An Introduction to Percolation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Abstract We Survey the Published Work of Harry Kesten in Probability Theory, with Emphasis on His Contributions to Random Walks
Abstract We survey the published work of Harry Kesten in probability theory, with emphasis on his contributions to random walks, branching processes, perco- lation, and related topics. Keywords Probability, random walk, branching process, random matrix, diffusion limited aggregation, percolation. Mathematics Subject Classification (2010) 60-03, 60G50, 60J80, 60B20, 60K35, 82B20. Noname manuscript No. 2(will be inserted by the editor) Geoffrey R. Grimmett Harry Kesten's work in probability theory Geoffrey R. Grimmett In memory of Harry Kesten, inspiring colleague, valued friend April 8, 2020 1 Overview Harry Kesten was a prominent mathematician and personality in a golden period of probability theory from 1956 to 2018. At the time of Harry's move from the Netherlands to the USA in 1956, as a graduate student aged 24, much of the foundational infrastructure of probability was in place. The central characters of probability had long been identified (including random walk, Brownian motion, the branching process, and the Poisson process), and connections had been made and developed between `pure theory' and cognate areas ranging from physics to finance. In the half-century or so since 1956, a coordinated and refined theory has been developed, and probability has been recognised as a crossroads discipline in mathematical science. Few mathematicians have contributed as much during this period as Harry Kesten. Following a turbulent childhood (see [59]), Harry studied mathematics with David van Dantzig and Jan Hemelrijk in Amsterdam, where in 1955 he attended a lecture by Mark Kac entitled \Some probabilistic aspects of potential theory". This encounter appears to have had a decisive effect, in that Harry moved in 1956 to Cornell University to work with Kac. -
I. Overview of Activities, April, 2005-March, 2006 …
MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 …......……………………. 2 Innovations ………………………………………………………..... 2 Scientific Highlights …..…………………………………………… 4 MSRI Experiences ….……………………………………………… 6 II. Programs …………………………………………………………………….. 13 III. Workshops ……………………………………………………………………. 17 IV. Postdoctoral Fellows …………………………………………………………. 19 Papers by Postdoctoral Fellows …………………………………… 21 V. Mathematics Education and Awareness …...………………………………. 23 VI. Industrial Participation ...…………………………………………………… 26 VII. Future Programs …………………………………………………………….. 28 VIII. Collaborations ………………………………………………………………… 30 IX. Papers Reported by Members ………………………………………………. 35 X. Appendix - Final Reports ……………………………………………………. 45 Programs Workshops Summer Graduate Workshops MSRI Network Conferences MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 This annual report covers MSRI projects and activities that have been concluded since the submission of the last report in May, 2005. This includes the Spring, 2005 semester programs, the 2005 summer graduate workshops, the Fall, 2005 programs and the January and February workshops of Spring, 2006. This report does not contain fiscal or demographic data. Those data will be submitted in the Fall, 2006 final report covering the completed fiscal 2006 year, based on audited financial reports. This report begins with a discussion of MSRI innovations undertaken this year, followed by highlights -
Divergence of Shape Fluctuation for General Distributions in First-Passage Percolation
DIVERGENCE OF SHAPE FLUCTUATION FOR GENERAL DISTRIBUTIONS IN FIRST-PASSAGE PERCOLATION SHUTA NAKAJIMA d Abstract. We study the shape fluctuation in the first-passage percolation on Z . It is known that it diverges when the distribution obeys Bernoulli in [Yu Zhang. The divergence of fluctuations for shape in first passage percolation. Probab. Theory. Related. Fields. 136(2) 298–320, 2006]. In this paper, we extend the result to general distributions. 1. Introduction First-passage percolation is a random growth model, which was first introduced by Hammersley and Welsh in 1965. The model is defined as follows. The vertices are the d d elements of Z . Let us denote the set edges by E : d d E = ffv; wgj v; w 2 Z ; jv − wj1 = 1g; Pd where we set jv − wj1 = i=1 jvi − wij for v = (v1; ··· ; vd), w = (w1; ··· ; wd). Note that we consider non-oriented edges in this paper, i.e., fv; wg = fw; vg and we sometimes d regard fv; wg as a subset of Z with a slight abuse of notation. We assign a non-negative d random variable τe on each edge e 2 E , called the passage time of the edge e. The collec- tion τ = fτege2Ed is assumed to be independent and identically distributed with common distribution F . d A path γ is a finite sequence of vertices (x1; ··· ; xl) ⊂ Z such that for any i 2 d f1; ··· ; l − 1g, fxi; xi+1g 2 E . It is customary to regard a path as a subset of edges as follows: given an edge e 2 Ed, we write e 2 γ if there exists i 2 f1 ··· ; l − 1g such that e = fxi; xi+1g. -
The FKG Inequality for Partially Ordered Algebras
J Theor Probab (2008) 21: 449–458 DOI 10.1007/s10959-007-0117-7 The FKG Inequality for Partially Ordered Algebras Siddhartha Sahi Received: 20 December 2006 / Revised: 14 June 2007 / Published online: 24 August 2007 © Springer Science+Business Media, LLC 2007 Abstract The FKG inequality asserts that for a distributive lattice with log- supermodular probability measure, any two increasing functions are positively corre- lated. In this paper we extend this result to functions with values in partially ordered algebras, such as algebras of matrices and polynomials. Keywords FKG inequality · Distributive lattice · Ahlswede-Daykin inequality · Correlation inequality · Partially ordered algebras 1 Introduction Let 2S be the lattice of all subsets of a finite set S, partially ordered by set inclusion. A function f : 2S → R is said to be increasing if f(α)− f(β) is positive for all β ⊆ α. (Here and elsewhere by a positive number we mean one which is ≥0.) Given a probability measure μ on 2S we define the expectation and covariance of functions by Eμ(f ) := μ(α)f (α), α∈2S Cμ(f, g) := Eμ(fg) − Eμ(f )Eμ(g). The FKG inequality [8]assertsiff,g are increasing, and μ satisfies μ(α ∪ β)μ(α ∩ β) ≥ μ(α)μ(β) for all α, β ⊆ S. (1) then one has Cμ(f, g) ≥ 0. This research was supported by an NSF grant. S. Sahi () Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA e-mail: [email protected] 450 J Theor Probab (2008) 21: 449–458 A special case of this inequality was previously discovered by Harris [11] and used by him to establish lower bounds for the critical probability for percolation. -
Ericsson's Conjecture on the Rate of Escape Of
TRANSACTIONS of the AMERICAN MATHEMATICAL SOCIETY Volume 240, lune 1978 ERICSSON'SCONJECTURE ON THE RATEOF ESCAPEOF ¿-DIMENSIONALRANDOM WALK BY HARRYKESTEN Abstract. We prove a strengthened form of a conjecture of Erickson to the effect that any genuinely ¿-dimensional random walk S„, d > 3, goes to infinity at least as fast as a simple random walk or Brownian motion in dimension d. More precisely, if 5* is a simple random walk and B, a Brownian motion in dimension d, and \j/i [l,oo)-»(0,oo) a function for which /"'/^(OiO, then \¡/(n)~'\S*\-» oo w.p.l, or equivalent^, ifr(t)~'\Bt\ -»oo w.p.l, iff ffif/(tY~2t~d/2 < oo; if this is the case, then also $(ri)~'\S„\ -» oo w.p.l for any random walk Sn of dimension d. 1. Introduction. Let XX,X2,... be independent identically distributed ran- dom ¿-dimensional vectors and S,, = 2"= XX¡.Assume throughout that d > 3 and that the distribution function F of Xx satisfies supp(P) is not contained in any hyperplane. (1.1) The celebrated Chung-Fuchs recurrence criterion [1, Theorem 6] implies that1 |5n|->oo w.p.l irrespective of F. In [4] Erickson made the much stronger conjecture that there should even exist a uniform escape rate for S„, viz. that «""iSj -* oo w.p.l for all a < \ and all F satisfying (1.1). Erickson proved his conjecture in special cases and proved in all cases that «-a|5„| -» oo w.p.l for a < 1/2 — l/d. Our principal result is the following theorem which contains Erickson's conjecture and which makes precise the intuitive idea that a simple random walk S* (which corresponds to the distribution F* which puts mass (2d)~x at each of the points (0, 0,..., ± 1, 0,..., 0)) goes to infinity slower than any other random walk. -
An Interview with Martin Davis
Notices of the American Mathematical Society ISSN 0002-9920 ABCD springer.com New and Noteworthy from Springer Geometry Ramanujan‘s Lost Notebook An Introduction to Mathematical of the American Mathematical Society Selected Topics in Plane and Solid Part II Cryptography May 2008 Volume 55, Number 5 Geometry G. E. Andrews, Penn State University, University J. Hoffstein, J. Pipher, J. Silverman, Brown J. Aarts, Delft University of Technology, Park, PA, USA; B. C. Berndt, University of Illinois University, Providence, RI, USA Mediamatics, The Netherlands at Urbana, IL, USA This self-contained introduction to modern This is a book on Euclidean geometry that covers The “lost notebook” contains considerable cryptography emphasizes the mathematics the standard material in a completely new way, material on mock theta functions—undoubtedly behind the theory of public key cryptosystems while also introducing a number of new topics emanating from the last year of Ramanujan’s life. and digital signature schemes. The book focuses Interview with Martin Davis that would be suitable as a junior-senior level It should be emphasized that the material on on these key topics while developing the undergraduate textbook. The author does not mock theta functions is perhaps Ramanujan’s mathematical tools needed for the construction page 560 begin in the traditional manner with abstract deepest work more than half of the material in and security analysis of diverse cryptosystems. geometric axioms. Instead, he assumes the real the book is on q- series, including mock theta Only basic linear algebra is required of the numbers, and begins his treatment by functions; the remaining part deals with theta reader; techniques from algebra, number theory, introducing such modern concepts as a metric function identities, modular equations, and probability are introduced and developed as space, vector space notation, and groups, and incomplete elliptic integrals of the first kind and required. -
Negative Dependence Via the FKG Inequality
Negative Dependence via the FKG Inequality Devdatt Dubhashi Department of Computer Science and Engineering Chalmers University SE 412 96, G¨oteborg, SWEDEN [email protected] Abstract We show how the FKG Inequality can be used to prove negative dependence properties. 1 Introduction Pemantle[21] points out that there is a need for a theory of negatively dependent events anal- ogous to the existing natural and useful theory of positively dependent events. Informally speaking, random variables are said to be negatively dependent, if they have the following property: if any one subset of the variables is \high", then other (disjoint) subsets of the vari- ables are \low". He gives a survey of various notions of negative dependence, two of which are reviewed below, and points out several applications of consequences of one of these concepts: negative association. These examples include natural stochastic processes and structures such as the uniform random spanning tree[16], the simple exclusion process[15], the random clus- ter model and occupancy numbers of competing bins[6]. Such variables arise frequently in the analysis of algorithms where a stream of random bits influences either the input or the execution of the algorithm. Negative dependence may also be used to obtain information on the distribution of functionals such as the sum of the variables involved (or more generally, a non-decreasing function). Newman[19] shows that under negative dependence, one obtains a Central Limit Theorem (CLT) for stationary sequences of random variables. Dubhashi and Ranjan[6] show that under negative dependence conditions, one can employ classical tools of concentration of measure such as the Chernoff-Hoeffding (CH) bounds and related martingale inequalities (see also [20, 23, 4, 14]). -
Non-Interactive Correlation Distillation, Inhomogeneous Markov Chains, and the Reverse Bonami-Beckner Inequality
Non-interactive correlation distillation, inhomogeneous Markov chains, and the reverse Bonami-Beckner inequality Elchanan Mossel ∗ Ryan O’Donnell † Oded Regev ‡ Jeffrey E. Steif § Benny Sudakov ¶ Abstract In this paper we study non-interactive correlation distillation (NICD), a generalization of noise sen- sitivity previously considered in [5, 31, 39]. We extend the model to NICD on trees. In this model there is a fixed undirected tree with players at some of the nodes. One node is given a uniformly random string and this string is distributed throughout the network, with the edges of the tree acting as inde- pendent binary symmetric channels. The goal of the players is to agree on a shared random bit without communicating. Our new contributions include the following: In the case of a k-leaf star graph (the model considered in [31]), we resolve the open question • of whether the success probability must go to zero as k . We show that this is indeed the case and provide matching upper and lower bounds on the→ asymp ∞ totically optimal rate (a slowly- decaying polynomial). In the case of the k-vertex path graph, we show that it is always optimal for all players to use the • same 1-bit function. In the general case we show that all players should use monotone functions. We also show, some- • what surprisingly, that for certain trees it is better if not all players use the same function. Our techniques include the use of the reverse Bonami-Beckner inequality. Although the usual Bonami- Beckner has been frequently used before, its reverse counterpart seems very little-known; To demonstrate its strength, we use it to prove a new isoperimetric inequality for the discrete cube and a new result on the mixing of short random walks on the cube. -
Harry Kesten's Work in Probability Theory
Abstract We survey the published work of Harry Kesten in probability theory, with emphasis on his contributions to random walks, branching processes, perco- lation, and related topics. A complete bibliography is included of his publications. Keywords Probability, random walk, branching process, random matrix, diffusion limited aggregation, percolation. Mathematics Subject Classification (2010) 60-03, 60G50, 60J80, 60B20, 60K35, 82B20. arXiv:2004.03861v2 [math.PR] 13 Nov 2020 Noname manuscript No. 2(will be inserted by the editor) Geoffrey R. Grimmett Harry Kesten's work in probability theory Geoffrey R. Grimmett In memory of Harry Kesten, inspiring colleague, valued friend Submitted 20 April 2020, revised 26 October 2020 Contents 1 Overview . .2 2 Highlights of Harry Kesten's research . .4 3 Random walk . .8 4 Products of random matrices . 17 5 Self-avoiding walks . 17 6 Branching processes . 19 7 Percolation theory . 20 8 Further work . 31 Acknowledgements . 33 References . 34 Publications of Harry Kesten . 40 1 Overview Harry Kesten was a prominent mathematician and personality in a golden period of probability theory from 1956 to 2018. At the time of Harry's move from the Netherlands to the USA in 1956, as a graduate student aged 24, much of the foundational infrastructure of probability was in place. The central characters of probability had long been identified (including random walk, Brownian motion, the branching process, and the Poisson process), and connections had been made and developed between `pure theory' and cognate areas ranging from physics to finance. In the half-century or so since 1956, a coordinated and refined theory has been developed, and probability has been recognised as a crossroads discipline in mathematical science. -
Balls and Bins: a Study in Negative Dependence Basic Research in Computer Science
BRICS BRICS RS-96-25 Dubhashi & Ranjan: Balls and Bins: A Study inBasic Negative Dependence Research in Computer Science Balls and Bins: A Study in Negative Dependence Devdatt Dubhashi Desh Ranjan BRICS Report Series RS-96-25 ISSN 0909-0878 July 1996 Copyright c 1996, BRICS, Department of Computer Science University of Aarhus. All rights reserved. Reproduction of all or part of this work is permitted for educational or research use on condition that this copyright notice is included in any copy. See back inner page for a list of recent publications in the BRICS Report Series. Copies may be obtained by contacting: BRICS Department of Computer Science University of Aarhus Ny Munkegade, building 540 DK - 8000 Aarhus C Denmark Telephone: +45 8942 3360 Telefax: +45 8942 3255 Internet: [email protected] BRICS publications are in general accessible through WWW and anonymous FTP: http://www.brics.dk/ ftp ftp.brics.dk (cd pub/BRICS) Balls and Bins: A Study in Negative Dependence ∗ Devdatt Dubhashi BRICS†, Department of Computer Science, University of Aarhus, Ny Munkegade, DK-8000 Aarhus C, Denmark Email: [email protected] Desh Ranjan‡ Department of Computer Science New Mexico State University, Las Cruces New Mexico 88003, USA [email protected] August 28, 1996 1 Introduction This paper investigates the notion of negative dependence amongst random variables and attempts to advocate its use as a simple and unifying paradigm for the analysis of random structures and algorithms. The assumption of independence between random variables is often very con- venient for the several reasons. Firstly, it makes analyses and calculations much simpler. -
Jennifer Tour Chayes March 2016 CURRICULUM VITAE Office
Jennifer Tour Chayes March 2016 CURRICULUM VITAE Office Address: Microsoft Research New England 1 Memorial Drive Cambridge, MA 02142 e-mail: [email protected] Personal: Born September 20, 1956, New York, New York Education: 1979 B.A., Physics and Biology, Wesleyan University 1983 Ph.D., Mathematical Physics, Princeton University Positions: 1983{1985 Postdoctoral Fellow in Mathematical Physics, Departments of Mathematics and Physics, Harvard University 1985{1987 Postdoctoral Fellow, Laboratory of Atomic and Solid State Physics and Mathematical Sciences Institute, Cornell University 1987{1990 Associate Professor, Department of Mathematics, UCLA 1990{2001 Professor, Department of Mathematics, UCLA 1997{2005 Senior Researcher and Head, Theory Group, Microsoft Research 1997{2008 Affiliate Professor, Dept. of Physics, U. Washington 1999{2008 Affiliate Professor, Dept. of Mathematics, U. Washington 2005{2008 Principal Researcher and Research Area Manager for Mathematics, Theoretical Computer Science and Cryptography, Microsoft Research 2008{ Managing Director, Microsoft Research New England 2010{ Distinguished Scientist, Microsoft Corporation 2012{ Managing Director, Microsoft Research New York City Long-Term Visiting Positions: 1994-95, 1997 Member, Institute for Advanced Study, Princeton 1995, May{July ETH, Z¨urich 1996, Sept.{Dec. AT&T Research, New Jersey Awards and Honors: 1977 Johnston Prize in Physics, Wesleyan University 1979 Graham Prize in Natural Sciences & Mathematics, Wesleyan University 1979 Graduated 1st in Class, Summa Cum Laude, -
Annual Report 1998–99
Department of Mathematics Cornell University Annual Report 1998Ð99 The image on the cover is taken from a catalogue of several hundred “symmetric tensegrities” developed by Professor Robert Connelly and Allen Back, director of our Instructional Computer Lab. (The whole catalogue can be viewed at http://mathlab.cit.cornell.edu/visualization/tenseg/tenseg.html.) The 12 balls represent points in space placed at the midpoints of the edges of a cube. The thin dark edges represent “cables,” each connecting a pair of vertices. If two vertices are connected by a cable, then they are not permitted to get further apart. The thick lighter shaded diagonals represent “struts.” If two vertices are connected by a strut, then they are not permitted to get closer together. The examples in the catalogue — including the one represented on the cover — are constructed so that they are “super stable.” This implies that any pair of congurations of the vertices satisfying the cable and strut constraints are congruent. So if one builds this structure with sticks for the struts and string for the cables, then it will be rigid and hold its shape. The congurations in the catalogue are constructed so that they are “highly” symmetric. By this we mean that there is a congruence of space that permutes all the vertices, and any vertex can be superimposed onto any other by one of those congruences. In the case of the image at hand, all the congruences can be taken to be rotations. Department of Mathematics Annual Report 1998Ð99 Year in Review: Mathematics Instruction and Research Cornell University Þrst among private institutions in undergraduates who later earn Ph.D.s.