Review Article Review of the Herrings of Iran (Family Clupeidae)

Total Page:16

File Type:pdf, Size:1020Kb

Review Article Review of the Herrings of Iran (Family Clupeidae) Int. J. Aquat. Biol. (2017) 5(3): 128-192 ISSN: 2322-5270; P-ISSN: 2383-0956 Journal homepage: www.ij-aquaticbiology.com © 2017 Iranian Society of Ichthyology Review Article Review of the Herrings of Iran (Family Clupeidae) Brian W. Coad1 Canadian Museum of Nature, Ottawa, Ontario, K1P 6P4 Canada. Abstract: The systematics, morphology, distribution, biology, economic importance and Article history: Received 4 March 2017 conservation of the herrings (kilkas and shads) of Iran are described, the species are illustrated, and Accepted 5 May 2017 a bibliography on these fishes in Iran is provided. There are 9 native species in the genera Available online 25 June 2017 Clupeonella , Alosa and Tenualosa in the Caspian Sea and rivers of southern Iran. Keywords: Morphology, Biology, Alosa, Clupeonella, Tenualosa, Kilka, Shad. Introduction family in the Caspian Sea is seen in the number of The freshwater ichthyofauna of Iran comprises a subspecies which have been described, rather than in diverse set of families and species. These form genera. At the species level these are Caspian Sea important elements of the aquatic ecosystem and a endemics. A study by Pourrafei et al. (2016) based number of species are of commercial or other on the nuclear gene RAG1 did not support the significance. The literature on these fishes is widely monophyly of Clupeidae but, as an abstract, details scattered, both in time and place. Summaries of the are lacking. These fishes are dealt with as a single morphology and biology of these species were given family here. in a website (www.briancoad.com) which is updated Curiously, the species and subspecies in the here for one family, while the relevant section of that Caspian Sea are generally of larger size than their website is now closed down. Other families will also relatives in the Black Sea basin. These observations being addressed in a similar fashion. are attributed to the variable environment in the Caspian Sea over time, with repeated changes in Family Clupeidae salinity and temperature which the fish could not Herrings, shads, sardines, sprats, pilchards and avoid. Black, Mediterranean and Atlantic species menhadens are moderate-sized fishes, usually less lived under more stable conditions and could, in any than 25 cm long, found in warmer marine waters case, retreat from lowered temperatures for example. with some species anadromous or permanent In addition, the Caspian Sea clupeids lacked the freshwater residents. There are about 64 genera and competitors which entered the Black Sea from the about 218 species world-wide (Nelson et al., 2016), Mediterranean and Atlantic and some (Clupeonella with 8 species in the Caspian Sea and one commonly spp., Alosa caspia) could occupy the pelagic, found in Persian Gulf drainages. Some other, planktivore niche taken up by other species in the primarily marine, species are known to enter rivers Black Sea. There are no other pelagic fish but these in southern Iran (e.g. Nematalosa nasus (Bloch, herrings in the stable salinity areas of the Caspian 1795) and Sardinella sindensis (Day, 1878)) but are Sea. not dealt with here (Hashemi and Ansary, 2012; These fishes usually have modified scales on the Jouladeh-Roudbar et al., 2015). The diversity of this belly forming abdominal scutes with a saw-like * Corresponding author: Brian W. Coad E-mail address: [email protected] Int. J. Aquat. Biol. (2017) 5(3): 128-192 129 edge. Most species have two, long, rod-like was 117,300 tonnes in 1995 (Bartley and Rana, postcleithra. The lateral line is usually absent or on 1998). These fish are used in a high value form as only a few scales. Silvery cycloid scales are easily frozen whole consumer packs, as fish meal for detached and are found only on the body. The mouth poultry and in aquaculture, and in canning (Food and is usually terminal with jaws about equal in length. Agriculture Organization, Fisheries Department Teeth are small or absent but gill rakers are long and 1996). numerous for sieving plankton. Fins lack spines and Catches in the Caspian Sea for 1991 and 1992 there are no barbels. There is no adipose fin. The were respectively 13,817 and 21,527 tonnes of kilka pectoral and pelvic fins have a large axillary scale. (Clupeonella spp.) compared with 3,036 tonnes and The caudal fin is deeply forked. The eye is partly 2,692 tonnes of sturgeons and 18,571 and 16,873 covered by an adipose eyelid. The flesh is tonnes of bony fishes. The catch reached 51,000 particularly oily and is highly nutritional. tonnes in 1994 from none 10 years previously (Food Members of this family often form immense and Agriculture Organization, Fisheries Department, schools in surface waters of the ocean and the 1996). The kilka catch in Gilan Province in 1997 was Caspian Sea where they feed on plankton. Schooling 36,077 tonnes (total catch 39,154 tonnes for the is an anti-predator device making it difficult for a province) and in Mazandaran in 1998 was 31,583 predator to pick out an individual from a tight mass tonnes (total catch 48,027 tonnes). of fish. There is also a "sentry effect" where The Caspian Environment Programme (1998) awareness is increased by the presence of many fish. gives the following catches in tonnes for the Iranian The school is maintained by a balance between Caspian Sea for kilka (Clupeonella spp.) and for visual attraction and lateral line stimulus repulsion. Alosa pontica (= kessleri), respectively as 1,013 and Herring can feed on the smaller plankton, less than 2 (1973), 1,170 and 2 (1974), 1,286 and 4.5 (1975), 300-400 µm, at night by filter-feeding but during the 900 and 5.5 (1976), 1,261 and 2 (1977), 771 and 0 day can also use particulate feeding. In the latter, (1978), 836 and 0 (1979), 619 and 0.1 (1980), 1,341 they select larger plankton using the area temporalis, and 0.4 (1981), 798 and 10.4 (1982), 621 and 1.6 a specialised ventro-posterior region of the retina (1983), 1,517 and 20.3 (1984), 1,828 and 34.8 which improves vision as herring approach food (1985), 2,450 and 71.9 (1986), 4,389 and 13 (1987), items from slightly below. 4,700 and 16 (1988), 7,902 and 30 (1989), 8,814 and Herring are easily caught and are extremely 30 (1990), 13,817 and 35 (1991), 21,527 and 35 valuable to commercial fisheries. They are the most (1992), 28,730 and 893 (1993), 51,000 and 720 important fishes economically, both as food for man (1994), 41,000 and 490 (1995) and 57,000 and 330 and also for many other commercial fish species. (1996). Abdolmalaki and Psuty (2007) give figures Wars have been fought over fisheries for herrings. In over a wide range of years for Iranian coastal catches one year, members of the herring family made up in the southern Caspian Sea with selected 37.3% of all fish caught in the world. Some are used comparative species as presented in Table 1. for fish meal, as fertiliser and as an oil source. The Overfishing of clupeids in the Caspian Sea and 1994-1995 catch of clupeids in the Iranian Caspian stock collapses caused by the invasive ctenophore was 98.3 tonnes by beach seine and 671.5 tonnes by Mnemiopsis leidyi have also had deleterious effects gill nets, a decrease of 200 tonnes in total over the on the Caspian seal (Pusa caspica) which fed on previous year's catch (Iranian Fisheries Research and these fishes (Harkonen et al., 2012). Training Organization Newsletter 10: 4-5, 1995) (but A major source for the biology and systematics of see below where the catch is much higher – sources Caspian clupeids remains Svetovidov (1952), now tend to vary). The Caspian Sea shads accounted for inevitably dated but not yet updated. Whitehead about 35% of total inland production in Iran which (1985), Hoestlandt (1991), Coad (1997) and Coad et 130 Coad/ Herrings of Iran Table 1. Iranian coastal catches in the southern Caspian Sea with selected comparative species (Abdolmalaki and Psuty, 2007) 1927- 1937- 1947- 1957- 1967- 1977- 1987- 1997- Catch and frequency 1936 1946 1956 1966 1976 1986 1996 2003 Total recorded catch (t) 8,959 7,224 4,986 3,262 5,547 5,384 16,903 16,201 Sturgeon meat + caviar (%) 13.4 8.8 16.3 50.9 40.9 34.2 9.4 5.0 Rutilus kutum (%) 12.2 43.0 24.9 25.8 17.8 19.8 53.2 45.4 Rutilus rutilus (%) 20.7 25.5 18.8 0.7 0.8 2.3 5.8 6.1 Alosa spp. (%) 1.9 6.2 14.7 2.9 0.3 0.2 3.2 3.9 al. (2003) gave brief overviews of Iranian herrings. short; pectoral fins long……………………………6 There has been no recent, careful systematic and 5b. Body not deep and not compressed; head not taxonomic study of these species in the Caspian Sea large and deep, not wedge-shaped in anterior view; basin as a whole and extensive new material was not caudal peduncle not short; pectoral fins short…….8 available for examination here. 6a. Gill rakers on first arch 50 or more, thin and long, Key to Clupeidae: Caspian Sea species have much longer than gill filaments; teeth weakly numerous nominal subspecies and keys to these may developed…...…………………………Alosa caspia be found in Berg (1948-1949) and Svetovidov 6b. Gill rakers on first arch 48 or less, shorter, equal (1952). to or somewhat longer than gill filaments; teeth well 1a.
Recommended publications
  • Alosa Macedonica
    Alosa macedonica Region: 1 Taxonomic Authority: (Vinciguerra, 1921) Synonyms: Common Names: Macedonian shad English Order: Clupeiformes Family: Clupeidae Notes on taxonomy: General Information Biome Terrestrial Freshwater Marine Geographic Range of species: Habitat and Ecology Information: Its range is limited to Lake Volvi in northern Greece. It was previously A lake species, non migratory. Maximum age: 10 years. It is a present in Lake Koronia but in 1995 the lake dried up killing all the fish predominantly zooplantivorous fish, but the oldest fish are able to eat (Barbieri pers com) small fish. Conservation Measures: Threats: On paper it is protected by Greek laws on fishery management but in In the past the fishery was uncontrolled and overfishing was common. practice it receives little protection. It is listed in Annexes II and V of the Today the fishermen are disappearing and the fishing pressure is low. Habitats Directive of EU. Ongoing eutrophication of the lake and water extraction for irrigation might be threats in a near future. Species population information: A large A. macedonica population was established in the lake in recent years, principally due to overfishing of its predators (Zarfdjian et al. 1996). A further field survey in 1996 indicated the population to be increasing (Kottelat, pers comm.]. Native - Native - Presence Presence Extinct Reintroduced Introduced Vagrant Country Distribution Confirmed Possible Country:Greece Upper Level Habitat Preferences Score Lower Level Habitat Preferences Score 5.5 Wetlands (inland)
    [Show full text]
  • The Study on Fishing and Resource Management of Bony Fisheries Within Southern Caspian Sea
    The Study on fishing and resource management of bony fisheries within Southern Caspian Sea Item Type Report Authors Abdolmalaki, Shahram; Taghavi, S.A.; Motalebi, A.A.; Sharif Rohani, M.; Ghasemi, S.; Parafkandeh Haghighi, F.; Fazli, H.; Vahabnejad, A.; Ghaninejad, D.; Karimi, D.; Rahmati, M.; Daryanabard, R.; Bandani, G.A.; Talebzadeh, S.A.; Akhoondi, M. Publisher Iranian Fisheries Science Research Institute Download date 30/09/2021 16:11:40 Link to Item http://hdl.handle.net/1834/13405 وزارت ﺟﻬﺎد ﻛﺸﺎورزي ﺳﺎزﻣﺎن ﺗﺤﻘﻴﻘﺎت ، آﻣﻮزش و ﺗﺮوﻳﺞﻛ ﺸﺎورزي ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﻋﻠﻮم ﺷﻴﻼﺗﻲ ﻛﺸﻮر – ﭘﮋوﻫﺸﻜﺪه آﺑﺰي ﭘﺮوري آﺑﻬﺎي داﺧﻠﻲ ﻋﻨﻮان : : ﻣﻄﺎﻟﻌﺎت ﺻﻴﺪ و ﻣﺪﻳﺮﻳﺖ ذﺧﺎﻳﺮ ﻣﺎﻫﻴﺎن اﺳﺘﺨﻮاﻧﻲ در ﺣﻮﺿﻪ ﺟﻨﻮﺑﻲ درﻳﺎي ﺧﺰر ﻣﺠﺮي : : ﺷﻬﺮام ﻋﺒﺪاﻟﻤﻠﻜﻲ ﺷﻤﺎره ﺛﺒﺖ 43144 وزارت ﺟﻬﺎد ﻛﺸﺎورزي ﺳﺎزﻣﺎن ﺗﺤﻘﻴﻘﺎت، آﻣﻮزش و ﺗﺮوﻳﭻ ﻛﺸﺎورزي ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﻋﻠﻮم ﺷﻴﻼﺗﻲ ﻛﺸﻮر ﻋﻨﻮان ﭘﺮوژه : ﻣﻄﺎﻟﻌﺎت ﺻﻴﺪ و ﻣﺪﻳﺮﻳﺖ ذﺧﺎﻳﺮ ﻣﺎﻫﻴﺎن اﺳﺘﺨﻮاﻧﻲ در ﺣﻮﺿﻪ ﺟﻨﻮﺑﻲ درﻳﺎي ﺧﺰر ﺷﻤﺎره ﻣﺼﻮب ﭘﺮوژه : 89049 - 8903 -12 -12 -14 ﻧﺎ م و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻧﮕﺎرﻧﺪه / ﻧﮕﺎرﻧﺪﮔﺎن : ﺷﻬﺮام ﻋﺒﺪاﻟﻤﻠﻜﻲ ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻣﺠﺮي ﻣﺴﺌﻮل ( اﺧﺘﺼﺎص ﺑﻪ ﭘﺮوژه ﻫﺎ و ﻃﺮﺣﻬﺎي ﻣﻠﻲ و ﻣﺸﺘﺮك دارد ) : - - ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻣﺠﺮي / ﻣﺠﺮﻳﺎن : ﺷﻬﺮام ﻋﺒﺪاﻟﻤﻠﻜﻲ ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻫﻤﻜﺎر( ان ) : ﺳﻴﺪ اﻣﻴﻦ اﷲ ﺗﻘﻮي - ﻋﺒﺎﺳﻌﻠﻲ ﻣﻄﻠﺒﻲ – ﻣﺼﻄﻔﻲ ﺷﺮﻳﻒ روﺣﺎﻧﻲ – ﻣﺨﺘﺎر آﺧﻮﻧﺪي – ﺳﻴﺪ ﻋﺒﺎس ﻃﺎﻟﺐ زاده - ﺷﻬﺮام ﻗﺎﺳﻤﻲ - ﺣﺴﻦ ﻓﻀﻠﻲ - آرزو وﻫﺎب ﻧﮋاد – داود ﻏﻨﻲ ﻧﮋاد - داﻳﻮش ﻛﺮﻳﻤﻲ - ﻓﺮخ ﭘﺮاﻓﻜﻨﺪه - ﻣﺮاﺣﻢ رﺣﻤﺘﻲ - رﺿﺎ درﻳﺎﻧﺒﺮد - ﻏﻼﻣﻌﻠﻲ ﺑﻨﺪاﻧﻲ ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻣﺸﺎور( ان ) : - - ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻧﺎﻇﺮ( ان ) : ﻓﺮﻫﺎد ﻛﻴﻤﺮام ﻣﺤﻞ اﺟﺮا : اﺳﺘﺎن ﺗﻬﺮان ﺗﺎرﻳﺦ ﺷﺮوع : /1/5 89 ﻣﺪت اﺟﺮا : 2 ﺳﺎل و 3 ﻣﺎه ﻧﺎﺷﺮ : ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﻋﻠﻮم ﺷﻴﻼﺗﻲ ﻛﺸﻮر ﺗﺎرﻳﺦ اﻧﺘﺸﺎر : ﺳﺎل1393 ﺣﻖ ﭼﺎپ ﺑﺮاي ﻣﺆﻟﻒ ﻣﺤﻔﻮظ اﺳﺖ .
    [Show full text]
  • Review and Updated Checklist of Freshwater Fishes of Iran: Taxonomy, Distribution and Conservation Status
    Iran. J. Ichthyol. (March 2017), 4(Suppl. 1): 1–114 Received: October 18, 2016 © 2017 Iranian Society of Ichthyology Accepted: February 30, 2017 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.7508/iji.2017 http://www.ijichthyol.org Review and updated checklist of freshwater fishes of Iran: Taxonomy, distribution and conservation status Hamid Reza ESMAEILI1*, Hamidreza MEHRABAN1, Keivan ABBASI2, Yazdan KEIVANY3, Brian W. COAD4 1Ichthyology and Molecular Systematics Research Laboratory, Zoology Section, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran 2Inland Waters Aquaculture Research Center. Iranian Fisheries Sciences Research Institute. Agricultural Research, Education and Extension Organization, Bandar Anzali, Iran 3Department of Natural Resources (Fisheries Division), Isfahan University of Technology, Isfahan 84156-83111, Iran 4Canadian Museum of Nature, Ottawa, Ontario, K1P 6P4 Canada *Email: [email protected] Abstract: This checklist aims to reviews and summarize the results of the systematic and zoogeographical research on the Iranian inland ichthyofauna that has been carried out for more than 200 years. Since the work of J.J. Heckel (1846-1849), the number of valid species has increased significantly and the systematic status of many of the species has changed, and reorganization and updating of the published information has become essential. Here we take the opportunity to provide a new and updated checklist of freshwater fishes of Iran based on literature and taxon occurrence data obtained from natural history and new fish collections. This article lists 288 species in 107 genera, 28 families, 22 orders and 3 classes reported from different Iranian basins. However, presence of 23 reported species in Iranian waters needs confirmation by specimens.
    [Show full text]
  • Length-Weight Relationships of Two Clupeonella Species (Clupeidae) from Northwestern Turkey
    Turkish Journal of Bioscience and Collections Volume 4, Number 1, 2020 E-ISSN: 2601-4292 SHORT COMMUNICATION/KISA BİLDİRİ Length-Weight Relationships of two Clupeonella species (Clupeidae) from Northwestern Turkey Kemal Aydoğan1 , Müfit Özuluğ2 Abstract The length-weight relationships (LWRs) of Clupeonella cultriventris and Clupeonella muhlisi were analysed. Fish samples were collected gill nets (10 mm mesh sized) from the Büyükçekmece Reservoir and Küçükçekmece Lagoon April and June 2016. Samples from 1İstanbul University, Institute of Sciences, Durusu Reservoir and Uluabat Lake were obtained from Istanbul University Science İstanbul, Turkey Faculty Hydrobiology Museum. The values of parameter b in the LWR equations varied 2 İstanbul University, Faculty of Science, from 3.177 (Küçükçekmece Lake population) to 3.496 (Büyükçekmece Reservoir Department of Biology, İstanbul, Turkey population) for C. cultriventris and 3.258 (Uluabat Lake) for C. muhlisi. ORCID: K.A. 0000-0003-3381-8549; Keywords: Length-weight relationship, Clupeonella, Uluabat Lake, İstanbul M.Ö. 0000-0002-1437-3890 Received: 18.02.2020 Revision Requested: 26.02.2020 Last Revision Received: 05.03.2020 Accepted: 06.03.2020 Correspondence: Kemal Aydoğan [email protected] Citation: Aydoğan, K., & Özuluğ, M. (2020). Length-Weight relationships of two Clupeonella species (Clupeidae) from Northwestern Turkey. Turkish Journal of Bioscience and Collections, 4(1), 27–29. https://doi.org/10.26650/tjbc.20200012 Introduction Materials and Methods There are three species of genus Clupeonella in the Black In this study all materials belong to Uluabat Lake, Sea basin, Clupeonella abrau (Maliatsky, 1930), Büyükçekmece and Durusu Reservoirs and Clupeonella cultriventris (Nordmann, 1840) and Küçükçekmece Lagoon. Uluabat Lake is a large and very Clupeonaella muhlisi Neu, 1934 (Frose & Pauly, 2020).
    [Show full text]
  • How to Cite Complete Issue More Information About This Article
    Cuadernos de Investigación UNED ISSN: 1659-4266 ISSN: 1659-4266 Universidad Estatal a Distancia de Costa Rica Aliasghari, Mehrdad; AnvariFar, Hossein; Iqbal Mir, Javaid Effects of fishing and natural factors on the population of the fish Clupeonella grimmi (Clupeiformes: Clupeidae) in southern waters of the Caspian Sea Cuadernos de Investigación UNED, vol. 9, no. 1, 2017, pp. 185-191 Universidad Estatal a Distancia de Costa Rica Available in: https://www.redalyc.org/articulo.oa?id=515653587025 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative Effects of fishing and natural factors on the population of the fish Clupeonella grimmi (Clupeiformes: Clupeidae) in southern waters of the Caspian Sea Mehrdad Aliasghari1, Hossein AnvariFar2 & Javaid Iqbal Mir3* 1. Young Researchers and Elite Club, Qaemshahr branch, Islamic Azad University, Qaemshahr, Iran; [email protected] 2. Department of Fisheries, Faculty of Animal Science and Fisheries, University of Agriculture and Natural Resources, P.O. Box 578, Sari, Iran; [email protected] 3. Directorate of Coldwater Fisheries Research, (ICAR), Bhimtal-263136, Nainital, Uttarakhand, India, [email protected] * Corresponding author: [email protected] Received 18-VIII-2016 • Corrected 25-I-2017 • Accepted 01-II-2017 ABSTRACT: The present study aimed to investigate the changes of big- RESUMEN: Efecto de la pesca y los parámetros naturales en la po- eye kilka Clupeonella grimmi population caused by human and natural blación de Clupeonella grimmi (Clupeiformes: Clupeidae) en las factors in southern waters of the Caspian Sea.
    [Show full text]
  • Month's Dinamics of Waterbird Number at The
    Scientific Annals of the Danube Delta Institute, vol. 25, 2020 © Danube Delta National Institute for Research and Development, Tulcea Romania http://doi.org/10.7427/DDI.25.07 Biodiversity and nature conservation importance for Europe of deltas and wetlands in Azerbaijan 7. SULTANOV Elchin1,2,3 1Baku Engineering University, 120 Hassan Aliyev, Khirdalan city, Absheron district, AZ0101, Azerbaijan Republic; 2Institute of Zoology of National Academy of Sciences of Azerbaijan Republic, A. Abbaszade, passage 1128, block 504, Baku, AZ 1004, Azerbaijan Republic; 3Azerbaijan Ornithological Society, Kh. Mammadov str., block 4944a, build. 3, ap.148, AZ1123, Azerbaijan Republic; e-mail: [email protected] *Address of author responsible for correspondence: SULTANOV Elchin, Baku Engineering University, 120 Hassan Aliyev, Khirdalan city, Absheron district, AZ0101, Azerbaijan Republic; e-mail: [email protected] bstract: Azerbaijan Red Data Book includes 39 species of mammals (14 – in European Red List (ERL), 72 – birds (43 in ERL, from them 24 – waterbirds species), 14 – reptiles (3 in ERL), 6 – A amphibians (3 in ERL), 9 fishes and 75 – insects. Some waterbirds’ species according our data (many years counts) consist 38% (Oxyura leucephala) and even 52% (Netta rufina) from total Western Palearctic Population (Flyway). 16 potentials and 2 registered Ramsar sites. Up to 1,5 mln waterbirds had wintering in Azerbaijan in 1990s - 2000s and up to 1 mln in 2010s (third country in Europe). Only along Caspian Sea coast more 700 000 waterbirds have wintering and more 200 000 have nesting (from them 40 000 on islands and old oil platforms in Caspian Sea). Azerbaijan is 4th country of Europe according to number of birds’ species included in IUCN Red List and from these 36 species 22 are waterbirds including Dalmatian pelican, White-headed Duck, Lesser White-fronted Goose etc.
    [Show full text]
  • Buradan Da Dünya Karar Verme Yöntemi Yardımı Ile Konteyner Denizlerine Ulaşma Imkânı Sağlamaktadır Terminallerinin Performans Analizlerine (Esmer Ve Oral, 2012)
    Volume : 4 I ssue: ORDU 2 ORDU UNIVERSITY DEC UNIVERSITY EMBER Volume: 4 Issue: 2 DECEMBER 2018 201 8 TURKISH JOURNAL TURKISH OF JOURNAL OF MARITIME MARITIME AND MARINE AND S C I E N C E S MARINE SCIENCES www.jmms.odu.edu.tr e-ISSN: 2564-7016 TURKISH JOURNAL OF MARITIME AND MARINE SCIENCES The Turkish Journal of Maritime and Marine Sciences is published by Ordu University On Behalf of Fatsa Faculty of Marine Sciences Correspondence Address: Ordu University, Fatsa Faculty of Marine Sciences 52400 Fatsa/Ordu, TURKEY Web site: http://edergi.odu.edu.tr/ojs/index.php/JMMS/index http://dergipark.gov.tr/trjmms Tel: +90 (452) 423 50 53 Fax: +90 (452) 423 99 53 E-mail: [email protected] Sort of Publication: Periodically Publication Date and Place: 01 / 12 / 2018, ORDU, TURKEY Publishing Kind: Online OWNER Ordu University On Behalf of Fatsa Faculty of Marine Sciences Prof. Dr. Bahar TOKUR (Dean) EDITORS IN CHIEF Dr. Hasan TÜRE Assoc. Prof. Dr. Naciye ERDOĞAN SAĞLAM COVER DESIGN Dr. Adem YÜCEL FOREIGN LANGUAGE EDITORS Dr. Cem Tolga GÜRKANLI Teaching Asst. Şeyma VAROL ŞANLI LAYOUT EDITOR Research Asst. Enes Fatih PEHLİVAN SECTION EDITORS Fisheries and Aquaculture Prof. Dr. Bahar TOKUR Ordu University Prof. Dr. İsmet BALIK Ordu University Assoc. Prof. Dr. Mehmet AYDIN Ordu University Assoc. Prof. Dr. Yılmaz ÇİFTÇİ Ordu University Assoc. Prof. Dr. Evren TUNCA Ordu University Dr. Ali MİROĞLU Ordu University Maritime and Marine Technology Dr. Ercan YÜKSEKYILDIZ Ordu University Dr. Aziz MUSLU Ordu University Dr. Adil SÖZER Ordu University EDITORIAL BOARD (FISHERIES AND AQUACULTURE) Prof.
    [Show full text]
  • Status and Protection of Globally Threatened Species in the Caucasus
    STATUS AND PROTECTION OF GLOBALLY THREATENED SPECIES IN THE CAUCASUS CEPF Biodiversity Investments in the Caucasus Hotspot 2004-2009 Edited by Nugzar Zazanashvili and David Mallon Tbilisi 2009 The contents of this book do not necessarily reflect the views or policies of CEPF, WWF, or their sponsoring organizations. Neither the CEPF, WWF nor any other entities thereof, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process disclosed in this book. Citation: Zazanashvili, N. and Mallon, D. (Editors) 2009. Status and Protection of Globally Threatened Species in the Caucasus. Tbilisi: CEPF, WWF. Contour Ltd., 232 pp. ISBN 978-9941-0-2203-6 Design and printing Contour Ltd. 8, Kargareteli st., 0164 Tbilisi, Georgia December 2009 The Critical Ecosystem Partnership Fund (CEPF) is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. This book shows the effort of the Caucasus NGOs, experts, scientific institutions and governmental agencies for conserving globally threatened species in the Caucasus: CEPF investments in the region made it possible for the first time to carry out simultaneous assessments of species’ populations at national and regional scales, setting up strategies and developing action plans for their survival, as well as implementation of some urgent conservation measures. Contents Foreword 7 Acknowledgments 8 Introduction CEPF Investment in the Caucasus Hotspot A. W. Tordoff, N. Zazanashvili, M. Bitsadze, K. Manvelyan, E. Askerov, V. Krever, S. Kalem, B. Avcioglu, S. Galstyan and R. Mnatsekanov 9 The Caucasus Hotspot N.
    [Show full text]
  • Acartia Tonsa) Was Found, Although This May Not Be Solely Due to the Presence of ML (See Below)
    Caspian Environment Programme Transboundary Diagnostic Analysis Revisit 10 December, 2007 EXECUTIVE SUMMARY The CEP TDA Revisit was completed in December 2007 following an intensive desk study of materials collected from the second phase of the Caspian Environment Programme. The intention of the CEP TDA Revisit is to provide a follow on review of the priority transboundary issues, to assess the efforts conducted during the CEP Phase II implementation, and to extrapolate where additional efforts are warranted. The SAP and NAPs are reviewed followed by an analysis of the priority areas of concern as identified in the SAP. The issues addressed in the TDA are: decline in biodiversity; decline in environmental quality (pollution); decline in bioresources (fisheries); decline in coastal infrastructure and habitat; and impacts of the oil industry in the region. This is supplemented by an analysis of governance mechanisms, socio- economic conditions in the region, and stakeholder analysis and public involvement strategy. The methodology employed by the CEP TDA Revisit team involved an intensive desk study of all reports produced for the CEP PCU from 2003 – 2007. Regional and international specialists were called upon to review the materials and assess the status of the major transboundary issues through the scope of the CEP work and related efforts in the region. The revisit directly, through its researchers, brought additional information to the fore in order to expand the understanding of the transboundary issues and new parallel studies were commissioned on climate change impacts and land-based sources and where manged by the Programme Coordination Unit. SAP and NAP review assessed the implementation of the SAP and the NCAPs in the Caspian littoral countries.
    [Show full text]
  • Labidesthes Sicculus
    Version 2, 2015 United States Fish and Wildlife Service Lower Great Lakes Fish and Wildlife Conservation Office 1 Atherinidae Atherinidae Sand Smelt Distinguishing Features: — (Atherina boyeri) — Sand Smelt (Non-native) Old World Silversides Old World Silversides Old World (Atherina boyeri) Two widely separated dorsal fins Eye wider than Silver color snout length 39-49 lateral line scales 2 anal spines, 13-15.5 rays Rainbow Smelt (Non -Native) (Osmerus mordax) No dorsal spines Pale green dorsally Single dorsal with adipose fin Coloring: Silver Elongated, pointed snout No anal spines Size: Length: up to 145mm SL Pink/purple/blue iridescence on sides Distinguishing Features: Dorsal spines (total): 7-10 Brook Silverside (Native) 1 spine, 10-11 rays Dorsal soft rays (total): 8-16 (Labidesthes sicculus) 4 spines Anal spines: 2 Anal soft rays: 13-15.5 Eye diameter wider than snout length Habitat: Pelagic in lakes, slow or still waters Similar Species: Rainbow Smelt (Osmerus mordax), 75-80 lateral line scales Brook Silverside (Labidesthes sicculus) Elongated anal fin Images are not to scale 2 3 Centrarchidae Centrarchidae Redear Sunfish Distinguishing Features: (Lepomis microlophus) Redear Sunfish (Non-native) — — Sunfishes (Lepomis microlophus) Sunfishes Red on opercular flap No iridescent lines on cheek Long, pointed pectoral fins Bluegill (Native) Dark blotch at base (Lepomis macrochirus) of dorsal fin No red on opercular flap Coloring: Brownish-green to gray Blue-purple iridescence on cheek Bright red outer margin on opercular flap
    [Show full text]
  • Ethnobiology of Georgia
    SHOTA TUSTAVELI ZAAL KIKVIDZE NATIONAL SCIENCE FUNDATION ILIA STATE UNIVERSITY PRESS ETHNOBIOLOGY OF GEORGIA ISBN 978-9941-18-350-8 Tbilisi 2020 Ethnobiology of Georgia 2020 Zaal Kikvidze Preface My full-time dedication to ethnobiology started in 2012, since when it has never failed to fascinate me. Ethnobiology is a relatively young science with many blank areas still in its landscape, which is, perhaps, good motivation to write a synthetic text aimed at bridging the existing gaps. At this stage, however, an exhaustive representation of materials relevant to the ethnobiology of Georgia would be an insurmountable task for one author. My goal, rather, is to provide students and researchers with an introduction to my country’s ethnobiology. This book, therefore, is about the key traditions that have developed over a long history of interactions between humans and nature in Georgia, as documented by modern ethnobiologists. Acknowledgements: I am grateful to my colleagues – Rainer Bussmann, Narel Paniagua Zambrana, David Kikodze and Shalva Sikharulidze for the exciting and fruitful discussions about ethnobiology, and their encouragement for pushing forth this project. Rainer Bussmann read the early draft of this text and I am grateful for his valuable comments. Special thanks are due to Jana Ekhvaia, for her crucial contribution as project coordinator and I greatly appreciate the constant support from the staff and administration of Ilia State University. Finally, I am indebted to my fairy wordmother, Kate Hughes whose help was indispensable at the later stages of preparation of this manuscript. 2 Table of contents Preface.......................................................................................................................................................... 2 Chapter 1. A brief introduction to ethnobiology......................................................................................
    [Show full text]
  • A Systematic Review of Organochlorinated Pesticide Residues in Caspian Sea Fishes
    Health Scope. 2017 February; 6(1):e36279. doi: 10.17795/jhealthscope-36279. Published online 2016 August 28. Review Article A Systematic Review of Organochlorinated Pesticide Residues in Caspian Sea Fishes Mohammad Ali Zazouli,1 and Marjan Safarpour1,* 1Department of Environmental Health, Faculty of Health and Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, IR Iran *Corresponding author: Marjan Safarpour, Department of Environmental Health, Faculty of Health and Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, IR Iran. Tel: +98-2314481905, E-mail: [email protected] Received 2016 April 26; Revised 2016 July 05; Accepted 2016 August 14. Abstract Context: The worldwide production and application of pesticides, especially organochlorine in agriculture can have adverse envi- ronmental pollution and human health risks. Thus, this review evaluated and summarized the toxicological data on the existence and concentrations of organochlorine compounds in Caspian sea fish tissues. Evidence Acquisition: The data were collected from published articles in PubMed, ISI, SID, Google Scholar and so on. Results: The review showed that nine studies were recorded in databases about pesticide residues in Caspian sea fish tissues. These studies reported that there is limited evidence of organochlorinated compounds in Caspian sea fishes. All researchers detected organochlorine contaminants in examined fishes in the studied area, however DDTs was the predominant pesticides. Heptachlor, Polychlorinated Biphenyls (PCBs) and Linden were ranked next, respectively. Conclusions: In conclusion, toxicological studies showed that, although contamination level in Caspian sea fishes was relatively low, the present status might pose a risk about food chain contamination. Keywords: Pesticide Residues, Fish, Environmental Toxicology, Systematic Review, DDTs 1.
    [Show full text]