NCAR Annual Scientific Report Fiscal Year 1986 - Link Page Next PART0002

Total Page:16

File Type:pdf, Size:1020Kb

NCAR Annual Scientific Report Fiscal Year 1986 - Link Page Next PART0002 National Center for Atmospheric Research Annual Scientific Report Fiscal Year 1986 Submitted to National Science Foundation by University Corporation for Atmospheric Research March 1987 /in Contents INTRODUCTION V ATMOSPHERIC ANALYSIS AND PREDICTION DIVISION ·. 1 Significant Accomplishments ............. I a a 0 1 Division Office . · · r0 3 Mesoscale Research Section ............. 0 0 0 0 0 5 Climate Section ................ ... p 0 0 0 13 Large-Scale Dynamics Section ............. 22 Oceanography Section ................ 30 ATMOSPHERIC CHEMISTRY DIVISION ........ 39 Significant Accomplishments .. .... .a.. 40 Precipitation Chemistry, Reactive Gases, and Aerosols Section ........... ......... 41 Atmospheric Gas Measurements Section . .. 48 Global Observations, Modeling, and Optical Techniques Section ...... .. 54 Director's Office .. ........ ... 60 Support and Visitor Section ....... I. a. .. 62 HIGH ALTITUDE OBSERVATORY . 67 Significant Accomplishments .. ................ 67 Coronal/Interplanetary Physics Section a . a... .. 68 Solar Activity and Magnetic Fields Section . .. 77 Solar Interior Section ... ...... ...1 83 Terrestrial Interactions Section . .... a a............ a90 ADVANCED STUDY PROGRAM ..... 101 Significant Accomplishment .................. 101 Visitor Program .... .................... 102 Environmental and Societal Impacts Group ............. 119 Natural Systems Group ............... ... 125 CLOUDS SYSTEMS DIVISION .................. 133 Significant Accomplishments ......... ......... 133 Mesoscale Convective Systems .................. 135 Ice-Cloud Properties and Radiative Interactions ....... 143 Thunderstorm Water Budgets ................. 143 Thunderstorm Dynamics, Hydrometeor Evolution, Hail Growth, and Trajectory Studies .............. 145 iv Thunderstorm Electrification . ......... 151 Cumulus Cloud Systems: Cumulus-Topped Boundary Layers, Gravity Waves, and Convection Initiation .. .... 155 Cumulus Cloud Systems: Entrainment and Mixing, Droplet Spectra, and Downdraft Initiation ....... 160 Model Development and Parameterization ........ 165 Selected Topics in Microphysics ...... 167 SCIENTIFIC COMPUTING DIVISION .... .... ... 171 Significant Accomplishments 171 Organization ............... 174 FY 86 Computing Support Provided .. 175 Systems Section ...... 175 Computer Operations and Maintenance Section 179 User Services Section ........... 182 Advanced Methods Section ... 184 Data Support Section ..... 186 ATMOSPHERIC TECHNOLOGY DIVISION 195 Statement of Goals ............ a.. .. 195 Significant Accomplishments ........ .. .. 196 Organization ...... .. 198 Research Aviation Facility ....... 198 ... Field Observing Facility .......... .. .. 207 Global Atmospheric Measurements Program . .. 219 Research Applications Program ... 222 ... Design and Fabrication Services ....... .. 225 ACID DEPOSITION MODELING PROJECT ....... 229 ADMP Regional Acid Deposition Model (RADM) . 229 Significant Accomplishments ......... .. .. 230 Chemistry . .. ~........231 Meteorology .. .. ... .. ... .. 235 ... System Integration and Evaluation ...... .. .. 236 Engineering Models ..... 237 ... PUBLICATIONS . .. 241 Introduction Each year, the NCAR Annual Scientific Report documents this center's continuing efforts to understand the earth's atmosphere, oceans, and the sun, through dedicated research in the broad atmospheric sciences. Under the sponsorship of the National Science Foundation, and our parent organization, the University Corporation for Atmospheric Research, NCAR's scientific programs have consistently enhanced national and international efforts to aid people in their delicate relationships with the environment. This report describes the steady progress of ongoing research activities as well as new initiatives. Some representative highlights of the scientific programs during 1986 include: * The development of an improved version of the community climate model enables us to understand better the physical causes of present and past climates. By simulating and analyzing the physical processes involved-such as ocean circulations; energy transfers at the earth's land, water, and ice surfaces; turbulence; convective and stratiform clouds; and radiation-we are progressing toward a better scientific basis for the prediction of future climates on time scales of seasons to centuries or longer. * NCAR scientists have developed new instruments that measure, with highly improved sensitivity and accuracy, trace-gas species under varying atmospheric conditions. These, and related efforts in atmospheric chemistry research, provide vital basic information for the studies of global and regional climate change. * The need for continued observation and interpretation of the sun's variability has motivated NCAR scientists to collaborate in the construction and use of new, highly sophisticated instruments such as the Fourier tachometer (used to measure oscillations of the solar atmosphere and so to deduce information about the properties of the solar interior) and the Stokes polarimeter (used to determine the three-dimensional structure of the sun's magnetic fields). Continued analysis of data from the Stokes II instrument during the past year has set the stage in fiscal year 1987 for beginning construction of the next-generation Stokes III, an instrument with improved spectral, spatial, and temporal resolution. * NCAR made major upgrades of its computational facilities. In addition to the replacement of one of its CRAY-1 computers by the considerably more powerful CRAY X-MP/48 in the fall of 1986, NCAR moved rapidly toward the installation of a new mass storage system, enhancement of the NCAR Graphics Package, and implementation of gateways to high-speed national networks. Introduction * The Genesis of Atlantic Lows Experiment (GALE), involving scientists from NCAR and 20 universities, studied the physical processes leading to the development of intense winter storms along the eastern U.S. coast. This experiment used Doppler radars, surface mesonetworks, sounding systems, and instrumented aircraft, and was the most intensive support effort ever undertaken by NCAR. These efforts-and many others too numerous to cite-result from NCAR's most valuable resource: a scientific and technical staff of national and international renown and a supporting staff equally committed to excellence. NCAR scientists benefit from numerous interactions with colleagues from the university community. This collaboration will continue to expand as the atmospheric sciences move toward satisfying the future needs of our world's rapidly growing population. NCAR continues to participate in many programs to study the earth's complex environment as a unified, interrelated system. These programs are central to the study of global change, which has recently received national and international emphasis. Problems emerging from earth's economic as well as environmental needs, both international and multidisciplinary in scope, are an ever-increasing challenge to NCAR scientists and their collaborators throughout the world. In order to focus more effectively on solving these broad problems, I have defined a general reorganization of NCAR's research efforts into four scientific and two facility areas. The major areas of science are climate and the coupling of climate with other terrestrial environmental systems, atmospheric chemistry, mesoscale and microscale meteorology, and solar and solar-terrestrial physics. To make progress in all of these scientific areas requires advanced computational and observational facilities, and it is NCAR's mission to develop and provide them to the community. As NCAR intensifies its research efforts and expands its facilities, its programs will evolve and embrace developments in other formal academic disciplines. We are thus committed to leadership, initiative, and collaboration with other colleagues and institutions within the global geosciences community. My enthusiasm for NCAR's potential for future accomplishments is equalled only by the center's splendid reputation for past achievements. Richard A. Anthes Director March 1987 Atmospheric Analysis and Prediction Division In the Atmospheric Analysis and Prediction (AAP) Division, we have studied the atmosphere, oceans, and land surface on a wide range of time and space scales. The focus has been on numerical models complemented by theory and observations. We have directed investigations toward understanding the physical causes of present and past climates and the scientific basis for prediction of future climates for time scales of weeks to centuries or longer. To do this, we have emphasized development of an improved version of the NCAR community climate model (CCM) and applied it to climate simulations and forecast studies. We have analyzed many data sets from satellites or conventional meteorological sources to examine the important physical processes and their connections to model simulations and carried out many other basic studies in ocean circulations, turbulence, and convective and mesoscale storm systems. In addition to performing individual research and collaborating with visitors and scientists in universities and other research institutions around the world, we participate actively in the planning and execution of national and international scientific projects, such as the Earth Radiation Budget Experiment (ERBE), the National Stormscale Operational and Research Meteorology (STORM) Pro- gram, the First ISCCP Regional Experiment (FIRE; ISCCP denotes International Satellite
Recommended publications
  • Slow Solar Wind: Observations and Modeling
    Noname manuscript No. (will be inserted by the editor) Slow solar wind: observations and modeling L. Abbo · L. Ofman · S.K. Antiochos · V.H. Hansteen · L. Harra · Y-K. Ko · G. Lapenta · B. Li · P. Riley · L. Strachan · R. von Steiger · Y.-M. Wang Received: date / Accepted: date L. Abbo Osservatorio Astrofisico di Torino Strada Osservatorio 20, 10025 Pino Torinese, Italy Tel.: +39-011-8101954 Fax: +39-011- 8101930 E-mail: [email protected] · L. Ofman∗ (corresponding author) Catholic University of America, NASA-Goddard Space Flight Center Code 671, Greenbelt, MD 20771, USA ∗ also Visiting, Department of Geosciences, Tel Aviv University E-mail: [email protected] · S.K. Antiochos NASA-Goddard Space Flight Center Greenbelt, MD 20771, USA · V. Hansteen Institute of Theoretical Astrophysics, University of Oslo PB 1029, Blindern, N-0315, Oslo, Norway · L. Harra UCL-Mullard Space Science Laboratory Holmbury St. Mary, Dorking, Surrey, RH5 6NT, UK · Y.-K. Ko, L. Strachan, Y.-M. Wang Space Science Division, Naval Research Laboratory Washington, DC 20375-5352, USA · G. Lapenta Centre for Plasma Astrophysics, K. U. Leuven Celestijnenlaan 200b- bus 2400, 3001 Leuven, Belgium · B. Li Institute of Space Sciences, Shandong University Weihai 180 West Wenhua Road, 264209 Weihai, China · P. Riley Predictive Science, Inc. 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121, USA · Y.-M. Wang Code 7682W Space Science Division Naval Research Laboratory Washington, DC 20375-5352, USA · R. von Steiger Director, International Space Science Institute Hallerstrasse 6 3012, Bern, Switzerland 2 L. Abbo, L. Ofman et al. Abstract While it is certain that the fast solar wind originates from coronal holes, where and how the slow solar wind (SSW) is formed remains an outstand- ing question in solar physics even in the post-SOHO era.
    [Show full text]
  • Fall 2006 OKLAHOMA CLIMATE
    OKLAHOMA CLIMATE Fall 2006 Anything But Pacific Loss Mitigation Conference 2006 EarthStorm Teachers on the Road Cloud Seeding MESSAGE FROM THE EDITOR Table of Contents Hurricanes are the most destructive weather phenomenon on the Earth, with Anything But Pacific..........................................3 apologies to our own little terrors of Mother Nature, tornadoes. The awful Oklahoma Climate & Loss Mitigation Conf. .......6 destruction wrought upon the Gulf Coast by Katrina silenced any arguments on that subject. But in one of the great ironies for a state that has suffered greatly Answers to the Classroom Activity.................7 due to hazardous weather, Oklahoma has actually benefited in the past from the arrival of those monster cyclones. They are no longer Hurricanes by the time they Photos From the Field.....................................8 pass over Oklahoma soil, of course, merely remnants of their former powerful selves. When they do arrive, however, they bring with them a sizable amount of EarthStorm Teachers On the Road...............10 tropical moisture. Imagine a gigantic sponge floating over the state, waiting to be squeezed. And if there is ever a time that the state could use a good wallop Summer 2006 Climate Summary.................14 of moisture, it’s during the type of drought we’ve experienced the last couple of Agriculture Weather Watch............................19 years. Urban Farmer..................................................20 We decided to concentrate this issue of “Oklahoma Climate” on hurricanes and their effects on the state. Our historical perspective delves right into the issue Classroom Activity...........................................21 with a look back at Oklahoma’s previous brushes with tropical cyclones and how they’ve helped to end droughts.
    [Show full text]
  • Fire Weather Area Forecast Matrices User’S Guide to Decoding the AFW
    Fire Weather Area Forecast Matrices User’s Guide to Decoding the AFW What are the Area Forecast Matrices? The Area Forecast Matrices (AFW) is a table that displays the forecasted weather parameters in 3, 6 and 12 hour intervals out to 7 days in the future. Below is a sample AFW, along with a description of each parameter’s code (blue colored numbers). (1) NCZ510-082100- EASTERN POLK- INCLUDING THE CITIES OF...COLUMBUS 939 AM EST THU DEC 8 2011 (2) DATE THU 12/08/11 FRI 12/09/11 SAT 12/10/11 UTC 3HRLY 09 12 15 18 21 00 03 06 09 12 15 18 21 00 03 06 09 12 15 18 21 00 EST 3HRLY 04 07 10 13 16 19 22 01 04 07 10 13 16 19 22 01 04 07 10 13 16 19 (3) MAX/MIN 51 30 54 32 52 (4) TEMP 39 49 51 41 36 33 32 31 42 51 52 44 39 36 33 32 41 49 50 41 (5) DEWPT 24 21 20 23 26 28 28 26 26 25 25 28 28 26 26 26 26 26 25 25 (6) MIN/MAX RH 29 93 34 78 37 (7) RH 55 32 29 47 67 82 86 79 52 36 35 52 65 68 73 78 53 40 37 51 (8) WIND DIR NW S S SE NE NW NW N NW S S W NW NW NW NW N N N N (9) WIND DIR DEG 33 16 18 12 02 33 31 33 32 19 20 25 33 32 32 32 34 35 35 35 (10) WIND SPD 5 4 5 2 3 0 0 1 2 4 3 2 3 5 5 6 8 8 6 5 (11) CLOUDS CL CL CL FW FW SC SC SC SC SC SC SC SC SC SC SC FW FW FW FW (12) CLOUDS(%) 0 2 1 10 25 34 35 35 33 31 34 37 40 43 37 33 24 15 12 9 (13) VSBY 10 10 10 10 10 10 10 10 (14) POP 12HR 0 0 5 10 10 (15) QPF 12HR 0 0 0 0 0 (16) LAL 1 1 1 1 1 1 1 1 1 (17) HAINES 5 4 4 5 5 5 4 4 5 (18) DSI 1 2 2 (19) MIX HGT 2900 1500 300 3000 2900 400 600 4200 4100 (20) T WIND DIR S NE N SW SW NW NW NW N (21) T WIND SPD 5 3 2 6 9 3 8 13 14 (22) ADI 27 2 5 44 51 5 17
    [Show full text]
  • Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific Ab Sins Nicholas S
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School March 2019 Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific aB sins Nicholas S. Grondin Louisiana State University, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Climate Commons, Meteorology Commons, and the Physical and Environmental Geography Commons Recommended Citation Grondin, Nicholas S., "Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific asinB s" (2019). LSU Master's Theses. 4864. https://digitalcommons.lsu.edu/gradschool_theses/4864 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. CLIMATOLOGY, VARIABILITY, AND RETURN PERIODS OF TROPICAL CYCLONE STRIKES IN THE NORTHEASTERN AND CENTRAL PACIFIC BASINS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Geography and Anthropology by Nicholas S. Grondin B.S. Meteorology, University of South Alabama, 2016 May 2019 Dedication This thesis is dedicated to my family, especially mom, Mim and Pop, for their love and encouragement every step of the way. This thesis is dedicated to my friends and fraternity brothers, especially Dillon, Sarah, Clay, and Courtney, for their friendship and support. This thesis is dedicated to all of my teachers and college professors, especially Mrs.
    [Show full text]
  • Modelling the Initiation of Coronal Mass Ejections: Magnetic Flux Emergence Versus Shearing Motions
    A&A 507, 441–452 (2009) Astronomy DOI: 10.1051/0004-6361/200912541 & c ESO 2009 Astrophysics Modelling the initiation of coronal mass ejections: magnetic flux emergence versus shearing motions F. P. Zuccarello1,2,C.Jacobs1,2,A.Soenen1,2, S. Poedts1,2,B.vanderHolst3, and F. Zuccarello4 1 Centre for Plasma-Astrophysics, K. U. Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium e-mail: [email protected] 2 Leuven Mathematical Modelling & Computational Science Research Centre (LMCC), Belgium 3 Center for Space Environment Modeling, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109, USA 4 Dipartimento di Fisica e Astronomia – Universitá di Catania via S.Sofia 78, 95123 Catania, Italy Received 20 May 2009 / Accepted 14 July 2009 ABSTRACT Context. Coronal mass ejections (CMEs) are enormous expulsions of magnetic flux and plasma from the solar corona into the inter- planetary space. These phenomena release a huge amount of energy. It is generally accepted that both photospheric motions and the emergence of new magnetic flux from below the photosphere can put stress on the system and eventually cause a loss of equilibrium resulting in an eruption. Aims. By means of numerical simulations we investigate both emergence of magnetic flux and shearing motions along the magnetic inversion line as possible driver mechanisms for CMEs. The pre-eruptive region consists of three arcades with alternating magnetic flux polarity, favouring the breakout mechanism. Methods. The equations of ideal magnetohydrodynamics (MHD) were advanced in time by using a finite volume approach and solved in spherical geometry. The simulation domain covers a meridional plane and reaches from the lower solar corona up to 30 R.When we applied time-dependent boundary conditions at the inner boundary, the central arcade of the multiflux system expands, leading to the eventual eruption of the top of the helmet streamer.
    [Show full text]
  • Helmet Streamers with Triple Structures: Simulations of Resistive Dynamics
    HELMET STREAMERS WITH TRIPLE STRUCTURES: SIMULATIONS OF RESISTIVE DYNAMICS THOMAS WIEGELMANN1, KARL SCHINDLER2 and THOMAS NEUKIRCH3 1Max Planck Institut für Aeronomie, Max Planck Straße 2, D-37191 Katlenburg-Lindau, Germany; 2 Institut für Theoretische Physik IV, Ruhr-Universität Bochum, D-44780 Bochum, Germany; 3School of Mathematical and Computational Sciences, University of St. Andrews, St. Andrews, Scotland (Received 20 April 1999; accepted 8 October 1999) Abstract. Recent observations of the solar corona with the LASCO coronagraph on board of the SOHO spacecraft have revealed the occurrence of triple helmet streamers even during solar mini- mum, which occasionally go unstable and give rise to large coronal mass ejections. There are also indications that the slow solar wind is either a combination of a quasi-stationary flow and a highly fluctuating component or may even be caused completely by many small eruptions or instabilities. As a first step we recently presented an analytical method to calculate simple two-dimensional stationary models of triple helmet streamer configurations. In the present contribution we use the equations of time-dependent resistive magnetohydrodynamics to investigate the stability and the dynamical behaviour of these configurations. We particularly focus on the possible differences between the dynamics of single isolated streamers and triple streamers and on the way in which magnetic recon- nection initiates both small scale and large scale dynamical behaviour of the streamers. Our results indicate that small eruptions at the helmet streamer cusp may incessantly accelerate small amounts of plasma without significant changes of the equilibrium configuration and might thus contribute to the non-stationary slow solar wind.
    [Show full text]
  • Space Weather
    ASTRONOMY AND ASTROPHYSICS LIBRARY Series Editors: G. Börner, Garching, Germany A. Burkert, München, Germany W. B. Burton, Charlottesville, VA, USA and Leiden, The Netherlands M. A. Dopita, Canberra, Australia A. Eckart, Köln, Germany T. Encrenaz, Meudon, France E. K. Grebel, Heidelberg, Germany B. Leibundgut, Garching, Germany J. Lequeux, Paris, France A. Maeder, Sauverny, Switzerland V.Trimble, College Park, MD, and Irvine, CA, USA Kenneth R. Lang The Sun from Space Second Edition 123 Kenneth R. Lang Department of Physics and Astronomy Tufts University Medford MA 02155 USA [email protected] Cover image: Solar cycle magnetic variations. These magnetograms portray the polarity and distribution of the magnetism in the solar photosphere. They were made with the Vacuum Tower Telescope of the National Solar Observatory at Kitt Peak from 8 January 1992, at a maximum in the sunspot cycle (lower left) to 25 July 1999, well into the next maximum (lower right). Each magnetogram shows opposite polarities as darker and brighter than average tint. When the Sun is most active, the number of sunspots is at a maximum, with large bipolar sunspots that are oriented in the east–west (left–right) direction within two parallel bands. At times of low activity (top middle), there are no large sunspots and tiny magnetic fields of different magnetic polarity can be observed all over the photosphere. The haze around the images is the inner solar corona. (Courtesy of Carolus J. Schrijver, NSO, NOAO and NSF.) ISBN: 978-3-540-76952-1 e-ISBN: 978-3-540-76953-8 Library of Congress Control Number: 2008933407 c Springer-Verlag Berlin Heidelberg 2009 This work is subject to copyright.
    [Show full text]
  • An Observational and Modeling Analysis of the Landfall of Hurricane Marty (2003) in Baja California, Mexico
    JULY 2005 F ARFÁN AND CORTEZ 2069 An Observational and Modeling Analysis of the Landfall of Hurricane Marty (2003) in Baja California, Mexico LUIS M. FARFÁN Centro de Investigación Científica y de Educación Superior de Ensenada B.C., Unidad La Paz, La Paz, Baja California Sur, Mexico MIGUEL CORTEZ Servicio Meteorológico Nacional, Comisión Nacional del Agua, México, Distrito Federal, Mexico (Manuscript received 20 July 2004, in final form 26 January 2005) ABSTRACT This paper documents the life cycle of Tropical Cyclone Marty, which developed in late September 2003 over the eastern Pacific Ocean and made landfall on the Baja California peninsula. Observations and best-track data indicate that the center of circulation moved across the southern peninsula and proceeded northward in the Gulf of California. A network of surface meteorological stations in the vicinity of the storm track detected strong winds. Satellite and radar imagery are used to analyze the structure of convective patterns, and rain gauges recorded total precipitation. A comparison of Marty’s features at landfall, with respect to Juliette (2001), indicates similar wind intensity but differences in forward motion and accumu- lated precipitation. Official, real-time forecasts issued by the U.S. National Hurricane Center prior to landfall are compared with the best track. This resulted in a westward bias of positions with decreasing errors during subsequent forecast cycles. Numerical simulations from the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model were used to examine the evolution of the cyclonic circulation over the southern peninsula. The model was applied to a nested grid configuration with hori- zontal resolution as detailed as 3.3 km, with two (72- and 48-h) simulations.
    [Show full text]
  • Introduction to Wildland Fire Behavior (S-190) Resources Table of Contents
    Introduction to Wildland Fire Behavior (S-190) Resources Table of Contents Web Resources ..............................................................................................................................2 Incident Response Pocket Guide (IRPG).....................................................................................3 Glossary .....................................................................................................................................122 Page 1 Web Resources Fireline Handbook http://www.nwcg.gov/pms/pubs/410-1/410-1.pdf Incident Response Pocket Guide http://www.nwcg.gov/pms/pubs/nfes1077/nfes1077.pdf Page 2 Incident Response Pocket Guide A Publication of the National Wildfire Coordinating Group Sponsored by Incident Operations Standards Working Team as a subset to PMS 410-1 Fireline Handbook JANUARY 2006 PMS 461 NFES 1077 Additional copies of this publication may be ordered from: National Interagency Fire Center, ATTN: Great Basin Cache Supply Office, 3833 South Development Avenue, Boise, Idaho 83705. Order NFES #1077 Table of Contents Table of Contents ............................................................... i Operational Leadership ....................................................v Communication Responsibilities ................................... ix Human Factors Barriers to Situation Awareness and Decision-Making ....................................................x GREEN - OPERATIONAL Risk Management Process ...........................................1 Look Up, Down and Around
    [Show full text]
  • The Contribution of Eastern North Pacific Tropical Cyclones to The
    AUGUST 2009 C O R B O S I E R O E T A L . 2415 The Contribution of Eastern North Pacific Tropical Cyclones to the Rainfall Climatology of the Southwest United States KRISTEN L. CORBOSIERO Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California MICHAEL J. DICKINSON Weather Predict Consulting, Inc., Narragansett, Rhode Island LANCE F. BOSART Department of Earth and Atmospheric Sciences, University at Albany, State University of New York, Albany, New York (Manuscript received 26 August 2008, in final form 6 March 2009) ABSTRACT Forty-six years of summer rainfall and tropical cyclone data are used to explore the role that eastern North Pacific tropical cyclones (TCs) play in the rainfall climatology of the summer monsoon over the southwestern United States. Thirty-five TCs and their remnants were found to bring significant rainfall to the region, representing less than 10% of the total number of TCs that formed within the basin. The month of September was the most common time for TC rainfall to occur in the monsoon region as midlatitude troughs become more likely to penetrate far enough south to interact with the TCs and steer them toward the north and east. On average, the contribution of TCs to the warm-season precipitation increased from east to west, accounting for less than 5% of the rainfall in New Mexico and increasing to more than 20% in southern California and northern Baja California, with individual storms accounting for as much as 95% of the summer rainfall. The distribution of rainfall for TC events over the southwest United States reveals three main categories: 1) a direct northward track from the eastern Pacific into southern California and Nevada, 2) a distinct swath northeastward from southwestern Arizona through northwestern New Mexico and into southwestern Col- orado, and 3) a broad area of precipitation over the southwest United States with embedded maxima tied to terrain features.
    [Show full text]
  • Nnh14zda001n-Lws)
    Living With A Star Science Program Abstracts of Selected Proposals (NNH14ZDA001N-LWS) Below are the abstracts of proposals selected for funding for the LWS program. Principal Investigator (PI) name, institution, and proposal title are also included. 103 Step-2 proposals were received in response to this opportunity. On September 5, 2014, 22 proposals were selected for funding. William Abbett/University of California, Berkeley The Transport of Electromagnetic Energy from the Upper Convection-Zone to Outer Corona To maximize the scientific return from revolutionary new in-situ measurements of the solar corona to be provided by NASA's Solar Probe Plus mission, we propose a focused modeling effort to characterize the transport of electromagnetic energy from the upper convection-zone to the outer corona. Our goals are to (1) self-consistently model the introduction of magnetic energy through footpoint motions and reconnection arising from turbulent granular convection at the Sun's visible surface; and (2) understand how the network of embedded bipolar flux regions, through pseudo-streamers and the main helmet streamer belt, modulates this flow of energy. We will perform a series of large-scale numerical simulations using a recently-updated version of the radiative-magnetohydrodynamic code RADMHD2S to: (1) Characterize the wave spectra and time series of magnetic field and plasma fluctuations at 5-10Rs in a unipolar open-field region --- one that represents the open field within a coronal hole, and the source of the fast solar wind; (2) Introduce a relatively large-scale bipolar flux system embedded in a unipolar open field to characterize the effects of the closed field region on the transport of material and energy flux, and quantify how the wave spectra and temporal evolution of magnetic field and plasma fluctuations reflect this larger coronal structure; and (3) Extend these simulations to the size of a coronal pseudo-streamer, then to the size of the helmet streamer belt.
    [Show full text]
  • SW Fire Weather Annual Operating Plan
    SOUTHWEST AREA FIRE WEATHER ANNUAL OPERATING PLAN 2018 Arizona New Mexico West Texas Oklahoma Panhandle 2018 SOUTHWEST AREA FIRE WEATHER ANNUAL OPERATING PLAN SECTION PAGE I. INTRODUCTION 1 II. SIGNIFICANT CHANGES SINCE PREVIOUS PLAN 1 III. SERVICE AREAS AND ORGANIZATIONAL DIRECTORIES 2 IV. NATIONAL WEATHER SERVICE SERVICES AND RESPONSIBILITIES 2 A. Basic Services 2 1. Core Forecast Grids and Web-Based Fire Weather Decision Support 2 2. Fire Weather Watches and Red Flag Warnings (RFW) 2 3. Spot Forecasts 5 4. Fire Weather Planning Forecasts (FWF) 7 5. NFDRS 8 6. Fire Weather Area Forecast Discussion (AFD) 9 7. Interagency Participation 9 B. Special Services 9 C. Forecaster Training 9 D. Individual NWS Forecast Office Information 10 1. Northwest Arizona – Las Vegas, NV 10 2. Northern Arizona – Flagstaff, AZ 10 3. Southeast Arizona – Tucson, AZ 10 4. Southwest and South-Central Arizona – Phoenix, AZ 10 5. Northern and Central New Mexico – Albuquerque, NM 10 6. Southwest/South-Central New Mexico and Far West Texas – El Paso, TX 10 7. Southeast New Mexico and Southwest Texas – Midland, TX 10 8. West-Central Texas – Lubbock, TX 10 9. Texas and Oklahoma Panhandles – Amarillo, TX 10 V. WILDLAND FIRE AGENCY SERVICES AND RESPONSIBILITIES 11 A. Operational Support and Predictive Services 11 B. Program Management 12 C. Monitoring, Feedback and Improvement 12 D. Technology Transfer 12 E. Agency Computer Systems 12 F. WIMS ID’s for NFDRS Stations 12 G. Fire Weather Observations 13 H. Local Fire Management Liaisons & Southwest Area Decision Support Committee___14 Southwest Area Fire Weather Annual Operating Plan Table of Contents VI.
    [Show full text]