Furstenberg and Margulis Awarded 2020 Abel Prize
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1006.1489V2 [Math.GT] 8 Aug 2010 Ril.Ias Rfie Rmraigtesre Rils[14 Articles Survey the Reading from Profited Also I Article
Pure and Applied Mathematics Quarterly Volume 8, Number 1 (Special Issue: In honor of F. Thomas Farrell and Lowell E. Jones, Part 1 of 2 ) 1—14, 2012 The Work of Tom Farrell and Lowell Jones in Topology and Geometry James F. Davis∗ Tom Farrell and Lowell Jones caused a paradigm shift in high-dimensional topology, away from the view that high-dimensional topology was, at its core, an algebraic subject, to the current view that geometry, dynamics, and analysis, as well as algebra, are key for classifying manifolds whose fundamental group is infinite. Their collaboration produced about fifty papers over a twenty-five year period. In this tribute for the special issue of Pure and Applied Mathematics Quarterly in their honor, I will survey some of the impact of their joint work and mention briefly their individual contributions – they have written about one hundred non-joint papers. 1 Setting the stage arXiv:1006.1489v2 [math.GT] 8 Aug 2010 In order to indicate the Farrell–Jones shift, it is necessary to describe the situation before the onset of their collaboration. This is intimidating – during the period of twenty-five years starting in the early fifties, manifold theory was perhaps the most active and dynamic area of mathematics. Any narrative will have omissions and be non-linear. Manifold theory deals with the classification of ∗I thank Shmuel Weinberger and Tom Farrell for their helpful comments on a draft of this article. I also profited from reading the survey articles [14] and [4]. 2 James F. Davis manifolds. There is an existence question – when is there a closed manifold within a particular homotopy type, and a uniqueness question, what is the classification of manifolds within a homotopy type? The fifties were the foundational decade of manifold theory. -
Gromov Receives 2009 Abel Prize
Gromov Receives 2009 Abel Prize . The Norwegian Academy of Science Medal (1997), and the Wolf Prize (1993). He is a and Letters has decided to award the foreign member of the U.S. National Academy of Abel Prize for 2009 to the Russian- Sciences and of the American Academy of Arts French mathematician Mikhail L. and Sciences, and a member of the Académie des Gromov for “his revolutionary con- Sciences of France. tributions to geometry”. The Abel Prize recognizes contributions of Citation http://www.abelprisen.no/en/ extraordinary depth and influence Geometry is one of the oldest fields of mathemat- to the mathematical sciences and ics; it has engaged the attention of great mathema- has been awarded annually since ticians through the centuries but has undergone Photo from from Photo 2003. It carries a cash award of revolutionary change during the last fifty years. Mikhail L. Gromov 6,000,000 Norwegian kroner (ap- Mikhail Gromov has led some of the most impor- proximately US$950,000). Gromov tant developments, producing profoundly original will receive the Abel Prize from His Majesty King general ideas, which have resulted in new perspec- Harald at an award ceremony in Oslo, Norway, on tives on geometry and other areas of mathematics. May 19, 2009. Riemannian geometry developed from the study Biographical Sketch of curved surfaces and their higher-dimensional analogues and has found applications, for in- Mikhail Leonidovich Gromov was born on Decem- stance, in the theory of general relativity. Gromov ber 23, 1943, in Boksitogorsk, USSR. He obtained played a decisive role in the creation of modern his master’s degree (1965) and his doctorate (1969) global Riemannian geometry. -
Properties of High Rank Subvarieties of Affine Spaces 3
PROPERTIES OF HIGH RANK SUBVARIETIES OF AFFINE SPACES DAVID KAZHDAN AND TAMAR ZIEGLER Abstract. We use tools of additive combinatorics for the study of subvarieties defined by high rank families of polynomials in high dimensional Fq-vector spaces. In the first, analytic part of the paper we prove a number properties of high rank systems of polynomials. In the second, we use these properties to deduce results in Algebraic Geometry , such as an effective Stillman conjecture over algebraically closed fields, an analogue of Nullstellensatz for varieties over finite fields, and a strengthening of a recent result of [5]. We also show that for k-varieties X ⊂ An of high rank any weakly polynomial function on a set X(k) ⊂ kn extends to a polynomial. 1. Introduction Let k be a field. For an algebraic k-variety X we write X(k) := X(k). To simplify notations we often write X instead of X(k). In particular we write V := V(k) when V is a vector space and write kN for AN (k). For a k-vector space V we denote by Pd(V) the algebraic variety of polynomials on V of degree ≤ d and by Pd(V ) the set of polynomials functions P : V → k of degree ≤ d. We always assume that d< |k|, so the restriction map Pd(V)(k) → Pd(V ) is a bijection. For a family P¯ = {Pi} of polynomials on V we denote by X V P¯ ⊂ the subscheme defined by the ideal generated by {Pi} and by XP¯ the set XP (k) ⊂ V . We will not distinguish between the set of affine k-subspaces of V and the set of affine subspaces of V since for an affine k-subspace W ⊂ V, the map W → W(k) is a bijection. -
Abstract We Survey the Published Work of Harry Kesten in Probability Theory, with Emphasis on His Contributions to Random Walks
Abstract We survey the published work of Harry Kesten in probability theory, with emphasis on his contributions to random walks, branching processes, perco- lation, and related topics. Keywords Probability, random walk, branching process, random matrix, diffusion limited aggregation, percolation. Mathematics Subject Classification (2010) 60-03, 60G50, 60J80, 60B20, 60K35, 82B20. Noname manuscript No. 2(will be inserted by the editor) Geoffrey R. Grimmett Harry Kesten's work in probability theory Geoffrey R. Grimmett In memory of Harry Kesten, inspiring colleague, valued friend April 8, 2020 1 Overview Harry Kesten was a prominent mathematician and personality in a golden period of probability theory from 1956 to 2018. At the time of Harry's move from the Netherlands to the USA in 1956, as a graduate student aged 24, much of the foundational infrastructure of probability was in place. The central characters of probability had long been identified (including random walk, Brownian motion, the branching process, and the Poisson process), and connections had been made and developed between `pure theory' and cognate areas ranging from physics to finance. In the half-century or so since 1956, a coordinated and refined theory has been developed, and probability has been recognised as a crossroads discipline in mathematical science. Few mathematicians have contributed as much during this period as Harry Kesten. Following a turbulent childhood (see [59]), Harry studied mathematics with David van Dantzig and Jan Hemelrijk in Amsterdam, where in 1955 he attended a lecture by Mark Kac entitled \Some probabilistic aspects of potential theory". This encounter appears to have had a decisive effect, in that Harry moved in 1956 to Cornell University to work with Kac. -
Homogeneous Flows, Moduli Spaces and Arithmetic
CLAY MATHEMATICS INSTITUTE SUMMER SCHOOL 2007 Homogeneous Flows, Moduli Spaces and Arithmetic at the Centro di Ricerca Matematica Designed for graduate students and mathematicians within Ennio De Giorgi, Pisa, Italy five years of their PhD, the program is an introduction to the theory of flows on homogeneous spaces, moduli spaces and their many applications. These flows give concrete examples of dynamical systems with highly interesting behavior and a rich and powerful theory. They are also a source of many interesting problems and conjectures. Furthermore, understanding the dynamics of such a concrete system lends to numerous applications in number theory and geometry regarding equidistributions, diophantine approximations, rational billiards and automorphic forms. The school will consist of three weeks of foundational courses Photo: Peter Adams and one week of mini-courses focusing on more advanced topics. June 11th to July 6th 2007 Lecturers to include: Organizing Committee Nalini Anantharaman, Artur Avila, Manfred Einsiedler, Alex Eskin, Manfred Einsiedler, David Ellwood, Alex Eskin, Dmitry Kleinbock, Elon Svetlana Katok, Dmitry Kleinbock, Elon Lindenstrauss, Shahar Mozes, Lindenstrauss, Gregory Margulis, Stefano Marmi, Peter Sarnak, Hee Oh, Akshay Venkatesh, Jean-Christophe Yoccoz Jean-Christophe Yoccoz, Don Zagier Foundational Courses Graduate Postdoctoral Funding Unipotent flows and applications Funding is available to graduate students and postdoctoral fellows (within 5 Alex Eskin & Dmitry Kleinbock years of their PhD). Standard -
Diagonalizable Flows on Locally Homogeneous Spaces and Number
Diagonalizable flows on locally homogeneous spaces and number theory Manfred Einsiedler and Elon Lindenstrauss∗ Abstract.We discuss dynamical properties of actions of diagonalizable groups on locally homogeneous spaces, particularly their invariant measures, and present some number theoretic and spectral applications. Entropy plays a key role in the study of theses invariant measures and in the applications. Mathematics Subject Classification (2000). 37D40, 37A45, 11J13, 81Q50 Keywords. invariant measures, locally homogeneous spaces, Littlewood’s conjecture, quantum unique ergodicity, distribution of periodic orbits, ideal classes, entropy. 1. Introduction Flows on locally homogeneous spaces are a special kind of dynamical systems. The ergodic theory and dynamics of these flows are very rich and interesting, and their study has a long and distinguished history. What is more, this study has found numerous applications throughout mathematics. The spaces we consider are of the form Γ\G where G is a locally compact group and Γ a discrete subgroup of G. Typically one takes G to be either a Lie group, a linear algebraic group over a local field, or a product of such. Any subgroup H < G acts on Γ\G and this action is precisely the type of action we will consider here. One of the most important examples which features in numerous number theoretical applications is the space PGL(n, Z)\ PGL(n, R) which can be identified with the space of lattices in Rn up to homothety. Part of the beauty of the subject is that the study of very concrete actions can have meaningful implications. For example, in the late 1980s G. -
Stable Real Cohomology of Arithmetic Groups
ANNALES SCIENTIFIQUES DE L’É.N.S. ARMAND BOREL Stable real cohomology of arithmetic groups Annales scientifiques de l’É.N.S. 4e série, tome 7, no 2 (1974), p. 235-272 <http://www.numdam.org/item?id=ASENS_1974_4_7_2_235_0> © Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1974, tous droits réservés. L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www. elsevier.com/locate/ansens) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé- matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi- chier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. sclent. EC. Norm. Sup., 46 serie, t. 7, 1974, p. 235 a 272. STABLE REAL COHOMOLOGY OF ARITHMETIC GROUPS BY ARMAND BOREL A Henri Cartan, a Poccasion de son 70® anniversaire Let r be an arithmetic subgroup of a semi-simple group G defined over the field of rational numbers Q. The real cohomology H* (T) of F may be identified with the coho- mology of the complex Q^ of r-invariant smooth differential forms on the symmetric space X of maximal compact subgroups of the group G (R) of real points of G. Let 1^ be the space of differential forms on X which are invariant under the identity component G (R)° of G (R). It is well-known to consist of closed (in fact harmonic) forms, whence a natural homomorphism^* : 1^ —> H* (T). -
I. Overview of Activities, April, 2005-March, 2006 …
MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 …......……………………. 2 Innovations ………………………………………………………..... 2 Scientific Highlights …..…………………………………………… 4 MSRI Experiences ….……………………………………………… 6 II. Programs …………………………………………………………………….. 13 III. Workshops ……………………………………………………………………. 17 IV. Postdoctoral Fellows …………………………………………………………. 19 Papers by Postdoctoral Fellows …………………………………… 21 V. Mathematics Education and Awareness …...………………………………. 23 VI. Industrial Participation ...…………………………………………………… 26 VII. Future Programs …………………………………………………………….. 28 VIII. Collaborations ………………………………………………………………… 30 IX. Papers Reported by Members ………………………………………………. 35 X. Appendix - Final Reports ……………………………………………………. 45 Programs Workshops Summer Graduate Workshops MSRI Network Conferences MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 This annual report covers MSRI projects and activities that have been concluded since the submission of the last report in May, 2005. This includes the Spring, 2005 semester programs, the 2005 summer graduate workshops, the Fall, 2005 programs and the January and February workshops of Spring, 2006. This report does not contain fiscal or demographic data. Those data will be submitted in the Fall, 2006 final report covering the completed fiscal 2006 year, based on audited financial reports. This report begins with a discussion of MSRI innovations undertaken this year, followed by highlights -
A Unified Approach to Three Themes in Harmonic Analysis ($1^{St} $ Part)
A UNIFIED APPROACH TO THREE THEMES IN HARMONIC ANALYSIS (I & II) (I) THE LINEAR HILBERT TRANSFORM AND MAXIMAL OPERATOR ALONG VARIABLE CURVES (II) CARLESON TYPE OPERATORS IN THE PRESENCE OF CURVATURE (III) THE BILINEAR HILBERT TRANSFORM AND MAXIMAL OPERATOR ALONG VARIABLE CURVES VICTOR LIE In loving memory of Elias Stein, whose deep mathematical breadth and vision for unified theories and fundamental concepts have shaped the field of harmonic analysis for more than half a century. arXiv:1902.03807v2 [math.AP] 2 Oct 2020 Date: October 5, 2020. Key words and phrases. Wave-packet analysis, Hilbert transform and Maximal oper- ator along curves, Carleson-type operators in the presence of curvature, bilinear Hilbert transform and maximal operators along curves, Zygmund’s differentiation conjecture, Car- leson’s Theorem, shifted square functions, almost orthogonality. The author was supported by the National Science Foundation under Grant No. DMS- 1500958. The most recent revision of the paper was performed while the author was supported by the National Science Foundation under Grant No. DMS-1900801. 1 2 VICTOR LIE Abstract. In the present paper and its sequel [63], we address three rich historical themes in harmonic analysis that rely fundamentally on the concept of non-zero curvature. Namely, we focus on the boundedness properties of (I) the linear Hilbert transform and maximal operator along variable curves, (II) Carleson-type operators in the presence of curvature, and (III) the bilinear Hilbert transform and maximal operator along variable curves. Our Main Theorem states that, given a general variable curve γ(x,t) in the plane that is assumed only to be measurable in x and to satisfy suitable non-zero curvature (in t) and non-degeneracy conditions, all of the above itemized operators defined along the curve γ are Lp-bounded for 1 <p< ∞. -
“To Be a Good Mathematician, You Need Inner Voice” ”Огонёкъ” Met with Yakov Sinai, One of the World’S Most Renowned Mathematicians
“To be a good mathematician, you need inner voice” ”ОгонёкЪ” met with Yakov Sinai, one of the world’s most renowned mathematicians. As the new year begins, Russia intensifies the preparations for the International Congress of Mathematicians (ICM 2022), the main mathematical event of the near future. 1966 was the last time we welcomed the crème de la crème of mathematics in Moscow. “Огонёк” met with Yakov Sinai, one of the world’s top mathematicians who spoke at ICM more than once, and found out what he thinks about order and chaos in the modern world.1 Committed to science. Yakov Sinai's close-up. One of the most eminent mathematicians of our time, Yakov Sinai has spent most of his life studying order and chaos, a research endeavor at the junction of probability theory, dynamical systems theory, and mathematical physics. Born into a family of Moscow scientists on September 21, 1935, Yakov Sinai graduated from the department of Mechanics and Mathematics (‘Mekhmat’) of Moscow State University in 1957. Andrey Kolmogorov’s most famous student, Sinai contributed to a wealth of mathematical discoveries that bear his and his teacher’s names, such as Kolmogorov-Sinai entropy, Sinai’s billiards, Sinai’s random walk, and more. From 1998 to 2002, he chaired the Fields Committee which awards one of the world’s most prestigious medals every four years. Yakov Sinai is a winner of nearly all coveted mathematical distinctions: the Abel Prize (an equivalent of the Nobel Prize for mathematicians), the Kolmogorov Medal, the Moscow Mathematical Society Award, the Boltzmann Medal, the Dirac Medal, the Dannie Heineman Prize, the Wolf Prize, the Jürgen Moser Prize, the Henri Poincaré Prize, and more. -
Jacques Tits
Jacques Tits Jacques Tits was born in Uccle, in the southern outskirts of Brussels, Belgium, on August 12, 1930. He retired from his professorship at the Collège de France in Paris in 2000 and has since then been Professor Emeritus. His father a mathematician, Jacques’s mathematical talent showed early. At the age of three he was able to do all the operations of arithmetic. He skipped several years at school. His father died when Jacques was only 13 years old. Since the family had very little to live on, Jacques started tutoring students four years older to contribute to the household expenses. He passed the entrance exam at the Free University of Brussels at the age of 14, and received his doctorate in 1950 at 20 years of age. Tits was promoted to professor at the Free University of Brussels in 1962 and remained in this position for two years before accepting a professorship at the University of Bonn in 1964. In 1973 he moved to Paris, taking up a position as Chair of Group Theory in the Collège de France. Shortly after, in 1974, he became a naturalised French subject. Tits held this chair until he retired in 2000. Jacques Tits has been a member of the French Académie des Sciences since 1974. In 1992 he was elected a Foreign Member of the US National Academy of Sciences and the American Academy of Arts and Sciences. In addition he holds memberships of science academies in Holland and Belgium. He has been awarded honorary doctorates from the Universities of Utrecht, Ghent, Bonn and Leuven. -
CURRICULUM VITAE November 2007 Hugo J
CURRICULUM VITAE November 2007 Hugo J. Woerdeman Professor and Department Head Office address: Home address: Department of Mathematics 362 Merion Road Drexel University Merion, PA 19066 Philadelphia, PA 19104 Phone: (610) 664-2344 Phone: (215) 895-2668 Fax: (215) 895-1582 E-mail: [email protected] Academic employment: 2005– Department of Mathematics, Drexel University Professor and Department Head (January 2005 – Present) 1989–2004 Department of Mathematics, College of William and Mary, Williamsburg, VA. Margaret L. Hamilton Professor of Mathematics (August 2003 – December 2004) Professor (July 2001 – December 2004) Associate Professor (September 1995 – July 2001) Assistant Professor (August 1989 – August 1995; on leave: ’89/90) 2002-03 Department of Mathematics, K. U. Leuven, Belgium, Visiting Professor Post-doctorate: 1989– 1990 University of California San Diego, Advisor: J. W. Helton. Education: Ph. D. degree in mathematics from Vrije Universiteit, Amsterdam, 1989. Thesis: ”Matrix and Operator Extensions”. Advisor: M. A. Kaashoek. Co-advisor: I. Gohberg. Doctoraal (equivalent of M. Sc.), Vrije Universiteit, Amsterdam, The Netherlands, 1985. Thesis: ”Resultant Operators and the Bezout Equation for Analytic Matrix Functions”. Advisor: L. Lerer Current Research Interests: Modern Analysis: Operator Theory, Matrix Analysis, Optimization, Signal and Image Processing, Control Theory, Quantum Information. Editorship: Associate Editor of SIAM Journal of Matrix Analysis and Applications. Guest Editor for a Special Issue of Linear Algebra and