industrial purposes, including× perfumes, phar‑ maceuticals and cosmetics. The solid residues from aromatic plant distillation such as lavender- and lavandin-distilled straws are generally considered as wastes, and consequently either left in the felds or burnt. However, lavender- and lavandin-distilled straws are a potentially renewable plant biomass as they are cheap, non-food materials that can be used as raw feedstocks for green chemistry industry. The objective of this work was to assess diferent pathways of valorization of these straws as bio-based platform chemicals and fungal enzymes of interest in biorefnery. Results: Sugar and lignin composition analyses and saccharifcation potential of the straw fractions revealed that these industrial by-products could be suitable for second-generation bioethanol prospective. The solvent extrac‑ tion processes, developed specifcally for these straws, released terpene derivatives (e.g. τ-cadinol, β-caryophyllene), lactones (e.g. coumarin, herniarin) and phenolic compounds of industrial interest, including rosmarinic acid which contributed to the high antioxidant activity of the straw extracts. -
The Analysis of Grapevine Response to Smoke Exposure
The Analysis of Grapevine Response to Smoke Exposure A thesis presented in fulfilment of the requirements for the degree of Doctor of Philosophy Lieke van der Hulst BSc, MSc The University of Adelaide School of Agriculture, Food and Wine Thesis submitted for examination: November 2017 Thesis accepted and final submission: January 2018 Table of contents Abstract i Declaration iii Publications iv Symposia v Acknowledgements vii Chapter 1 Literature review and introduction • Literature review and introduction 1 • The occurrence of bushfires and prescribed 2 • Economic impact of bushfires 5 • Smoke derived volatile compounds 6 • Volatile compounds in wine 8 • Glycosylation of volatile phenols in grapes 9 • Previous smoke taint research 11 • Glycosyltransferases 14 • Research aims 18 Chapter 2 Detection and mitigation of smoke taint in the vineyard • Authorship statements 20 • Introduction 22 • Paper: Accumulation of volatile phenol glycoconjugates in grapes, 24 following the application of kaolin and/or smoke to grapevines (Vitis vinifera cv Sauvignon Blanc, Chardonnay and Merlot) • Further investigation into methods for the detection and mitigation of 54 smoke taint in the vineyard Material and Methods 55 Results and discussion part A 57 Results and discussion part B 61 Conclusion 68 Chapter 3 Expression of glycosyltransferases in grapevines following smoke exposure • Authorship statements 71 • Introduction 73 • Paper: Expression profiles of glycosyltransferases in 74 Vitis vinifera following smoke exposure Chapter 4 The effect of smoke exposure to apple • Authorship statements 122 • Introduction 124 • Paper: The effect of smoke exposure to apple (Malus domestica 125 Borkh cv ‘Sundowner’) Chapter 5 Conclusions and future directions • Conclusions 139 • Future directions 142 Appendix • Paper: Impact of bottle aging on smoke-tainted wines from 145 different grape cultivars References 152 Abstract Smoke taint is a fault found in wines made from grapes exposed to bushfire smoke. -
Review of Smoke Taint in Wine: Smokederived Volatile Phenols And
Krstic et al. Review of smoke taint in wine 537 Review of smoke taint in wine: smoke-derived volatile phenols and their glycosidic metabolites in grapes and vines as biomarkers for smoke exposure and their role in the sensory perception of smoke taint M.P. KRSTIC1, D.L. JOHNSON2 and M.J. HERDERICH2 1 The Australian Wine Research Institute,Victorian Node, Mooroolbark, Vic. 3138, Australia; 2 The Australian Wine Research Institute, Urrbrae, SA 5064, Australia Corresponding author: Dr Mark Krstic, email [email protected] Abstract In recent years, the exposure of vineyards and grapes to smoke from bushfires and controlled burn events has in some instances resulted in wines described as smoke tainted. Such wines are characterised by undesirable sensory characters described as smoky, burnt, ash, smoky bacon, medicinal and ashtray. This review summarises the knowledge about the composition of smoke from forest and grass fires, describes relationships between smoke exposure of vineyards and smoke taint in wine, and outlines strategies for managing and reducing the risk to producing smoke-affected wines. The sensitivity of grapes and vines at different phenological stages to the uptake of contaminants from smoke, especially smoke-derived volatile phenols, is outlined, and the pathways for entry and metabolic transformation of volatile phenols are discussed. The potential for translocation of phenolic contaminants within the grapevine and the differences in uptake of smoke contaminants of different grape cultivars are also discussed, along with preliminary work on dose/response relationships regarding concentration and duration of exposure and subsequent expression of smoke taint in wine. The chemical basis of smoke taint in wine is described, and the relationship between volatile phenols from combustion of wood/lignin and their glycosides, and sensory panel ratings of smoke attributes in affected wines is discussed. -
CPY Document
3. eHEMieAL eOMPOSITION OF ALeOHOLie BEVERAGES, ADDITIVES AND eONTAMINANTS 3.1 General aspects Ethanol and water are the main components of most alcoholIc beverages, although in some very sweet liqueurs the sugar content can be higher than the ethanol content. Ethanol (CAS Reg. No. 64-17-5) is present in alcoholic beverages as a consequence of the fermentation of carbohydrates with yeast. It can also be manufactured from ethylene obtained from cracked petroleum hydrocarbons. The a1coholic beverage industry has generally agreed not to use synthetic ethanol manufactured from ethylene for the production of alcoholic beverages, due to the presence of impurities. ln order to determine whether synthetic ethanol has been used to fortify products, the low 14C content of synthetic ethanol, as compared to fermentation ethanol produced from carbohydrates, can be used as a marker in control analyses (McWeeny & Bates, 1980). Some physical and chemical characteristics of anhydrous ethanol are as follows (Windholz, 1983): Description: Clear, colourless liquid Boilng-point: 78.5°C M elting-point: -114.1 °C Density: d¡O 0.789 It is widely used in the laboratory and in industry as a solvent for resins, fats and oils. It also finds use in the manufacture of denatured a1cohol, in pharmaceuticals and cosmetics (lotions, perfumes), as a chemica1 intermediate and as a fuel, either alone or in mixtures with gasolIne. Beer, wine and spirits also contain volatile and nonvolatile flavour compounds. Although the term 'volatile compound' is rather diffuse, most of the compounds that occur in alcoholIc beverages can be grouped according to whether they are distiled with a1cohol and steam, or not. -
Lignin for Sustainable Bioproducts and Biofuels
Demirel, J Biochem Eng Bioprocess Technol 2017, 1:1 Journal of Biochemical Engineering & Bioprocess Technology Editorial a SciTechnol journal and substituted phenols as opposed to methoxy-phenols [7,8]. Type of Lignin for Sustainable particle size of biomass, pyrolysis temperature, reactor type (fluidized bed, ablative, vacuum, and auger), type of condensers (direct and Bioproducts and Biofuels indirect contact) can affect the composition of bio-oil [2,5]. Water Yaşar Demirel* soluble and organic phases are separated as two main streams out of condenser [9]. After condensing the vapor bio-oil is produced with a yield of up to 65 to 75% on a dry basis. Typical bio-oil consists of Keywords (wt% db, except water) acids (3-7), alcohols (1<), aldehydes, ketones, and furans (22-27), sugars (3-6), phenols (2-6), lignin derived fraction Lignin; Bioproducts; Biofuel; Sustainable energy (15-25), and extractives (4-6) [5]. Feedstocks with high extractives content and/or high ash content commonly produce an aqueous Introduction phase, an upper layer, and a decanted heavy oily phase. Bio-oil can be considered a micro emulsion in which the continuous phase is an To meet the goal of replacing 30% of fossil fuel by biofuels around aqueous solution of holocellulose decomposition products and small 2030, approximately 225 million tons of lignin will soon be produced molecules from lignin decomposition. The continuous liquid phase beside the current production of between 40 and 50 million tons per stabilizes a discontinuous phase that contains of pyrolytic lignin year in the paper and pulp industry in the U.S. Yet only about 2% of the macromolecules [2]. -
191222 191222.Pdf (423.8Kb)
1 A GC-MS based analytical method for detection of smoke taint associated phenols in 2 smoke affected wines. 3 4 Davinder Pal Singh†*, Ayalsew Zerihun #, David Kelly#, Nicole Marie Cain†, Peter 5 Nankervisŧ and Mark Oliver Downey† 6 † 7 Department of Primary Industries Victoria, Mildura, Victoria, 3502, Australia # 8 Department of Environment and Agriculture, Curtin University, Margaret River 9 Education Campus, Margaret River, WA, 6285, Australia 10 Ŧ Agilent Technologies Australia Pty Ltd, 347, Burwood Highway, Forest Hill 11 Victoria, 3131, Australia 12 13 * Corresponding author: Dr. Davinder Singh, Department of Primary Industries 14 Victoria Mildura Centre, PO Box 905 Mildura, Vic. 3502, Australia. Fax: +61 3 5051 15 4523; email: [email protected] 16 17 Email addresses: [email protected] 18 [email protected] 19 [email protected] 20 [email protected] 21 [email protected] 22 23 [email protected] 24 25 26 1 27 ABSTRACT 28 Guaiacol and 4-methylguaiacol are routinely used as markers to determine extent of 29 smoke impact on winegrapes and wines. However, smoke contains a complex group 30 of compounds which may contribute to smoke taint in winegrapes and wine. In this 31 study, a gas chromatography-mass spectrometry (GC-MS) based analytical method 32 was developed and validated for the profiling of various smoke taint compounds in 33 wines made from smoke affected fruit. A total of 22 analytes were separated and 34 identified in the GC-MS chromatogram, all of which were selected to evaluate the 35 samples and precision of the method. -
Evaluation and Products Characterization of Mango Seed Shell and Kernel Conventional Pyrolysis
EVALUATION AND PRODUCTS CHARACTERIZATION OF MANGO SEED SHELL AND KERNEL CONVENTIONAL PYROLYSIS Thesis By JUAN CAMILO MAHECHA RIVAS Presented in the Engineering Faculty of Universidad de los Andes In fulfillment of the requirements for the Degree of CHEMICAL ENGINEER Approved by: Advisor, Rocio Sierra Ramírez, Ph.D. Chemical Engineering Department Bogotá, Colombia January 2020 Evaluation and products characterization of mango seed shell and kernel conventional pyrolysis Juan C. Mahecha-Rivas Department of Chemical Engineering, University of Los Andes, Bogotá, Colombia GENERAL OBJECTIVE To characterize mango seed’s conventional pyrolysis products at optimal conditions for further valorization SPECIFICS OBJECTIVES - To evaluate the influence of temperature of conventional pyrolysis in bio-oil, biochar and biogas yields - To compare the pyrolysis’s yields from kernel, shell and kernel/shell mixture fed. - To characterize biochar, bio-oil, and biogas from mango seed’s kernel and shell pyrolysis - To determine the feasibility of mango seed bio-oil as a biodiesel precursor or additive i TABLE OF CONTENTS Abstract ................................................................................................................................... 1 1. Introduction .................................................................................................................... 1 2. Methods .......................................................................................................................... 4 2.1. Materials and sample preparation -
Lignin from Bark As a Resource for Aromatics Production by Hydrothermal Liquefaction
Received: 24 April 2018 | Revised: 25 July 2018 | Accepted: 3 August 2018 DOI: 10.1111/gcbb.12562 ORIGINAL RESEARCH Lignin from bark as a resource for aromatics production by hydrothermal liquefaction Julia Schuler1 | Ursel Hornung1 | Nicolaus Dahmen1 | Jörg Sauer1 Institute for Catalysis Research and Technology, Karlsruhe Institute of Abstract Technology (KIT), Eggenstein‐ Biorefineries, which are using mostly unused side streams of other existing pro- Leopoldshafen, Germany cesses like bark or lignin, have a huge potential to open new resources, for exam- Correspondence ple, chemicals. But with new resources new challenges will be met along the Julia Schuler, Institute for Catalysis way. These challenges must be addressed and discussed to build a solid and far‐ Research and Technology, Karlsruhe sighted process. This work focuses on the formation of monocyclic compounds Institute of Technology (KIT), Eggenstein‐ Leopoldshafen, Germany. like catechol as a valuable product during the hydrothermal liquefaction of beech Email: [email protected] wood bark as well as Kraft lignin from pine wood like Indulin AT. The focus is Funding information to get a better knowledge of the behavior of bark during hydrothermal liquefac- Ministry of Science, Research and the tion for depolymerization aiming at the production of aromatic building blocks Arts of Baden‐Württemberg, Grant/Award for chemicals. Therefore, the influence, for example, of temperature and reaction Number: 200007 time, the chemical reaction pathways, and the therefore necessary analytics need to be understood. Several limitations and challenges of common analytical meth- ods are discussed and compared for bark and Kraft lignin, which is relatively well investigated and can act as a reference material to build a common ground and make it possible to build standards for all bioeconomic processes. -
Catalytic Hydrodeoxygenation of Bio-Oil Model Compounds Over Pt
www.nature.com/scientificreports OPEN Catalytic Hydrodeoxygenation of Bio-oil Model Compounds over Pt/HY Catalyst Received: 08 April 2016 Heejin Lee1,*, Hannah Kim1,*, Mi Jin Yu1, Chang Hyun Ko2, Jong-Ki Jeon3, Jungho Jae4,5, Accepted: 09 June 2016 Sung Hoon Park6, Sang-Chul Jung6 & Young-Kwon Park1 Published: 30 June 2016 The hydrodeoxygenation of a model compound of lignin-derived bio-oil, guaiacol, which can be obtained from the pyrolysis of biomass to bio-oil, has attracted considerable research attention because of its huge potential as a substitute for conventional fuels. In this study, platinum-loaded HY zeolites (Pt/HY) with different Si/Al molar ratios were used as catalysts for the hydrodeoxygenation of guaiacol, anisole, veratrole, and phenol to a range of hydrocarbons, such as cyclohexane. The cyclohexane (major product) yield increased with increasing number of acid sites. To produce bio-oil with the maximum level of cyclohexane and alkylated cyclohexanes, which would be suitable as a substitute for conventional transportation fuels, the Si/Al molar ratio should be optimized to balance the Pt particle-induced hydrogenation with acid site-induced methyl group transfer. The fuel properties of real bio-oil derived from the fast pyrolysis of cork oak was improved using the Pt/HY catalyst. Bio-oil obtained by the pyrolysis of lignocellulosic biomass contains a range of chemicals, such as acids (e.g. acetic acid), anhydrosugars (e.g. levoglucosan), furanics (e.g. furan, furfural), phenolics (e.g. guaiacol), aldehydes, and ketones1–6. These bio-based chemicals and bio-based fuels are potential alternatives to petroleum-based chemicals and fuels. -
Some Aromatic Amines and Related Compounds
SOME AROMATIC AMINES AND RELATED COMPOUNDS AMINES AND RELATED SOME AROMATIC SOME AROMATIC AMINES AND RELATED COMPOUNDS VOLUME 127 IARC MONOGRAPHS ON THE IDENTIFICATION OF CARCINOGENIC HAZARDS TO HUMANS SOME AROMATIC AMINES AND RELATED COMPOUNDS VOLUME 127 This publication represents the views and expert opinions of an IARC Working Group on the Identification of Carcinogenic Hazards to Humans, which met remotely, 25 May–12 June 2020 LYON, FRANCE - 2021 IARC MONOGRAPHS ON THE IDENTIFICATION OF CARCINOGENIC HAZARDS TO HUMANS IARC MONOGRAPHS In 1969, the International Agency for Research on Cancer (IARC) initiated a programme on the evaluation of the carcinogenic hazard of chemicals to humans, involving the production of critically evaluated monographs on individual chemicals. The programme was subsequently expanded to include evaluations of carcinogenic hazards associated with exposures to complex mixtures, lifestyle factors and biological and physical agents, as well as those in specific occupations. The objective of the programme is to elaborate and publish in the form of monographs critical reviews of data on carcinogenicity for agents to which humans are known to be exposed and on specific exposure situations; to evaluate these data in terms of cancer hazard to humans with the help of international working groups of experts in carcinogenesis and related fields; and to identify gaps in evidence. The lists of IARC evaluations are regularly updated and are available on the internet athttps://monographs. iarc.fr/. This programme has been supported since 1982 by Cooperative Agreement U01 CA33193 with the United States National Cancer Institute, Department of Health and Human Services. Additional support has been provided since 1986 by the European Commission Directorate-General for Employment, Social Affairs, and Inclusion, initially by the Unit of Health, Safety and Hygiene at Work, and since 2014 by the European Union Programme for Employment and Social Innovation “EaSI” (2014–2020) (for further information please consult: https://ec.europa.eu/social/easi). -
Impact of Volatile Phenols and Their Precursors on Wine Quality and Control Measures of Brettanomyces/Dekkera Yeasts
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Archive Toulouse Archive Ouverte Open Archive Toulouse Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 9933 To link to this article : DOI:10.1007/s00217-013-2036-4 URL : http://dx.doi.org/10.1007/s00217-013-2036-4 To cite this version: Kheir, Joyce and Salameh, Dominique and Strehaiano, Pierre and Brandam, Cédric and Lteif, Roger Impact of volatile phenols and their precursors on wine quality and control measures of Brettanomyces/Dekkera yeasts. (2013) European Food Research and Technology, vol. 237 (n° 5). pp. 655-671. ISSN 1438-2377 Any correspondence concerning this service should be sent to the repository administrator: [email protected] DOI 10.1007/s00217-013-2036-4 Impact of volatile phenols and their precursors on wine quality and control measures of Brettanomyces/Dekkera yeasts Joyce Kheir • Dominique Salameh • Pierre Strehaiano • Ce ´dric Brandam • Roger Lteif Abstract Volatile phenols are aromatic compounds and yeasts, bacteria (lactic and acetic), and filamentous fungi one of the key molecules responsible for olfactory defects present in grapes, grape musts, and wine at various stages. in wine. The yeast genus Brettanomyces is the only major If the wine flavor is directly determined by grape variety, microorganism that has the ability to covert hydroxycin- microorganisms can also affect it by the production and namic acids into important levels of these compounds, excretion of metabolites during growth and through especially 4-ethylphenol and 4-ethylguaiacol, in red wine.