Baroclinic and Barotropic Instabilities in Planetary Atmospheres: Energetics, Equilibration and Adjustment

Total Page:16

File Type:pdf, Size:1020Kb

Baroclinic and Barotropic Instabilities in Planetary Atmospheres: Energetics, Equilibration and Adjustment Nonlin. Processes Geophys., 27, 147–173, 2020 https://doi.org/10.5194/npg-27-147-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Baroclinic and barotropic instabilities in planetary atmospheres: energetics, equilibration and adjustment Peter Read1,z, Daniel Kennedy2,1, Neil Lewis1, Hélène Scolan3,1, Fachreddin Tabataba-Vakili4,1, Yixiong Wang1, Susie Wright1, and Roland Young5,1 1Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK 2Max-Planck-Institut für Plasmaphysik, Greifswald, Germany 3Laboratoire de Mécanique des Fluides et d’Acoustique, Université de Lyon, France 4Jet Propulsion Laboratory, Pasadena, California, USA 5Department of Physics & National Space Science and Technology Center, United Arab Emirates University, Al Ain, United Arab Emirates zInvited contribution by Peter Read, recipient of the EGU Lewis Fry Richardson Medal 2016. Correspondence: Peter Read ([email protected]) Received: 3 October 2019 – Discussion started: 15 October 2019 Revised: 14 February 2020 – Accepted: 26 February 2020 – Published: 3 April 2020 Abstract. Baroclinic and barotropic instabilities are well stabilities may efficiently mix potential vorticity to result in known as the mechanisms responsible for the production of a flow configuration that is found to approach a marginally the dominant energy-containing eddies in the atmospheres of unstable state with respect to Arnol’d’s second stability theo- Earth and several other planets, as well as Earth’s oceans. rem. We discuss the implications of these findings and iden- Here we consider insights provided by both linear and non- tify some outstanding open questions. linear instability theories into the conditions under which such instabilities may occur, with reference to forced and dissipative flows obtainable in the laboratory, in simplified numerical atmospheric circulation models and in the plan- 1 Introduction ets of our solar system. The equilibration of such instabili- ties is also of great importance in understanding the structure One of the great achievements of the past 100 years in fluid and energetics of the observable circulation of atmospheres dynamics has been the development of a theory of dynam- and oceans. Various ideas have been proposed concerning the ical instability, both linear and nonlinear. In a geophysical ways in which baroclinic and barotropic instabilities grow to context, this has led to a quantitative understanding of a va- a large amplitude and saturate whilst also modifying their riety of phenomena, including the processes that lead to the background flow and environment. This remains an area that development of large-scale energetic eddies in rotating, strat- continues to challenge theoreticians and observers, though ified atmospheres and oceans. These instabilities, known as some progress has been made. The notion that such instabili- baroclinic and barotropic instabilities, are well known as the ties may act under some conditions to adjust the background mechanisms responsible for the production of the dominant flow towards a critical state is explored here in the context energy-containing eddies in the atmospheres of Earth and of both laboratory systems and planetary atmospheres. Ev- several other planets, as well as Earth’s oceans. In general idence for such adjustment processes is found relating to they occur in flows for which background rotation plays an baroclinic instabilities under a range of conditions where the important role, while baroclinic instabilities also require stat- efficiency of eddy and zonal-mean heat transport may mu- ically stable stratification. They are typically distinguished tually compensate in maintaining a nearly invariant thermal energetically by the respective dominance of exchanges of structure in the zonal mean. In other systems, barotropic in- either kinetic or potential energy with the background (usu- ally zonal) flow. Barotropic instability is associated with di- Published by Copernicus Publications on behalf of the European Geosciences Union & the American Geophysical Union. 148 P. Read et al.: Baroclinic and barotropic adjustment rect exchanges of kinetic energy between background flow and nonlinear development of such instabilities governs the and eddies, while baroclinic instability entails the growth of structure and energetics of their circulation is still very much eddy kinetic and potential energy at the primary expense of the subject of ongoing research, using both observations and the potential energy of the background flow. numerical circulation models. Many planetary atmospheric These exchanges of energy between zonally symmetric circulation systems, for example, manifest complex, often flows and eddies and between potential and kinetic ener- anisotropic and inhomogeneous macroturbulent cascades of gies are commonly quantified in the manner originally sug- energy and enstrophy (squared vorticity), but how are such gested by Lorenz(1955, 1967), building on the much earlier cascades energised, and what processes determine the typi- work of Margules(1903), in which the flow is partitioned cal equilibrated distribution of energy? How are such states between zonally symmetric (zonally averaged) components maintained by the input of thermal energy from the Sun or and departures therefrom (“eddies”), with four main energy from the deep planetary interior? reservoirs (AE, AZ, KE and KZ) representing respectively Determining the occurrence or otherwise of either the eddy and zonal available potential energy and the corre- barotropic or baroclinic instabilities has traditionally ap- sponding kinetic energies. From considerations of the energy pealed to the results of linearised theories, often (though conservation equations, expressions can be defined to repre- not exclusively) derived from simplified forms of the equa- sent the rates of conversion between the four energy reser- tions of motion, continuity and energy conservation. The voirs (e.g. see Lorenz, 1967; Peixoto and Oort, 1974; James, most well known approach derives from the Charney–Stern– 1994), typically shown schematically in Fig.1a. Pedlosky (CSP) criterion for the existence of a non-zero As will be discussed further below, baroclinic or growth rate of an infinitesimal perturbation to a background barotropic instabilities and axisymmetric overturning circu- zonal flow (e.g. Vallis, 2017). This essentially reduces to the lations can be distinguished energetically by differing routes requirement that of energy conversion between potential and kinetic energies. But schematically, barotropic instabilities are characterised y28 H 9 Z <Z @Q=@y 2 F @U=@z 2H = by the dominance of the CK conversion term from zonal- −c Q dz C Q dy D 0; i j − j2 j − j2 mean kinetic energy KZ to eddy KE (see Fig.1c), while en- : U cr U cr 0 ; y1 0 ergy conversions in baroclinic instabilities are dominated by (1) the CA and CE terms, converting zonal-mean potential en- ergy AZ to eddy potential and kinetic energy AE and KE where U.y;z/ is the background zonal flow, Q.y;z/ is the (see Fig.1d). The direct kinetic energy conversion between corresponding quasi-geostrophic potential vorticity (QGPV), KE and KZ may also take place in the latter case in either y is the lateral and z is the vertical coordinate, c D cr C ici direction and so is indicated by the dashed arrows in Fig.1d. is the complex phase speed of the perturbation, Q .y;z/ is Such circulations may also be accompanied by direct, ax- the amplitude of the perturbation streamfunction, and F D isymmetric overturning circulations that primarily involve f 2=N 2. f D 2sinφ is the mean Coriolis parameter, cen- the CZ conversion between AZ and KZ (e.g. see Fig.1b). 0 0 0 tred at latitude φ0 with the planetary rotation rate, and N In addition to straightforward energy considerations, how- is the Brunt–Väisälä frequency. The integrals are carried out ever, the vorticity configuration (either absolute or potential over a domain in .y;z/ bounded by rigid walls or other suit- vorticity) also plays a key role in determining whether an in- able boundary conditions at y D y ;y and z D 0;H . stability develops and the character of the instability when it 1 2 For ci 6D 0, therefore, we require one or more of the fol- occurs. The subsequent nonlinear development of the insta- lowing criteria to be satisfied: bility then depends also on both energetic and vorticity con- straints, posing significant challenges to our understanding (i) @Q=@y changes sign in the interior domain; of how such instabilities will equilibrate. Predicting and quantifying such equilibration processes (ii) the interior @Q=@y take the opposite sign to @U=@z at are crucial tasks if we are to gain a full understanding of the upper boundary at z D H; the factors that govern the observable structure and evolu- (iii) the interior @Q=@y take the same sign as @U=@z at the tion of atmospheric circulation systems under a variety of lower boundary at z D 0; or different conditions. Recent exploration of our solar system has already provided much information on the structure and (iv) @Q=@y D 0 in the interior, and @U=@z takes the same properties of large- and medium-scale circulation systems sign at both z D 0 and z D H . across a wide range of parameter space, from very slowly rotating terrestrial planets such as Venus and Titan through Thus, Earth’s atmosphere typically satisfies criterion (iii), be- rapidly rotating terrestrial planets such as Earth and Mars ing dominated by the planetary vorticity gradient β D df=dy to the rapidly rotating gas and ice giants. Baroclinic and/or away from the lower boundary and @U=@z > 0 at the ground, barotropic instabilities likely play important roles in most of consistent with geostrophic balance and an equatorward tem- these atmospheric systems, but precisely how the occurrence perature gradient. In the oceans, in contrast, either criteria (i) Nonlin. Processes Geophys., 27, 147–173, 2020 www.nonlin-processes-geophys.net/27/147/2020/ P. Read et al.: Baroclinic and barotropic adjustment 149 Figure 1.
Recommended publications
  • Fire Weather Area Forecast Matrices User’S Guide to Decoding the AFW
    Fire Weather Area Forecast Matrices User’s Guide to Decoding the AFW What are the Area Forecast Matrices? The Area Forecast Matrices (AFW) is a table that displays the forecasted weather parameters in 3, 6 and 12 hour intervals out to 7 days in the future. Below is a sample AFW, along with a description of each parameter’s code (blue colored numbers). (1) NCZ510-082100- EASTERN POLK- INCLUDING THE CITIES OF...COLUMBUS 939 AM EST THU DEC 8 2011 (2) DATE THU 12/08/11 FRI 12/09/11 SAT 12/10/11 UTC 3HRLY 09 12 15 18 21 00 03 06 09 12 15 18 21 00 03 06 09 12 15 18 21 00 EST 3HRLY 04 07 10 13 16 19 22 01 04 07 10 13 16 19 22 01 04 07 10 13 16 19 (3) MAX/MIN 51 30 54 32 52 (4) TEMP 39 49 51 41 36 33 32 31 42 51 52 44 39 36 33 32 41 49 50 41 (5) DEWPT 24 21 20 23 26 28 28 26 26 25 25 28 28 26 26 26 26 26 25 25 (6) MIN/MAX RH 29 93 34 78 37 (7) RH 55 32 29 47 67 82 86 79 52 36 35 52 65 68 73 78 53 40 37 51 (8) WIND DIR NW S S SE NE NW NW N NW S S W NW NW NW NW N N N N (9) WIND DIR DEG 33 16 18 12 02 33 31 33 32 19 20 25 33 32 32 32 34 35 35 35 (10) WIND SPD 5 4 5 2 3 0 0 1 2 4 3 2 3 5 5 6 8 8 6 5 (11) CLOUDS CL CL CL FW FW SC SC SC SC SC SC SC SC SC SC SC FW FW FW FW (12) CLOUDS(%) 0 2 1 10 25 34 35 35 33 31 34 37 40 43 37 33 24 15 12 9 (13) VSBY 10 10 10 10 10 10 10 10 (14) POP 12HR 0 0 5 10 10 (15) QPF 12HR 0 0 0 0 0 (16) LAL 1 1 1 1 1 1 1 1 1 (17) HAINES 5 4 4 5 5 5 4 4 5 (18) DSI 1 2 2 (19) MIX HGT 2900 1500 300 3000 2900 400 600 4200 4100 (20) T WIND DIR S NE N SW SW NW NW NW N (21) T WIND SPD 5 3 2 6 9 3 8 13 14 (22) ADI 27 2 5 44 51 5 17
    [Show full text]
  • Introduction to Wildland Fire Behavior (S-190) Resources Table of Contents
    Introduction to Wildland Fire Behavior (S-190) Resources Table of Contents Web Resources ..............................................................................................................................2 Incident Response Pocket Guide (IRPG).....................................................................................3 Glossary .....................................................................................................................................122 Page 1 Web Resources Fireline Handbook http://www.nwcg.gov/pms/pubs/410-1/410-1.pdf Incident Response Pocket Guide http://www.nwcg.gov/pms/pubs/nfes1077/nfes1077.pdf Page 2 Incident Response Pocket Guide A Publication of the National Wildfire Coordinating Group Sponsored by Incident Operations Standards Working Team as a subset to PMS 410-1 Fireline Handbook JANUARY 2006 PMS 461 NFES 1077 Additional copies of this publication may be ordered from: National Interagency Fire Center, ATTN: Great Basin Cache Supply Office, 3833 South Development Avenue, Boise, Idaho 83705. Order NFES #1077 Table of Contents Table of Contents ............................................................... i Operational Leadership ....................................................v Communication Responsibilities ................................... ix Human Factors Barriers to Situation Awareness and Decision-Making ....................................................x GREEN - OPERATIONAL Risk Management Process ...........................................1 Look Up, Down and Around
    [Show full text]
  • SW Fire Weather Annual Operating Plan
    SOUTHWEST AREA FIRE WEATHER ANNUAL OPERATING PLAN 2018 Arizona New Mexico West Texas Oklahoma Panhandle 2018 SOUTHWEST AREA FIRE WEATHER ANNUAL OPERATING PLAN SECTION PAGE I. INTRODUCTION 1 II. SIGNIFICANT CHANGES SINCE PREVIOUS PLAN 1 III. SERVICE AREAS AND ORGANIZATIONAL DIRECTORIES 2 IV. NATIONAL WEATHER SERVICE SERVICES AND RESPONSIBILITIES 2 A. Basic Services 2 1. Core Forecast Grids and Web-Based Fire Weather Decision Support 2 2. Fire Weather Watches and Red Flag Warnings (RFW) 2 3. Spot Forecasts 5 4. Fire Weather Planning Forecasts (FWF) 7 5. NFDRS 8 6. Fire Weather Area Forecast Discussion (AFD) 9 7. Interagency Participation 9 B. Special Services 9 C. Forecaster Training 9 D. Individual NWS Forecast Office Information 10 1. Northwest Arizona – Las Vegas, NV 10 2. Northern Arizona – Flagstaff, AZ 10 3. Southeast Arizona – Tucson, AZ 10 4. Southwest and South-Central Arizona – Phoenix, AZ 10 5. Northern and Central New Mexico – Albuquerque, NM 10 6. Southwest/South-Central New Mexico and Far West Texas – El Paso, TX 10 7. Southeast New Mexico and Southwest Texas – Midland, TX 10 8. West-Central Texas – Lubbock, TX 10 9. Texas and Oklahoma Panhandles – Amarillo, TX 10 V. WILDLAND FIRE AGENCY SERVICES AND RESPONSIBILITIES 11 A. Operational Support and Predictive Services 11 B. Program Management 12 C. Monitoring, Feedback and Improvement 12 D. Technology Transfer 12 E. Agency Computer Systems 12 F. WIMS ID’s for NFDRS Stations 12 G. Fire Weather Observations 13 H. Local Fire Management Liaisons & Southwest Area Decision Support Committee___14 Southwest Area Fire Weather Annual Operating Plan Table of Contents VI.
    [Show full text]
  • Midlevel Ventilation's Constraint on Tropical Cyclone Intensity Brian
    Midlevel Ventilation’s Constraint on Tropical Cyclone Intensity by Brian Hong-An Tang B.S. Atmospheric Science, University of California Los Angeles, 2004 B.S. Applied Mathematics, University of California Los Angeles, 2004 Submitted to the Department of Earth, Atmospheric and Planetary Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Atmospheric Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2010 c Massachusetts Institute of Technology 2010. All rights reserved. Author.............................................. ................ Department of Earth, Atmospheric and Planetary Sciences June 14, 2010 Certified by.......................................... ................ Kerry A. Emanuel Breene M. Kerr Professor of Atmospheric Science Director, Program in Atmospheres, Oceans and Climate Thesis Supervisor Accepted by.......................................... ............... Maria Zuber Earle Griswold Professor of Geophysics and Planetary Science Head, Department of Earth, Atmospheric and Planetary Sciences 2 Midlevel Ventilation’s Constraint on Tropical Cyclone Intensity by Brian Hong-An Tang Submitted to the Department of Earth, Atmospheric and Planetary Sciences on June 14, 2010, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Atmospheric Science Abstract Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a TC’s intensity. An idealized framework is developed to assess how ventilation affects TC intensity via two pathways: downdrafts outside the eyewall and eddy fluxes directly into the eyewall. Three key aspects are found: ventilation has a detrimental effect on TC intensity by decreasing the maximum steady state intensity, imposing a minimum intensity below which a TC will unconditionally decay, and providing an upper ventilation bound beyond which no steady TC can exist.
    [Show full text]
  • FIRE DANGER INDICES: CURRENT LIMITATIONS and a PATHWAY to BETTER INDICES Setting the Agenda for Fire Danger Policy and Research Into Operations
    FIRE DANGER INDICES: CURRENT LIMITATIONS AND A PATHWAY TO BETTER INDICES Setting the agenda for fire danger policy and research into operations Claire S Yeo1, Jeffrey D Kepert123 and Robin Hicks1 1Bureau of Meteorology 2Centre for Australian Weather and Climate Research 3Bushfire and Natural Hazards CRC FIRE DANGER INDICES: CURRENT LIMITATIONS AND A PATHWAY TO BETTER INDICES | Report No. 2014.007 Version Release history Date 1.0 Initial release of document 16/10/2014 1.1 Executive Summary updated and 26/11/2015 editorial clarifications in response to technical comments received. © Bushfire and Natural Hazards CRC 2015 No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form without the prior written permission from the copyright owner, except under the conditions permitted under the Australian Copyright Act 1968 and subsequent amendments. Disclaimer: This material was produced with funding provided by the Attorney-General's Department through the National Emergency Management program. The Bushfire and Natural Hazards CRC, the Attorney-General's Department and the Australian Government make no representations about the suitability of the information contained in this document or any material related to this document for any purpose. The document is provided 'as is' without warranty of any kind to the extent permitted by law. The Bushfire and Natural Hazards CRC, the Attorney-General's Department and the Australian Government hereby disclaim all warranties and conditions with regard to this
    [Show full text]
  • Spatial, Temporal and Electrical Characteristics of Lightning in Reported Lightning-Initiated Wildfire Events
    fire Article Spatial, Temporal and Electrical Characteristics of Lightning in Reported Lightning-Initiated Wildfire Events Christopher J. Schultz 1,*, Nicholas J. Nauslar 2 , J. Brent Wachter 3, Christopher R. Hain 1 and Jordan R. Bell 4 1 NASA George C. Marshall Space Flight Center, Huntsville, AL 35812, USA; [email protected] 2 NOAA/NWS/NCEP Storm Prediction Center, Norman, OK 73072, USA; [email protected] 3 United States Forest Service, Redding, CA 96002, USA; [email protected] 4 Earth System Science Center, University of Alabama in Huntsville, Huntsville, AL 35805, USA; [email protected] * Correspondence: [email protected] Received: 6 March 2019; Accepted: 30 March 2019; Published: 3 April 2019 Abstract: Analysis was performed to determine whether a lightning flash could be associated with every reported lightning-initiated wildfire that grew to at least 4 km2. In total, 905 lightning-initiated wildfires within the Continental United States (CONUS) between 2012 and 2015 were analyzed. Fixed and fire radius search methods showed that 81–88% of wildfires had a corresponding lightning flash within a 14 day period prior to the report date. The two methods showed that 52–60% of lightning-initiated wildfires were reported on the same day as the closest lightning flash. The fire radius method indicated the most promising spatial results, where the median distance between the closest lightning and the wildfire start location was 0.83 km, followed by a 75th percentile of 1.6 km and a 95th percentile of 5.86 km. Ninety percent of the closest lightning flashes to wildfires were negative polarity.
    [Show full text]
  • The National Fire-Danger Rating System Research Unit, Intermountain Forest and Range Experiment Station, Missoula, Mont
    United States Department of - Agriculture The National Fire Danger Forest Service Pacific Southwest Rating System: Forest and Range Experiment Station General Technical basic equations Report PSW-82 Jack D. Cohen John E. Deeming The Authors: at the time of the work reported herein were assigned to the National Fire-Danger Rating System Research Unit, Intermountain Forest and Range Experiment Station, Missoula, Mont. JACK D. COHEN, a research forester, earned a bachelor of science degree (1973) in forest science at the University of Montana, and a master of science degree (1976) in biometeorology at Colorado State University. He joined the Pacific Southwest Station staff in 1982, and is now assigned to the Chaparral Prescribed-Fire Research Unit, stationed at the Forest Fire Laboratory, Riverside, Calif. JOHN E. DEEMING, a research forester, received his bachelor of science degree in forestry (1959) at Utah State University. He headed the National Fire-Danger Rating System Research Unit from 1975 until 1978, when he joined the Pacific Northwest Forest and Range Experiment Station. He is now in charge of that Station's research unit studying culture of forests of Eastern Oregon and Washington, stationed at the Silviculture Laboratory, Bend, Oreg. Acknowledgments: The work reported herein was done while we were assigned to the Intermountain Forest and Range Experiment Station's Northern Forest Fire Laboratory at Missoula, Montana. We were aided materially by Robert E. Burgan. Other researchers who contributed to the updating of the National Fire-Danger Rating System and their contributions were from the Intermountain Station, Missoula, Montana--Richard C. Rothermel, Frank A. Albini, and Patricia L.
    [Show full text]
  • Convective Storm Structure and Evolution Presented by the Warning Decision Training Branch
    Distance Learning Operations Course IC 5.7: Convective Storm Structure and Evolution Presented by the Warning Decision Training Branch Version: 0308.2 Distance Learning Operations Course Table of Contents Introduction ..................................................................................................... 1 Objectives ................................................................................................................................................ 3 Lesson 1....................................................................................................................................3 Lesson 2....................................................................................................................................3 Lesson 3....................................................................................................................................3 Lesson 1: Fundamental Relationships Between Shear and Instability on Convective Storm Structure and Type. ......................................................... 6 Objective 1 ............................................................................................................................................... 6 Effects of Shear .........................................................................................................................6 Objective 2 ............................................................................................................................................... 7 Objective 3 ............................................................................................................................................
    [Show full text]
  • Orographic Effects on Precipitating Clouds
    OROGRAPHIC EFFECTS ON PRECIPITATING CLOUDS Robert A. Houze Jr.1 Received 25 May 2011; revised 7 September 2011; accepted 8 September 2011; published 6 January 2012. [1] Precipitation over and near mountains is not caused by may rise easily over terrain, and a maximum of precipitating topography but, rather, occurs when storms of a type that cloud occurs over the first rise of terrain, and rainfall is max- can occur anywhere (deep convection, fronts, tropical imum on ridges and minimum in valleys. If the low‐level air cyclones) form near or move over complex terrain. Deep ahead of the system is stable, blocking or damming occurs. convective systems occurring near mountains are affected Shear between a blocked layer and unblocked moist air by channeling of airflow near mountains, capping of moist above favors turbulent overturning, which can accelerate boundary layers by flow subsiding from higher terrain, and precipitation fallout. In tropical cyclones, the tangential triggering to break the cap when low‐level flow encounters winds encountering a mountain range produce a gravity hills near the bases of major mountain ranges. Mesoscale wave response and greatly enhanced upslope flow. Depend- convective systems are triggered by nocturnal downslope ing on the height of the mountain, the maximum rain may flows and by diurnally triggered disturbances propagating occur on either the windward or leeward side. When the away from mountain ranges. The stratiform regions of capped boundary layer of the eye of a tropical cyclone mesoscale convective systems are enhanced by upslope flow passes over a mountain, the cap may be broken with intense when they move over mountains.
    [Show full text]
  • NCAR Annual Scientific Report Fiscal Year 1986 - Link Page Next PART0002
    National Center for Atmospheric Research Annual Scientific Report Fiscal Year 1986 Submitted to National Science Foundation by University Corporation for Atmospheric Research March 1987 /in Contents INTRODUCTION V ATMOSPHERIC ANALYSIS AND PREDICTION DIVISION ·. 1 Significant Accomplishments ............. I a a 0 1 Division Office . · · r0 3 Mesoscale Research Section ............. 0 0 0 0 0 5 Climate Section ................ ... p 0 0 0 13 Large-Scale Dynamics Section ............. 22 Oceanography Section ................ 30 ATMOSPHERIC CHEMISTRY DIVISION ........ 39 Significant Accomplishments .. .... .a.. 40 Precipitation Chemistry, Reactive Gases, and Aerosols Section ........... ......... 41 Atmospheric Gas Measurements Section . .. 48 Global Observations, Modeling, and Optical Techniques Section ...... .. 54 Director's Office .. ........ ... 60 Support and Visitor Section ....... I. a. .. 62 HIGH ALTITUDE OBSERVATORY . 67 Significant Accomplishments .. ................ 67 Coronal/Interplanetary Physics Section a . a... .. 68 Solar Activity and Magnetic Fields Section . .. 77 Solar Interior Section ... ...... ...1 83 Terrestrial Interactions Section . .... a a............ a90 ADVANCED STUDY PROGRAM ..... 101 Significant Accomplishment .................. 101 Visitor Program .... .................... 102 Environmental and Societal Impacts Group ............. 119 Natural Systems Group ............... ... 125 CLOUDS SYSTEMS DIVISION .................. 133 Significant Accomplishments ......... ......... 133 Mesoscale Convective Systems
    [Show full text]
  • An Exercise Involving Flash Flood and Lightning Potential Forecasts ["THE CURVE FIRE"]
    ~Labor Day Weekend 2002~ An Exercise Involving Flash Flood and Lightning Potential Forecasts ["THE CURVE FIRE"] September 3, 2003 INTRODUCTION There are two major sources for rainfall over the Southwestern United States during the summer months. The first of these is the Southeast Monsoon. In Southern California, summer monsoon season kicks in between about mid July to early October–and sometimes it doesn't kick in at all. Usually what occurs is that a semi­permanent high pressure system aloft sets up over the "four corners" area where the states of Arizona, Colorado, New Mexico, and Utah share a common boundary. The circulation around this high brings moisture into Southern California from as far away as the Gulf of Mexico and as near as the Gulf of California. However, in the summer of 2002, the prevailing winds aloft over Southern California were from the southwest–a very dry pattern that was sufficiently strong to keep most of the monsoonal moisture confined to the east of the Colorado River. This was very unfavorable for monsoonal thunderstorms of the usual variety. The second major source of summer rainfall in Southern California is from passing Eastern Pacific tropical storms. In the last hundred years, an average of one tropical storm approaches near enough to Southern California to cause measurable rain and sometimes local flooding. During Labor Day weekend 2002, dissipating tropical storm Genevieve was located about 800 NM southwest of Los Angeles heading out to sea. At that distance and intensity, it posed no apparent threat to Southern Californians. As this exercise will show, nothing could be further from the truth.
    [Show full text]
  • “Dry” Lightning Strikes in the Pacific Northwest
    Forecasting Dry Lightning in the Western United States Miriam Rorig, Sue Ferguson, and Steven McKay USDA Forest Service Pacific Northwest Research Station 400 N. 34th St., Suite 201 Seattle, WA 98103 Dry lightning events (those which occur without significant coincident rainfall) often lead to large wildfire outbreaks in the forested regions of the western United States. Millions of acres are burned each year, often resulting in devastating human and property losses. In recent years suppression costs have approached, and in some cases exceeded, one billion dollars per year. In the western U.S., the most critical situation for fire danger occurs when a dry cold front or upper-level disturbance generates convection after a relatively long period of dry weather. The airmass is unstable, but with an absence of low-level moisture, thunderstorms that form are high-based. Consequently much of the rain that falls evaporates before it reaches the ground. When lightning strikes the ground, it ignites dry fuels, and accompanying rainfall, if any, is not enough to extinguish incipient fires. In previous studies, we have shown the utility of a simple index to estimate the risk of “dry” lightning strikes in the Pacific Northwest. Using upper-air data from Spokane, WA, the temperature difference between 850 hPa and 500 hPa and the dewpoint depression at 850 hPa were used to develop a discriminant function to separate convective days into “dry” and “wet” categories (Rorig and Ferguson 1999, Rorig and Ferguson 2002). These variables were found to be useful and physically meaningful indicators for estimating the risk of dry convection.
    [Show full text]