Annual Report 1998–99

Total Page:16

File Type:pdf, Size:1020Kb

Annual Report 1998–99 Department of Mathematics Cornell University Annual Report 1998Ð99 The image on the cover is taken from a catalogue of several hundred “symmetric tensegrities” developed by Professor Robert Connelly and Allen Back, director of our Instructional Computer Lab. (The whole catalogue can be viewed at http://mathlab.cit.cornell.edu/visualization/tenseg/tenseg.html.) The 12 balls represent points in space placed at the midpoints of the edges of a cube. The thin dark edges represent “cables,” each connecting a pair of vertices. If two vertices are connected by a cable, then they are not permitted to get further apart. The thick lighter shaded diagonals represent “struts.” If two vertices are connected by a strut, then they are not permitted to get closer together. The examples in the catalogue — including the one represented on the cover — are constructed so that they are “super stable.” This implies that any pair of congurations of the vertices satisfying the cable and strut constraints are congruent. So if one builds this structure with sticks for the struts and string for the cables, then it will be rigid and hold its shape. The congurations in the catalogue are constructed so that they are “highly” symmetric. By this we mean that there is a congruence of space that permutes all the vertices, and any vertex can be superimposed onto any other by one of those congruences. In the case of the image at hand, all the congruences can be taken to be rotations. Department of Mathematics Annual Report 1998Ð99 Year in Review: Mathematics Instruction and Research Cornell University Þrst among private institutions in undergraduates who later earn Ph.D.s. Ithaca, New York, the home of Cornell University, is located in the heart of the Finger Lakes Region. It offers the cultural activities of a large university and the diversions of a rural environment. Mathematics study at Cornell is a unique experience. The University has managed to foster excellence in research without forsaking the ideals of a liberal education. In many ways, the cohesiveness and rigor of the Mathematics Department is a reßection of the Cornell Tradition. Robert Connelly, chair Department of Mathematics Cornell University Telephone: (607) 255-4013 320 Malott Hall Fax: (607) 255-7149 Ithaca, NY 14853-4201 e-mail: [email protected] Table of Contents The Year in Review 1998–99..........................................................................1 Support Sta ...........................................................................................2 Graduate Program .....................................................................................3 Undergraduate Program ..............................................................................4 Research and Professional Activities.................................................................4 Faculty Changes .......................................................................................5 New Faculty for 1999–2000 ...........................................................................5 Yuri Berest; Vlada Limic; Michael Nussbaum; Peter Topping Gifts .....................................................................................................5 Awards and Honors ....................................................................................5 Alice T. Shafer Prize; Eleanor Norton York Award; Freshman Math Prize; Goldwin Smith Profes- sorship; Hutchinson Fellowship; Ithaca High School Senior Prize; Kieval Prize; Merrill Presidential Scholar; Robert John Battig Graduate Prize; Sloan Doctoral Dissertation Fellowship; Sloan Research Fellowship Instructional Activities ................................................................................7 Summer Program ......................................................................................7 Curriculum Changes ...................................................................................8 Interdisciplinary Instructional Activity ..............................................................8 Mathematics/Engineering Liaison; Engineering Restructuring Malott Hall Relocation ................................................................................9 Mathematics Course Enrollment Statistics .......................................................10 Mathematics Department Directory 1998–99 ....................................................12 Special Programs and Activities ....................................................................15 Kieval Lecture ........................................................................................15 Conference in Probability in Honor of Harry Kesten .............................................15 Spring Concert Series ................................................................................16 Topology Festival .....................................................................................16 Preparing Future Professors .........................................................................17 Expanding Your Horizons ...........................................................................17 Mathematics Awareness Week ......................................................................17 Research Experiences for Undergraduates Program ..............................................18 Centers and Institutes................................................................................19 Center for Applied Mathematics; Center for the Foundations of Intelligent Systems; The Field of Statistics Mathematics Library .................................................................................19 Special Instructional Support .......................................................................20 Computer Lab; Mathematics Support Center; Learning Strategies Center NSF Undergraduate Faculty Enhancement Workshop............................................21 Mathematics Education..............................................................................22 Cornell/Schools Mathematics Resource Program; Teacher Education in Agriculture, Mathematics and Science Mathematics Department Endowments ............................................................22 The Colloquium Endowment Fund; The Eleanor Norton York Endowment; The Faculty Book Endowment; The Israel Berstein Memorial Fund; The Logic Endowment; The Robert John Battig Endowment Degrees Granted 1998–99 ...........................................................................24 Department Colloquia ................................................................................28 1998–99 Faculty Publications .......................................................................36 Research Grant Activity ..............................................................................38 The Faculty and their Research .....................................................................40 Faculty Proles.........................................................................................42 Visiting Faculty Program Participants .............................................................75 Sta Proles............................................................................................77 The Year in Review 1998–99 This year we were very pleased to hire two excellent pus, by additional instructional teaching assistants, and people for our tenure/tenure-track faculty, Professor an additional H.C. Wang Assistant Professor in mathe- Michael Nussbaum from the Weierstrass Institute in matics. We are happy with the performance of all these Berlin, Germany, and Assistant Professor Yuri Berest people, and we feel that the experiment is going well. In from the University of California at Berkeley. Professor addition, it has been decided that the restructuring will Nussbaum is a leading statistician in the eld of non- be continued essentially in its present form for at least parametric function estimation. We had been looking two more years, for the fall of 2000 and the fall of 2001. for a top-rate statistician for some years since Profes- sor Larry Brown left, and we are pleased that Professor Seven of our regular faculty members were on leave for Nussbaum decided to join us. Professor Berest is very all or part of the 1998–1999 academic year. Professor highly regarded in the elds of partial dierential equa- Mark Gross spent the academic year at the University tions, mathematical physics and algebra. of Warwick, England. Mark has since resigned from Cor- nell eective July 1, 1999, and has taken a permanent We were not able to hire any new H.C. Wang Assis- position at Warwick. Professor Persi Diaconis spent the tant Professors this year, but for the 1999–2000 academic academic year at Stanford University. Professor Moss year, we will have two new H.C. Wang Assistant Profes- Sweedler spent the academic year at the National Se- sors who were hired during the 1997–98 academic year, curity Agency, and Professor John Hubbard spent the but who deferred their start date to July 1, 1999. Peter spring semester at the University of Marseilles in Mar- Topping, who works on the theory of partial dieren- seilles, France. In addition, Professor Allen Hatcher tial equations and dierential geometry, replaces Miklos was on sabbatical in the fall, and professors Kenneth Erdelyi-Szabo. Vlada Limic is an expert in Lie alge- Brown and Richard Durrett were on sabbatical in the bras and Lie groups. She replaces Noel Brady, who left spring. June 30, 1998. In the summer of 1998, a conference in probability in This year the department beneted
Recommended publications
  • Abstract We Survey the Published Work of Harry Kesten in Probability Theory, with Emphasis on His Contributions to Random Walks
    Abstract We survey the published work of Harry Kesten in probability theory, with emphasis on his contributions to random walks, branching processes, perco- lation, and related topics. Keywords Probability, random walk, branching process, random matrix, diffusion limited aggregation, percolation. Mathematics Subject Classification (2010) 60-03, 60G50, 60J80, 60B20, 60K35, 82B20. Noname manuscript No. 2(will be inserted by the editor) Geoffrey R. Grimmett Harry Kesten's work in probability theory Geoffrey R. Grimmett In memory of Harry Kesten, inspiring colleague, valued friend April 8, 2020 1 Overview Harry Kesten was a prominent mathematician and personality in a golden period of probability theory from 1956 to 2018. At the time of Harry's move from the Netherlands to the USA in 1956, as a graduate student aged 24, much of the foundational infrastructure of probability was in place. The central characters of probability had long been identified (including random walk, Brownian motion, the branching process, and the Poisson process), and connections had been made and developed between `pure theory' and cognate areas ranging from physics to finance. In the half-century or so since 1956, a coordinated and refined theory has been developed, and probability has been recognised as a crossroads discipline in mathematical science. Few mathematicians have contributed as much during this period as Harry Kesten. Following a turbulent childhood (see [59]), Harry studied mathematics with David van Dantzig and Jan Hemelrijk in Amsterdam, where in 1955 he attended a lecture by Mark Kac entitled \Some probabilistic aspects of potential theory". This encounter appears to have had a decisive effect, in that Harry moved in 1956 to Cornell University to work with Kac.
    [Show full text]
  • I. Overview of Activities, April, 2005-March, 2006 …
    MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 …......……………………. 2 Innovations ………………………………………………………..... 2 Scientific Highlights …..…………………………………………… 4 MSRI Experiences ….……………………………………………… 6 II. Programs …………………………………………………………………….. 13 III. Workshops ……………………………………………………………………. 17 IV. Postdoctoral Fellows …………………………………………………………. 19 Papers by Postdoctoral Fellows …………………………………… 21 V. Mathematics Education and Awareness …...………………………………. 23 VI. Industrial Participation ...…………………………………………………… 26 VII. Future Programs …………………………………………………………….. 28 VIII. Collaborations ………………………………………………………………… 30 IX. Papers Reported by Members ………………………………………………. 35 X. Appendix - Final Reports ……………………………………………………. 45 Programs Workshops Summer Graduate Workshops MSRI Network Conferences MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 This annual report covers MSRI projects and activities that have been concluded since the submission of the last report in May, 2005. This includes the Spring, 2005 semester programs, the 2005 summer graduate workshops, the Fall, 2005 programs and the January and February workshops of Spring, 2006. This report does not contain fiscal or demographic data. Those data will be submitted in the Fall, 2006 final report covering the completed fiscal 2006 year, based on audited financial reports. This report begins with a discussion of MSRI innovations undertaken this year, followed by highlights
    [Show full text]
  • Divergence of Shape Fluctuation for General Distributions in First-Passage Percolation
    DIVERGENCE OF SHAPE FLUCTUATION FOR GENERAL DISTRIBUTIONS IN FIRST-PASSAGE PERCOLATION SHUTA NAKAJIMA d Abstract. We study the shape fluctuation in the first-passage percolation on Z . It is known that it diverges when the distribution obeys Bernoulli in [Yu Zhang. The divergence of fluctuations for shape in first passage percolation. Probab. Theory. Related. Fields. 136(2) 298–320, 2006]. In this paper, we extend the result to general distributions. 1. Introduction First-passage percolation is a random growth model, which was first introduced by Hammersley and Welsh in 1965. The model is defined as follows. The vertices are the d d elements of Z . Let us denote the set edges by E : d d E = ffv; wgj v; w 2 Z ; jv − wj1 = 1g; Pd where we set jv − wj1 = i=1 jvi − wij for v = (v1; ··· ; vd), w = (w1; ··· ; wd). Note that we consider non-oriented edges in this paper, i.e., fv; wg = fw; vg and we sometimes d regard fv; wg as a subset of Z with a slight abuse of notation. We assign a non-negative d random variable τe on each edge e 2 E , called the passage time of the edge e. The collec- tion τ = fτege2Ed is assumed to be independent and identically distributed with common distribution F . d A path γ is a finite sequence of vertices (x1; ··· ; xl) ⊂ Z such that for any i 2 d f1; ··· ; l − 1g, fxi; xi+1g 2 E . It is customary to regard a path as a subset of edges as follows: given an edge e 2 Ed, we write e 2 γ if there exists i 2 f1 ··· ; l − 1g such that e = fxi; xi+1g.
    [Show full text]
  • Ericsson's Conjecture on the Rate of Escape Of
    TRANSACTIONS of the AMERICAN MATHEMATICAL SOCIETY Volume 240, lune 1978 ERICSSON'SCONJECTURE ON THE RATEOF ESCAPEOF ¿-DIMENSIONALRANDOM WALK BY HARRYKESTEN Abstract. We prove a strengthened form of a conjecture of Erickson to the effect that any genuinely ¿-dimensional random walk S„, d > 3, goes to infinity at least as fast as a simple random walk or Brownian motion in dimension d. More precisely, if 5* is a simple random walk and B, a Brownian motion in dimension d, and \j/i [l,oo)-»(0,oo) a function for which /"'/^(OiO, then \¡/(n)~'\S*\-» oo w.p.l, or equivalent^, ifr(t)~'\Bt\ -»oo w.p.l, iff ffif/(tY~2t~d/2 < oo; if this is the case, then also $(ri)~'\S„\ -» oo w.p.l for any random walk Sn of dimension d. 1. Introduction. Let XX,X2,... be independent identically distributed ran- dom ¿-dimensional vectors and S,, = 2"= XX¡.Assume throughout that d > 3 and that the distribution function F of Xx satisfies supp(P) is not contained in any hyperplane. (1.1) The celebrated Chung-Fuchs recurrence criterion [1, Theorem 6] implies that1 |5n|->oo w.p.l irrespective of F. In [4] Erickson made the much stronger conjecture that there should even exist a uniform escape rate for S„, viz. that «""iSj -* oo w.p.l for all a < \ and all F satisfying (1.1). Erickson proved his conjecture in special cases and proved in all cases that «-a|5„| -» oo w.p.l for a < 1/2 — l/d. Our principal result is the following theorem which contains Erickson's conjecture and which makes precise the intuitive idea that a simple random walk S* (which corresponds to the distribution F* which puts mass (2d)~x at each of the points (0, 0,..., ± 1, 0,..., 0)) goes to infinity slower than any other random walk.
    [Show full text]
  • An Interview with Martin Davis
    Notices of the American Mathematical Society ISSN 0002-9920 ABCD springer.com New and Noteworthy from Springer Geometry Ramanujan‘s Lost Notebook An Introduction to Mathematical of the American Mathematical Society Selected Topics in Plane and Solid Part II Cryptography May 2008 Volume 55, Number 5 Geometry G. E. Andrews, Penn State University, University J. Hoffstein, J. Pipher, J. Silverman, Brown J. Aarts, Delft University of Technology, Park, PA, USA; B. C. Berndt, University of Illinois University, Providence, RI, USA Mediamatics, The Netherlands at Urbana, IL, USA This self-contained introduction to modern This is a book on Euclidean geometry that covers The “lost notebook” contains considerable cryptography emphasizes the mathematics the standard material in a completely new way, material on mock theta functions—undoubtedly behind the theory of public key cryptosystems while also introducing a number of new topics emanating from the last year of Ramanujan’s life. and digital signature schemes. The book focuses Interview with Martin Davis that would be suitable as a junior-senior level It should be emphasized that the material on on these key topics while developing the undergraduate textbook. The author does not mock theta functions is perhaps Ramanujan’s mathematical tools needed for the construction page 560 begin in the traditional manner with abstract deepest work more than half of the material in and security analysis of diverse cryptosystems. geometric axioms. Instead, he assumes the real the book is on q- series, including mock theta Only basic linear algebra is required of the numbers, and begins his treatment by functions; the remaining part deals with theta reader; techniques from algebra, number theory, introducing such modern concepts as a metric function identities, modular equations, and probability are introduced and developed as space, vector space notation, and groups, and incomplete elliptic integrals of the first kind and required.
    [Show full text]
  • Harry Kesten's Work in Probability Theory
    Abstract We survey the published work of Harry Kesten in probability theory, with emphasis on his contributions to random walks, branching processes, perco- lation, and related topics. A complete bibliography is included of his publications. Keywords Probability, random walk, branching process, random matrix, diffusion limited aggregation, percolation. Mathematics Subject Classification (2010) 60-03, 60G50, 60J80, 60B20, 60K35, 82B20. arXiv:2004.03861v2 [math.PR] 13 Nov 2020 Noname manuscript No. 2(will be inserted by the editor) Geoffrey R. Grimmett Harry Kesten's work in probability theory Geoffrey R. Grimmett In memory of Harry Kesten, inspiring colleague, valued friend Submitted 20 April 2020, revised 26 October 2020 Contents 1 Overview . .2 2 Highlights of Harry Kesten's research . .4 3 Random walk . .8 4 Products of random matrices . 17 5 Self-avoiding walks . 17 6 Branching processes . 19 7 Percolation theory . 20 8 Further work . 31 Acknowledgements . 33 References . 34 Publications of Harry Kesten . 40 1 Overview Harry Kesten was a prominent mathematician and personality in a golden period of probability theory from 1956 to 2018. At the time of Harry's move from the Netherlands to the USA in 1956, as a graduate student aged 24, much of the foundational infrastructure of probability was in place. The central characters of probability had long been identified (including random walk, Brownian motion, the branching process, and the Poisson process), and connections had been made and developed between `pure theory' and cognate areas ranging from physics to finance. In the half-century or so since 1956, a coordinated and refined theory has been developed, and probability has been recognised as a crossroads discipline in mathematical science.
    [Show full text]
  • Notices of the American Mathematical
    ISSN 0002-9920 Notices of the American Mathematical Society AMERICAN MATHEMATICAL SOCIETY Graduate Studies in Mathematics Series The volumes in the GSM series are specifically designed as graduate studies texts, but are also suitable for recommended and/or supplemental course reading. With appeal to both students and professors, these texts make ideal independent study resources. The breadth and depth of the series’ coverage make it an ideal acquisition for all academic libraries that of the American Mathematical Society support mathematics programs. al January 2010 Volume 57, Number 1 Training Manual Optimal Control of Partial on Transport Differential Equations and Fluids Theory, Methods and Applications John C. Neu FROM THE GSM SERIES... Fredi Tro˝ltzsch NEW Graduate Studies Graduate Studies in Mathematics in Mathematics Volume 109 Manifolds and Differential Geometry Volume 112 ocietty American Mathematical Society Jeffrey M. Lee, Texas Tech University, Lubbock, American Mathematical Society TX Volume 107; 2009; 671 pages; Hardcover; ISBN: 978-0-8218- 4815-9; List US$89; AMS members US$71; Order code GSM/107 Differential Algebraic Topology From Stratifolds to Exotic Spheres Mapping Degree Theory Matthias Kreck, Hausdorff Research Institute for Enrique Outerelo and Jesús M. Ruiz, Mathematics, Bonn, Germany Universidad Complutense de Madrid, Spain Volume 110; 2010; approximately 215 pages; Hardcover; A co-publication of the AMS and Real Sociedad Matemática ISBN: 978-0-8218-4898-2; List US$55; AMS members US$44; Española (RSME). Order code GSM/110 Volume 108; 2009; 244 pages; Hardcover; ISBN: 978-0-8218- 4915-6; List US$62; AMS members US$50; Ricci Flow and the Sphere Theorem The Art of Order code GSM/108 Simon Brendle, Stanford University, CA Mathematics Volume 111; 2010; 176 pages; Hardcover; ISBN: 978-0-8218- page 8 Training Manual on Transport 4938-5; List US$47; AMS members US$38; and Fluids Order code GSM/111 John C.
    [Show full text]
  • Jennifer Tour Chayes March 2016 CURRICULUM VITAE Office
    Jennifer Tour Chayes March 2016 CURRICULUM VITAE Office Address: Microsoft Research New England 1 Memorial Drive Cambridge, MA 02142 e-mail: [email protected] Personal: Born September 20, 1956, New York, New York Education: 1979 B.A., Physics and Biology, Wesleyan University 1983 Ph.D., Mathematical Physics, Princeton University Positions: 1983{1985 Postdoctoral Fellow in Mathematical Physics, Departments of Mathematics and Physics, Harvard University 1985{1987 Postdoctoral Fellow, Laboratory of Atomic and Solid State Physics and Mathematical Sciences Institute, Cornell University 1987{1990 Associate Professor, Department of Mathematics, UCLA 1990{2001 Professor, Department of Mathematics, UCLA 1997{2005 Senior Researcher and Head, Theory Group, Microsoft Research 1997{2008 Affiliate Professor, Dept. of Physics, U. Washington 1999{2008 Affiliate Professor, Dept. of Mathematics, U. Washington 2005{2008 Principal Researcher and Research Area Manager for Mathematics, Theoretical Computer Science and Cryptography, Microsoft Research 2008{ Managing Director, Microsoft Research New England 2010{ Distinguished Scientist, Microsoft Corporation 2012{ Managing Director, Microsoft Research New York City Long-Term Visiting Positions: 1994-95, 1997 Member, Institute for Advanced Study, Princeton 1995, May{July ETH, Z¨urich 1996, Sept.{Dec. AT&T Research, New Jersey Awards and Honors: 1977 Johnston Prize in Physics, Wesleyan University 1979 Graham Prize in Natural Sciences & Mathematics, Wesleyan University 1979 Graduated 1st in Class, Summa Cum Laude,
    [Show full text]
  • Random Graph Dynamics
    1 Random Graph Dynamics Rick Durrett Copyright 2007, All rights reserved. Published by Cambridge University Press 2 Preface Chapter 1 will explain what this book is about. Here I will explain why I chose to write the book, how it is written, where and when the work was done, and who helped. Why. It would make a good story if I was inspired to write this book by an image of Paul Erd¨osmagically appearing on a cheese quesadilla, which I later sold for thousands on dollars on eBay. However, that is not true. The three main events that led to this book were (i) the use of random graphs in the solution of a problem that was part of Nathanael Berestycki’s thesis, (ii) a talk that I heard Steve Strogatz give on the CHKNS model, which inspired me to prove some rigorous results about their model, and (iii) a book review I wrote on the books by Watts and Barab´asifor the Notices of the American Math Society. The subject of this book was attractive for me, since many of the papers were outside the mathematics literature, so the rigorous proofs of the results were, in some cases, interesting mathematical problems. In addition, since I had worked for a number of years on the proper- ties of stochastic spatial models on regular lattices, there was the natural question of how did the behavior of these systems change when one introduced long range connections between individuals or considered power law degree distributions. Both of these modifications are reasonable if one considers the spread of influenza in a town where children bring the disease home from school, or the spread of sexually transmitted diseases through a population of individuals that have a widely varying number of contacts.
    [Show full text]
  • A Model for Random Chain Complexes
    A MODEL FOR RANDOM CHAIN COMPLEXES MICHAEL J. CATANZARO AND MATTHEW J. ZABKA Abstract. We introduce a model for random chain complexes over a finite field. The randomness in our complex comes from choosing the entries in the matrices that represent the boundary maps uniformly over Fq, conditioned on ensuring that the composition of consecutive boundary maps is the zero map. We then investigate the combinatorial and homological properties of this random chain complex. 1. Introduction There have been a variety of attempts to randomize topological constructions. Most famously, Erd¨os and R´enyi introduced a model for random graphs [6]. This work spawned an entire industry of probabilistic models and tools used for under- standing other random topological and algebraic phenomenon. These include vari- ous models for random simplicial complexes, random networks, and many more [7, 13]. Further, this has led to beautiful connections with statistical physics, for exam- ple through percolation theory [1, 3, 12]. Our ultimate goal is to understand higher dimensional topological constructions arising in algebraic topology from a random perspective. In this manuscript, we begin to address this goal with the much sim- pler objective of understanding an algebraic construction commonly associated with topological spaces, known as a chain complex. Chain complexes are used to measure a variety of different algebraic, geoemtric, and topological properties Their usefulness lies in providing a pathway for homolog- ical algebra computations. They arise in a variety of contexts, including commuta- tive algebra, algebraic geometry, group cohomology, Hoschild homology, de Rham arXiv:1901.00964v1 [math.CO] 4 Jan 2019 cohomology, and of course algebraic topology [2, 4, 9, 10, 11].
    [Show full text]
  • Harry Kesten
    Harry Kesten November 19, 1931 – March 29, 2019 Harry Kesten, Ph.D. ’58, the Goldwin Smith Professor Emeritus of Mathematics, died March 29, 2019 in Ithaca at the age of 87. His wife, Doraline, passed three years earlier. He is survived by his son Michael Kesten ’90. Through his pioneering work on key models of Statistical Mechanics including Percolation Theory, and his novel solutions to highly significant problems, Harry Kesten shaped and transformed entire areas of Mathematics. He is recognized worldwide as one of the greatest contributors to Probability Theory during the second half of the twentieth century. Harry’s work was mostly theoretical in nature but he always maintained a keen interest for the applications of probability theory to the real world and studied problems arising from other sciences including physics, population growth and biology. Harry was born in Duisburg, Germany, in 1931. He moved to Holland with his parents in 1933 and, somehow, survived the Second World War. In 1956, he was studying at the University of Amsterdam and working half-time as a research assistant for Professor D. Van Dantzig. As he was finishing his undergraduate degree, he wrote to the world famous mathematician Mark Kac to enquire if he could possibly receive a graduate fellowship to study probability theory at Cornell, perhaps for a year. At the time, Harry was considered a Polish subject (even though he had never been in Poland) and carried a passport of the international refugee organization. A fellowship was arranged and Harry joined the mathematics graduate program at Cornell that summer.
    [Show full text]
  • Program of the Sessions, San Francisco, CA
    Program of the Sessions San Francisco, California, May 3–4, 2003 Special Session on Numerical Methods, Calculations Saturday, May 3 and Simulations in Knot Theory and Its Applications, I Meeting Registration 8:00 AM –10:50AM Room 327, Thornton Hall 7:30 AM –4:00PM Main Lobby (3rd Floor), Thornton Hall Organizers: Jorge Alberto Calvo, North Dakota State University AMS Exhibit and Book Sale Kenneth C. Millett, University of California Santa Barbara 7:30 AM –4:00PM Room 331, Thornton Hall Eric J. Rawdon, Duquesne University 8:00AM Numerical simulations of random knotting using Special Session on Efficient Arrangements of Convex (6) the FVM method. Bodies, I Rob Scharein*, Centre for Experimental and Constructive Mathematics, and Greg Buck,St. 8:00 AM –10:40AM Room 211, Thornton Hall Anselm College (987-55-193) Organizers: Dan P. Ismailescu, Hofstra University 8:30AM Thermodynamics and Topology of Disordered Wlodzimierz Kuperberg, Auburn (7) Knots: Correlations in Trivial Lattice Knot University Diagrams. Sergei Nechaev, LPTMS (Orsay, France) (987-62-98) 8:00AM The cardinality of a finite saturated packing of (1) convex bodies in Ed. 9:00AM Scaling behavior of the average crossing number in Valeriu Soltan, George Mason University (8) equilateral random knots. Preliminary report. (987-52-45) Akos Dobay, University of Lausanne, Yuanan Diao, University of North Carolina at Charlotte, Rob 8:30AM Lattice packings with a gap are not completely Kusner, University of Massachusetts at Amherst, (2) saturated. and Andrzej Stasiak*, University of Lausanne Greg Kuperberg,UC-Davis,Krystyna Kuperberg* (987-54-142) and Wlodzimierz Kuperberg, Auburn University (987-52-86) 9:30AM Scaling Behavior of Closed and Open Random Knots.
    [Show full text]