Purdue Agriculture Research WORKS

Total Page:16

File Type:pdf, Size:1020Kb

Purdue Agriculture Research WORKS PURDUE AGRICULTURE Purdue Agriculture Research WORKS Annual Statistical Report 2007-2008 Read the full report on the Web www.ag.purdue.edu/arp/stat_report_07-08 1 Purdue Agriculture Research WORKS 2007-2008 Annual Report I introduced the Purdue Agricultural Research Programs annual report last year by noting the issues related to the food versus fuel debates, food riots in many parts of the world, skyrocketing food and gasoline prices, etc. A year later, the conversation in our state and in our nation has changed significantly. Now it revolves around issues such as the economic meltdown, the credit crunch, decreasing commodity prices, healthy eating and healthy living, and environmental sustainability. These changes in the conversation reflect the public’s short attention span in the “globalized” environment. Luckily, our faculty and staff bring a level of stability in addressing the myriad issues that might be regarded as important today, but be totally out of the public’s eye tomorrow. While we can and do react to crises, we take a longer, proactive view on most issues. The latter, proactive view anticipates potential crises and addresses them with cutting-edge research and educational programs before they become the crisis du jour. Our faculty and staff, along with students, participate in a continuum of integrated, trans-disciplinary efforts from the fundamental to the integrative and adaptive to the disseminative. They address global societal challenges in energy, health, environmental sustainability, and safe, secure, economically sustainable and profitable food systems. Yet again, this past year has been an extremely successful one for Purdue Agricultural Research Programs—as this compendium of information on Purdue Agriculture’s organized research efforts and outcomes demonstrates. I hope that you find the information useful. Sonny Ramaswamy Director of Agricultural Research Programs Associate Dean of Agriculture PURDUE AGRICULTURE 2 Contents Features Rabi Mohtar: Model citizen of the world . 4-5 Phil Nelson: Purdue’s World Food Prize recipient the first in food science . 6 Media turn to Purdue for expertise . 6 Purdue pair shares in Nobel Peace Prize . 7 What’s black and gold and read all over? . 8-9 Beck Ag Center sprouts on Indiana prairie . 9 Biochem leader to focus on undergrads . 10 Poplars to clean up environmental waste . 10 Detecting cellular clues for cancer . 11 The buzz about biofuels. 11 Destruction and renewal . 12-13 Web site links producers to consumers and new market opportunities . 13 Gene guards grain-producing grasses . 14 Tough turf . 14 Financial Awards Summary Statistics Expenditures . 16 Expenditures Chart . 17 Federal Formula Projects Summary . 18 Federal Formula Projects . 19-28 Award Amounts Departments . 30 Non-Academic Units . 31 Federal Grants Federal Competitive Awards Summary . 33 Federal Competitive Awards . 34-38 Non-Federal Grants, Contracts, and Support Corporations, Foundations, and Individuals . 40-45 State and Other Agencies . 46-49 Faculty Activities Faculty Expertise . 51-59 Faculty Honors . 61-64 Journals . 66-69 Faculty Publications . .71-109 Sponsored Programs . .111-128 3 Features Rabi Mohtar: Model citizen of the world By Doug Main “Like my grandmother told me, ‘If somebody does something bad to you, put it behind you. If somebody has done something good, put it in front of you,’” says Rabi Mohtar. The saying, one of his grandmother Gharra’s favorites, speaks to an optimism and generosity of spirit that is practically palpable upon meeting Mohtar, who is this year’s recipient of Purdue’s Agricultural Research Award. The annual honor is bestowed by Purdue Agriculture to recognize a scientist who has done excellent research and made contributions toward agriculture, conservation of natural resources, and people’s quality of life. Mohtar is not only a “world leader in soil and water science,” according to USDA scientist Mark Nearing, but also is a highly Photo by Tom Campbell regarded teacher, an accomplished tango dancer, and a Rabi Mohtar’s research in water and soil science has earned him the prestigious Purdue Agriculture dedicated family man to wife, Samia, and son, Jad, born in 2006. Research Award for 2008. Mohtar receives a $1,500 honorarium and $10,000 to further his research. Born and raised in a modest household in Beirut, Lebanon, degree in agricultural engineering, President Kerr — a widely Mohtar knew he would have to work hard to achieve his dream of a respected Beirut-born American educator — was shot dead while good education. College wasn’t an option without financial help, so he walking to his campus office. The assassination shocked and saddened applied for and won a competitive scholarship that allowed him to the student body, especially Mohtar, who personally knew Kerr and his attend American University of Beirut. commitment to Lebanon, to teaching, and to working toward When Mohtar arrived, the university had no student government. His overcoming bias and ignorance. solution: He set up the first student council and was appointed the first One gets the sense, however, that Mohtar is unlikely to share such student representative to the university’s president, Malcolm Kerr. stories unless pressed. In listening to Mohtar recount past hardships, it Some problems were beyond his control, however, as Lebanon becomes clear that for him, the most dramatic aspect of such trying remained embroiled in a brutal civil war throughout his college career. experiences is not the danger he was in, or the fear that he must have “Ninety percent of the time we paid attention to our studies and did our felt; it is, rather, the positive lesson he has invariably taken away. own thing, but we were always aware of the war,” he says. His students attest that Mohtar has a natural gift for teaching. He It was hard not to be. Due to intermittent violence, Mohtar sometimes takes time to ensure that everybody understands the concepts and the spent the night in friends’ dormitories instead of going home. He importance of the material covered. learned to be prepared, though, and this inconvenience became routine. “He encourages us to take a deeper look at the subject and not be And yet, nothing — not his relentless focus on his studies and his satisfied with the quick and easy answer,” says graduate student Joe extracurricular activities or his dedication to friends and family — Mallory. Mohtar also keeps class interesting by discussing the could serve as preparation for the senseless violence nor prevent it real-world impact of subjects covered. “In learning about dam designs, from hitting disturbingly close to home. we spent an entire lecture discussing the levees around New Orleans One afternoon, Mohtar visited a friend’s dormitory, surprised — but not and what caused them to fail during Hurricane Katrina,” Mallory recalls. at first concerned — that no students were walking about. A man’s Mohtar has had a lot of practice teaching, having mentored 15 loud voice jarred him into reality, telling him to take cover because doctoral and master’s students and more than 100 undergraduates nearby buildings were being shelled. It took him a moment to locate since his arrival at Purdue in 1996. But long before donning gold and the speaker, a security guard crouched beneath a desk. Mohtar quickly black or winning his department’s teaching award a decade later, he retreated to a nearby basement and, as if on cue, the shelling resumed. had a few good teachers of his own. Though Mohtar survived this and other trials, not everybody had such On weekend visits to the family farm in the mountains outside Beirut, luck. In early 1984, a year before Mohtar completed his master’s Mohtar’s father, Hassan, and grandmother, Gharra, would lead him Continued on next page 4 Continued from previous page around to teach him about the olives, grapes, figs and other plants “As anyone who has written computer programs and models can they grew. It was there that he learned to love the outdoors and began attest, it takes almost as much time to make a model accurate as it to long to know more about the intricate patchwork that made up the does to make it usable to those unfamiliar with its development,” says farm: the plants and animals, the soil and water, the people and how departmental colleague and professor Don Jones. “At present, GRASIM they interacted with it all. To Mohtar’s family, the land was sacred; is used by researchers, farmers, advisers and county educators across besides providing them with food, income and shelter, it was their home. the U.S. and in several foreign countries.” After Mohtar completed his master’s degree in 1985 at Beirut, he Mohtar also developed a model that uses a unique paradigm to better returned to the countryside for his first job managing a large family understand the flow of water, nutrients and contaminants across farm in eastern Lebanon. In charge of irrigation, fertilization and different spatial scales, a model expected to significantly influence cultivation, Mohtar oversaw 50 to 250 workers and learned a lot more future scientific and agricultural policy, Jones says. about production agriculture. Mohtar’s various international efforts are geared toward the conserva- One difficulty was managing plants at different altitudes, as the farm tion of environmental and natural resources and toward promoting stretched from 2,000 meters (6,500 feet) to sea level. “You start with sustainable activities. He currently leads an effort to establish an walnuts and apples on the tops of the mountain, go down to peaches environmental research center in Qatar, has done extensive work with and pears, then down to olives, and all the way down to oranges and water conservation in Tunisia, and has led major water and natural bananas.” resources initiatives in India, Jordan, France, and the Palestinian But Mohtar still desired further education, so after a couple years he regions of Gaza and the West Bank.
Recommended publications
  • Ecosystems and Agro-Biodiversity Across Small and Large-Scale Maize Production Systems, Feeder Study to the “TEEB for Agriculture and Food”
    Ecosystems and agro-biodiversity across small and large-scale maize production systems, feeder study to the “TEEB for Agriculture and Food” i Acknowledgements We would like to acknowledge TEEB and the Global Alliance for the Future of Food on supporting this project. We would also like to acknowledge the technical expertise provided by CONABIO´s network of experts outside and inside the institution and the knowledge gained through many years of hard and very robust scientific work of the Mexican research community (and beyond) tightly linked to maize genetic diversity resources. Finally we would specially like to thank the small-scale maize men and women farmers who through time and space have given us the opportunity of benefiting from the biological, genetic and cultural resources they care for. Certification All activities by Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, acting in administrative matters through Nacional Financiera Fideicomiso Fondo para la Biodiversidad (“CONABIO/FFB”) were and are consistent under the Internal Revenue Code Sections 501 (c)(3) and 509(a)(1), (2) or (3). If any lobbying was conducted by CONABIO/FFB (whether or not discussed in this report), CONABIO/FFB complied with the applicable limits of Internal Revenue Code Sections 501(c)(3) and/or 501(h) and 4911. CONABIO/FFB warrants that it is in full compliance with its Grant Agreement with the New venture Fund, dated May 15, 2015, and that, if the grant was subject to any restrictions, all such restrictions were observed. How to cite: CONABIO. 2017. Ecosystems and agro-biodiversity across small and large-scale maize production systems, feeder study to the “TEEB for Agriculture and Food”.
    [Show full text]
  • Life History of Immature Maize Weevils (Coleoptera: Curculionidae) on Corn Stored at Constant Temperatures and Relative Humiditi
    Popur,erroN Ecor,ocv Life History of Immature Maize Weevils (Coleoptera: Curculionidae)on Corn Storedat Constant Temperaturesand Relative Humidities in the Laboratorv JAMESE. THRONE Sto re d- P ro a" " t I" "L::1, "8llTr%?torv'u s D A-A Rs' ffi fi:Tfr ff#l:t.t ABSTRACTLire historr";itiff*""ii?1",1,"#'*t"tilulitrl f"tit)r", zeamaisMotschursky, was studied at 10-40'C and 4T76Vo RH. The optimal quantity of corn for minimizing density effects and the optimal observation frequency for minimizing disturbance effects were determined at 30'C and 75Vo RH. The quantity of corn (32-256 g) provided to five females ovipositing for 24 h did not affect duration of development, but the number of progeny produced increased asymptotically as the quantity of corn provided increased. Frequency of observation (from l- to l4-d intervals) did not affect duration of development or number of progeny produced. Using moisture contents measured in the life history study, an equation was developed for predicting equilibrium moisture content of corn from temperature and relative humidity. Duration of immature development did not vary with sex, but did vary with test. This suggests that insect strain or chemical composition of the corn must be included as factors in a model predicting effects of environment on duration of immature development. Survival from egg to adult emergence was greatest at 25'C. Sex ratio of emerging adults did not differ from l:1. The number of multiply-infested kernels was low at all environmental conditions, and survival from egg to adult emergence in these kernels averaged L8Vo.
    [Show full text]
  • Effects of Essential Oils from 24 Plant Species on Sitophilus Zeamais Motsch (Coleoptera, Curculionidae)
    insects Article Effects of Essential Oils from 24 Plant Species on Sitophilus zeamais Motsch (Coleoptera, Curculionidae) William R. Patiño-Bayona 1, Leidy J. Nagles Galeano 1 , Jenifer J. Bustos Cortes 1 , Wilman A. Delgado Ávila 1, Eddy Herrera Daza 2, Luis E. Cuca Suárez 1, Juliet A. Prieto-Rodríguez 3 and Oscar J. Patiño-Ladino 1,* 1 Department of Chemistry, Faculty of Sciences, Universidad Nacional de Colombia-Sede Bogotá, Bogotá 111321, Colombia; [email protected] (W.R.P.-B.); [email protected] (L.J.N.G.); [email protected] (J.J.B.C.); [email protected] (W.A.D.Á.); [email protected] (L.E.C.S.) 2 Department of Mathematics, Faculty of Engineering, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] 3 Department of Chemistry, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] * Correspondence: [email protected] Simple Summary: The maize weevil (Sitophilus zeamais Motsch) is a major pest in stored grain, responsible for significant economic losses and having a negative impact on food security. Due to the harmful effects of traditional chemical controls, it has become necessary to find new insecticides that are both effective and safe. In this sense, plant-derived products such as essential oils (EOs) appear to be appropriate alternatives. Therefore, laboratory assays were carried out to determine the Citation: Patiño-Bayona, W.R.; chemical compositions, as well as the bioactivities, of various EOs extracted from aromatic plants on Nagles Galeano, L.J.; Bustos Cortes, the maize weevil. The results showed that the tested EOs were toxic by contact and/or fumigance, J.J.; Delgado Ávila, W.A.; Herrera and many of them had a strong repellent effect.
    [Show full text]
  • Screening of Promising Maize Genotypes Against Maize Weevil (Sitophilus Zeamais Motschulky) in Storage Condition
    Journal of Maize Research and Development (2017) 3 (1):108-119 ISSN: 2467-9291 (Print), 2467-9305 (Online) DOI: http://dx.doi.org/10.3126/jmrd.v3i1.18927 Screening of promising maize genotypes against maize weevil (Sitophilus zeamais Motschulky) in storage condition 1Ram B Paneru and 2Resham B Thapa 1Entomology Division, Khumaltar, Lalitpur 2Agriculture and Forestry University, Rampur, Chitwan, Nepal *Corresponding author email: [email protected] ORCID ID:https://orcid.org/0000-0003-0684-6739 Received: August 27, 2017; Revised: September 19, 2017; Accepted: December 25, 2017 © Copyright 2017 Paneru and Thapa This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. ABSTRACT The maize weevil (Sitophilus zeamais Motschulsky) is a serious pest of economic importance in stored grains. It causes major damage to stored maize grain thereby reducing its weight, quality and germination. An experiment was conducted in randomized complete block design (RCBD) with 3 replications to screen 32 maize genotypes against maize weevil in no-choice and free-choice conditions at Entomology Division, Khumaltar, Lalitpur (Room temperature: Maximum 24-32°C and Minimum 18-27°C). The findings showed that the maize genotypes had different response to maize weevil damage ranging from susceptible to tolerance. The genotypes Manakamana-3, Lumle White POP Corn and Ganesh-2 showed their tolerance to S. zeamais as evidenced by lower number of weevil emerged/attracted, lower amount of grain debris release and lower proportion of bored grains, while the genotype ZM-627 was the most susceptible to weevil damage in both tests. The other remaining genotypes were intermediate types.
    [Show full text]
  • STORGARD Insect Identification Poster
    ® IPM PARTNER® INSECT IDENTIFICATION GUIDE ® Name Photo Size Color Typical Favorite Attracted Geographic Penetrate Product Recommendation (mm) Life Cycle Food to Light Distribution Packages MOTHS Almond Moth 14-20 Gray 25-30 Dried fruit Yes General Yes, Cadra cautella days and grain larvae only STORGARD® II STORGARD® III CIDETRAK® IMM Also available in QUICK-CHANGE™ Also available in QUICK-CHANGE™ (Mating Disruptant) Angoumois 28-35 Yes, Grain Moth 13-17 Buff days Whole grain Yes General larvae only Sitotroga cerealella STORGARD® II STORGARD® III Casemaking 30-60 Wool, natural Yes, Clothes Moth 11 Brownish days fibers and hair Yes General larvae only Tinea pellionella STORGARD® II STORGARD® III European Grain Moth 13-17 White & 90-300 Grain Yes Northern Yes, Nemapogon granellus brown days larvae only STORGARD® II STORGARD® III Copper Indianmeal Moth Broken or 8-10 red & silver 28-35 processed Yes General Yes, Plodia interpunctella days larvae only gray grain STORGARD® II STORGARD® III CIDETRAK® IMM Also available in QUICK-CHANGE™ Also available in QUICK-CHANGE™ (Mating Disruptant) Mediterranean Gray & Flour and Flour Moth 10-15 30-180 processed Yes General Yes, black days larvae only Ephestia kuehniella cereal grain STORGARD® II STORGARD® III CIDETRAK® IMM Also available in QUICK-CHANGE™ Also available in QUICK-CHANGE™ (Mating Disruptant) Raisin Moth Drying and 12-20 Gray 32 days Yes General Yes, dried fruit larvae only Cadra figulilella STORGARD® II STORGARD® III CIDETRAK® IMM Also available in QUICK-CHANGE™ Also available in QUICK-CHANGE™
    [Show full text]
  • Rice Weevil,Sitophilus Oryzae
    ENY261 Rice Weevil, Sitophilus oryzae (Coleoptera: Curculionidae)1 P. G. Koehler2 Appearance Habits The rice weevil (Figure 1) is small, 1/10 inch (2 to 3 mm) and The rice weevil is one of the most serious stored grain pests stout in appearance. It is very similar in appearance to the worldwide. This pest of whole grain originated in India granary weevil. However, the rice weevil is reddish-brown and has been spread worldwide by commerce. It now has a to black in color with four light yellow or reddish spots on cosmopolitan distribution. It is a serious pest in the south- the corners of the elytra (the hard protective forewings). ern United States. The rice weevil is replaced by the granary The snout is long (1 mm), almost 1/3 of the total length. weevil north of North Carolina and Tennessee. Both the The head with snout is as long as the prothorax or the adults and larvae feed on whole grains. They attack wheat, elytra. The prothorax (the body region behind the head) corn, oats, rye, barley, sorghum, buckwheat, dried beans, is strongly pitted and the elytra have rows of pits within cashew nuts, wild bird seed, and cereal products, especially longitudinal grooves. The larva is legless and stays inside macaroni. The adult rice weevil can fly and is attracted to the hollowed grain kernel. It is fat with a cream colored lights. When disturbed, adults pull in their legs, fall to the body and dark head capsule. ground, and feign death. The larval rice weevil must com- plete its development inside a seed kernel or a man-made equivalent, like macaroni products.
    [Show full text]
  • Strategies to Control Weevils in Grain Storage Facilities
    Strategies to Control Weevils in Grain Storage Facilities Weevils in grain storage facilities can be difficult pests to control. There are many species, such as the rice weevil (Sitophilus oryzae), maize weevil (Sitophilus zeamais), and the granary weevil (Sitophilus granarius). These weevils are easily identified from other grain insects by their long proboscis or snout. Their mouthparts are at the end of the snout. The female chews a hole in a kernel of grain and deposits an egg inside the kernel. She then seals the egg inside the grain where the juvenile will go through its entire life cycle and emerge as an adult. Go to http://ento.psu.edu/ extension/factsheets/weevils-on-stored-grain* for details on the insect’s biology. Because of the way weevils transform from egg to adult and isolate themselves inside the grain kernel, they can be difficult to control. However, an effective way to control them is to kill the adults on contact with a tank mix of Centynal™ EC Insecticide and PBO-8® Synergist or Diacon® IGR PLUS and PBO-8® Synergist. As weevils proliferate across the U.S., there are unique situations where the control of the weevil requires a specific approach for effective control. • SITUATION #1 - the insects are not common but have been introduced into a few grain handling THE RICE WEEVIL facilities from harborage in the surrounding area and are spreading as new grain enters storage. • SITUATION #2 - the insect is common, but is not dispersed widely in the environment. • SITUATION #3 - weevils infest the field, the grain facilities, and the grounds surrounding THE GRANARY WEEVIL grain storage areas.
    [Show full text]
  • Schinus Molle L.) to CONTROL RICE WEEVIL (Sitophilus Oryzae L.
    154RESEARCH CHILEAN J. AGRIC. RES. - VOL. 69 - Nº 2 - 2009 BIOLOGICAL ACTIVITY OF ESSENTIAL OILS FROM LEAVES AND FRUITS OF PEPPER TREE (Schinus molle L.) TO CONTROL RICE WEEVIL (Sitophilus oryzae L.) 1 1 1* Verónica Benzi , Natalia Stefanazzi , and Adriana A. Ferrero ABSTRACT Rice weevil (Sitophilus oryzae L.) is a primary insect pest of stored grain. The development of resistance resulted in the application of synthetic insecticides. In recent years many plant essential oils have provided potential alternatives to currently used insect control agents. The Brazilian pepper tree (Schinus molle L. var. areira (L.) DC.�����������������) (Anacardiaceae) has different biological properties such as insecticidal activity. In this study, repellent, fumigant activity, nutritional indices, and feeding deterrent action were evaluated on S. oryzae adults. Filter paper impregnation was used to test fumigant toxicity, whereas treated whole wheat was used to evaluate repellent activity and a flour disk bioassay was done to evaluate feeding deterrent action and nutritional index alteration. Leaf essential oils showed repellent effects at both concentrations (0.04 and 0.4% w/w), while fruit essential oils lacked repellent activity. Both plant oils altered nutritional indices. Fruit essential oils had a strong feeding deterrent action (62%) while leaves had a slight effect (40.6%). With respect to fumigant activity, neither of the essential oils was found to be toxic. Key words: Schinus molle, Sitophilus oryzae, repellency, fumigant toxicity, nutritional indices, feeding deterrence. INTRODUCTION Resistance and toxicity problems of the synthetic insecticides have resulted in the necessity of finding Harvest grains are basic human food products (Padín more effective and healthier alternatives.
    [Show full text]
  • Sitophilus Oryzae): Distribution, Life Cycle, Nature of Damage and Control Measures
    Pest of rice (Sitophilus oryzae): Distribution, Life cycle, Nature of damage and Control measures Distribution Sitophilus Oryzae is also called as Rice weevils. These insects are cosmopolitan in distribution and have originated in Far East region. They can exist anywhere where physical conditions for growth are favourable and the grain is left undisturbed for some time. Habit and Habitat Sitophilus Oryzae is usually found in grain storages and processing plants. They infest wheat, oats, rye, barley, rice, and corn. Sometimes, they are also found infesting beans, sunflower seeds and dried corn. These insects do not bite nor damage wood. Identification Weevils have chewing type of mouthparts. The most significant identification feature of weevils is their snout, which is pretty long. The adult rice weevil is reddish-brown in color. It has irregularly shaped pits on its thorax, also four light spots are found on wing covers. Rice weevils can fly. During larval stage they are legless, white to creamy white in color, with a small head. Weevils in the pupa stage have snouts just like the adults. Life Cycle of Rice weevil A single generation can be completed in 28 days. Rice weevils pretend death by drawing their legs close to body and remaining silent even when disturbed. Egg: Rice weevil lays its eggs in crevices of kernels or dust. Female rice weevil lays about 4 eggs/day. During its life span of 5 months, it lays a total of about 250-400 eggs. The eggs hatch in 3 days. Larva: They feed inside the grain kernel for 18 days.
    [Show full text]
  • Replacements, Co-Speciation and Promiscuity of Bacteriocyte Symbionts in Weevils
    The ISME Journal (2013) 7, 1378–1390 & 2013 International Society for Microbial Ecology All rights reserved 1751-7362/13 www.nature.com/ismej ORIGINAL ARTICLE Diversification of endosymbiosis: replacements, co-speciation and promiscuity of bacteriocyte symbionts in weevils Hirokazu Toju1,2,3, Akifumi S Tanabe2,4, Yutaka Notsu5, Teiji Sota6 and Takema Fukatsu1 1Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; 2Graduate School of Global Environmental Studies, Kyoto University, Sakyo, Kyoto, Japan; 3Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto, Japan; 4Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan; 5Kanagawa Prefectural Zama Special Education School, Zama, Japan and 6Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan The processes and mechanisms underlying the diversification of host–microbe endosymbiotic associations are of evolutionary interest. Here we investigated the bacteriocyte-associated primary symbionts of weevils wherein the ancient symbiont Nardonella has experienced two independent replacement events: once by Curculioniphilus symbiont in the lineage of Curculio and allied weevils of the tribe Curculionini, and once by Sodalis-allied symbiont in the lineage of grain weevils of the genus Sitophilus. The Curculioniphilus symbiont was detected from 27 of 36 Curculionini species examined, the symbiont phylogeny was congruent with the host weevil phylogeny, and the symbiont gene sequences exhibited AT-biased nucleotide compositions and accelerated molecular evolution. These results suggest that the Curculioniphilus symbiont was acquired by an ancestor of the tribe Curculionini, replaced the original symbiont Nardonella, and has co-speciated with the host weevils over evolutionary time, but has been occasionally lost in several host lineages.
    [Show full text]
  • Entomologiske Meddelelser
    Entomologiske Meddelelser Indeks for Bind 1-67 (1887-1999) Entomologisk Forening København 2000 FORORD Tidsskriftet "Entomologiske Meddelelser" - Entomologisk Forenings medlemsblad - blev grundlagt i 1887, og er således det ældste danske entomologiske tidsskrift, som stadig udgives. Det har siden sin start haft til formål at udbrede kendskabet til entomologien i almindelighed og dansk entomologi i særdeleshed. De første 5 bind udkom i årene 1887-1896 og omhandlede primært artikler af særlig relevans for dansk entomologi. Herefter skiftede det format, såvel rent fysisk som (mere gradvis) indholdsmæssigt, og fik efterhånden et mere internationalt tilsnit med en vis andel af bl.a. tysk- og engelsksprogede artikler. I forbindelse med overgangen til det nye format, benævntes tidsskriftet nu som "Entomologiske Meddelelser, 2. Række" og nummereringen af de enkelte bind startede forfra. Efter at have praktiseret denne nummerering i nogle år, droppedes dog betegnelsen "2. Række", og man vendte tilbage til at nummerere bindene fortløbende fra det først udkomne bind. Efter at tidsskriftet op igennem 1900-tallet havde fået et stigende indhold af artikler med internationalt sigte, blev det fra bind 39 (1971) besluttet at koncentrere indholdet til primært dansksprogede artikler af særlig relevans for den danske fauna. Samtidig overgik de enkelte bind til at udgøre årgange i stedet for, som tidligere, at være flerårige. "Entomologiske Meddelelser" har siden sin start bragt hen mod 1600 originale, videnskabelige artikler eller mindre meddelelser, næsten 500 boganmeldelser, over 100 biografier eller nekrologer over primært danske entomologer, samt enkelte meddelelser af anden slags. For at lette overskueligheden over den meget betydelige mængde af information disse publikationer rummer, har Entomologisk Forenings bestyrelse fundet tiden moden til at sammenstille et indeks over indholdet af samtlige udkomne numre af "Entomologiske Meddelser" til og med bind 67 (årgang 1999).
    [Show full text]
  • The Genome of the Cereal Pest Sitophilus Oryzae: A
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.03.408021; this version posted May 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. The genome of the cereal pest Sitophilus oryzae: a transposable element haven PARISOT Nicolas1,$, VARGAS-CHAVEZ Carlos1,2,†,$, GOUBERT Clément3,4,‡,$, BAA- PUYOULET Patrice1, BALMAND Séverine1, BERANGER Louis1, BLANC Caroline1, BONNAMOUR Aymeric1, BOULESTEIX Matthieu3, BURLET Nelly3, CALEVRO Federica1, CALLAERTS Patrick5, CHANCY Théo1, CHARLES Hubert1,6, COLELLA Stefano1,§, DA SILVA BARBOSA André7, DELL’AGLIO Elisa1, DI GENOVA Alex3,6,8, FEBVAY Gérard1, GABALDON Toni9,10,11, GALVÃO FERRARINI Mariana1, GERBER Alexandra12, GILLET Benjamin13, HUBLEY Robert14, HUGHES Sandrine13, JACQUIN-JOLY Emmanuelle7, MAIRE Justin1,, MARCET-HOUBEN Marina9, MASSON Florent1,£, MESLIN Camille7, MONTAGNE Nicolas7, MOYA Andrés2,15, RIBEIRO DE VASCONCELOS Ana Tereza12, RICHARD Gautier16, ROSEN Jeb14, SAGOT Marie-France3,6, SMIT Arian F.A.14, STORER Jessica M.14, VINCENT-MONEGAT Carole1, VALLIER Agnès1, VIGNERON Aurélien1,#, ZAIDMAN-REMY Anna1, ZAMOUM Waël1, VIEIRA Cristina3,6,*, REBOLLO Rita1,*, LATORRE Amparo2,15,* and HEDDI Abdelaziz1,* 1 Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France. 2 Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain. 3 Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France. 4 Department of Molecular Biology and Genetics, 526 Campus Rd, Cornell University, Ithaca, New York 14853, USA. 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.03.408021; this version posted May 11, 2021.
    [Show full text]