1 Sam Bell the Moon Darby Dyar Schmitt (1991) Schmitt (1991

Total Page:16

File Type:pdf, Size:1020Kb

1 Sam Bell the Moon Darby Dyar Schmitt (1991) Schmitt (1991 Sam Bell The Moon Darby Dyar Schmitt (1991) Schmitt (1991) presents in a very comprehensive and clear way the history of lunar formation as known purely from the Apollo and Luna results. While he definitely succeeds at this, there are two places where he disagrees with modern theories of the Moon without presenting the main evidence for those theories (which does not come from Apollo results). But it is definitely a very good paper overall. The bulk of the paper consists of Schmitt breaking lunar history into seven sections: In the first section, he claims that the Moon formed by coaccretion with the Earth (in contrast to the now-dominant impact hypothesis). The next section is the lunar magma ocean phase, where an ocean of silicate rock of ultramafic composition covered the Moon. Lighter elements floating to the top of the magma ocean formed a crust of ferroan anorthosite (pure CaAl2Si2O8 with small amounts of iron), and heavier crystals sinking to the bottom of the ocean formed an ultramafic mantle. The last layer to crystallize is known by the acronym KREEP because it became enriched in potassium, rare earth elements, and phosphorus. The third stage that Schmitt (1991) picks out is a period from roughly 4.4Ga to roughly 4.2Ga, when the anorthosite crust was saturated with early craters. The next stage lasts until roughly 3.9Ga and consists of the formation of the oldest large impact basins and the crystallizing of the KREEP fluid layer. Some of the KREEP is thought to have intruded into the anorthosite crust. After this, Schmitt (1991) has the formation of the younger large basins from 3.9Ga to 3.8Ga. Controversially, he argues against the then dominant and now all but proven hypothesis that the Moon underwent a “lunar cataclysm,” a ferocious spike in the cratering rate around 3.8 or 3.9 Ga—an idea that is now almost fully accepted under the less exciting name of late heavy bombardment. The sixth period that Schmitt (1991) gives us is eruption of the basaltic maria. This stage included primarily flood basalt and shield volcano activity, although there were a few pyroclastic (more explosive) volcanoes—as evidenced by the orange glass beads that the author found in his fieldwork on the Moon. The final stage, which occupied the last three eons (billion years), consisted of minor modification of the lunar crust through scattered and sporadic impacts, continued formation of the regolith, and the appearance of mysterious bright swirls. Although his discussion of lunar history is certainly very comprehensive and detailed, he does dismiss two theories that have turned out to be right and were widely accepted in 1991. The first of these is the giant impact hypothesis of lunar formation. Schmitt (1991) objects to this theory on the grounds that the source material for the orange glass beads that he found during the Apollo 17 mission was too rich in volatiles and parentless Pb to be explained by the giant impact hypothesis. This argument is somewhat absurd. Schmitt is using inferences about the parent material of one very rare sample to object to a theory that Hartmann (1986) built on overall volatile depletion, overall iron depletion, angular momentum conservation, oxygen isotope similarity between the Earth and the Moon, and several other lines of evidence. While it is true that Schmitt et al. (1991) does state that it is only using the Apollo evidence, it is somewhat tacky to object to a popular theory without engaging the main thrust of the argument. The second currently accepted theory that Schmitt (1991) disagrees with is the idea of a lunar cataclysm, or as it is now called, the Late Heavy Bombardment (LHB). Early observations of the Moon coupled with dating of the Apollo samples reached the conclusion that there was a 1 massive spike in the impact flux around 3.9-3.8Ga. This was later confirmed on Mars and Mercury. However, Schmitt (1991) lists five objections to this idea: First, he argues that a half-billion year spike in cratering would be odd. Although this is probably true, it is certainly not enough to override the empirical evidence. As it turns out, the post-1991 theory of planetary migration provides a perfectly reasonable explanation for this. According to Gomes et al. (2005), Jupiter and Saturn originally formed much closer together and gradually migrated apart into their current orbits. Part of their migration was through a 2:1 mean-motion resonance (this basically means that Saturn makes two orbits for every one orbit Jupiter makes). While these two planets were in resonance, their obits rapidly became very eccentric because both planets made their close encounter at the same part of the orbit each time (every other time for Jupiter). At each close encounter, the gravity of the other planet pulled each planet into a slightly different orbit. Normally, these variations occur relatively randomly and more or less cancel each other out, but in a 2:1 resonance, each encounter builds on the previous one, distorting the orbit further and further. The new very eccentric orbits of Jupiter and Saturn destabilized the entire solar system. This violently churned up the protoplanetary disk, hurling the planetessimals into far-flung orbits, casting them into the Sun, and generally mixing them around. This, of course, dramatically increased the number of impactors sweeping across the orbit of the Moon and other planetary bodies, causing the LHB. The next two arguments stem from a misreading of a then outdated formulation of the argument by Tera et al. (1974): Schmitt (1991) claims that the argument tries to compress all the impact basins into this cataclysm, but the only one that Tera et al. (1974) actually associate with this event is Imbrium, although they do claim that others may be related. Schmitt (1991) then gives two reasons why this shouldn’t have happened. The final two arguments are based purely off the Apollo and Luna evidence. Schmitt (1991) points out that some pre-cataclysm impact melts exist—something the LHB theory certainly doesn’t deny. His final argument is that the Apollo and Luna missions mostly landed in the area most affected by cratering around the age of the cataclysm. It is unclear what he means by this—the Apollo and Luna landing sites cover a good deal of the lunar near side. And the modern near side should actually be less affected by the cataclysm than the modern far side because mare eruptions covered up many of the older rocks. Furthermore, the conclusive evidence for the LHB does not come from Apollo samples per se, although this is the central piece of evidence presented in Tera et al. (1974). The evidence comes from remote observations. These remote observations enable astronomers to date craters by counting the number of craters superimposed on the original crater (yes, this method is calibrated by Apollo and Luna dating of features, but Schmitt (1991) uses these dates in his paper and clearly accepts them). Although numerous papers have observed the LHB in the crater record of planets with unmodified crust old enough to show it, Wetherill (1974), which looked at the Moon, Mercury, and Mars, appears to be the first. While technically Schmitt et al. (1991) only focuses on Apollo and Luna data, it is a little absurd to criticize a theory based mainly off post-Apollo data without discussing those data. That being said, the paper does lay out lunar history in a very clear and detailed fashion, and given the author’s service as an Apollo astronaut, he should be permitted a little preference for Apollo results. Schmitt et al. (1991)’s objections to theories later proven right do not change the fact that it was a very good paper overall. 2 Gomes et al. “Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets.” Nature, vol. 435, pg. 466, 2005. Hartmann. “Moon Origin: The Impact-Trigger Hypothesis.” In Hartmann et al. Origin of the Moon. Houston: LPI, 1986. From the 1984 Conference on the Origin of the Moon, Kona, Hawaii, 1984. Schmitt. “Evolution of the Moon: Apollo model.” American Mineralogist, vol. 76, pg 773, 1991. Tera et al. “Isotopic Evidence for a Terminal Lunar Cataclysm.” Earth and Planetary Science Letters, vol. 22, pg. 1, 1974. 3 .
Recommended publications
  • Volcanic History of the Imbrium Basin: a Close-Up View from the Lunar Rover Yutu
    Volcanic history of the Imbrium basin: A close-up view from the lunar rover Yutu Jinhai Zhanga, Wei Yanga, Sen Hua, Yangting Lina,1, Guangyou Fangb, Chunlai Lic, Wenxi Pengd, Sanyuan Zhue, Zhiping Hef, Bin Zhoub, Hongyu Ling, Jianfeng Yangh, Enhai Liui, Yuchen Xua, Jianyu Wangf, Zhenxing Yaoa, Yongliao Zouc, Jun Yanc, and Ziyuan Ouyangj aKey Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; bInstitute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; cNational Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China; dInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; eKey Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; fKey Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; gThe Fifth Laboratory, Beijing Institute of Space Mechanics & Electricity, Beijing 100076, China; hXi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; iInstitute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; and jInstitute of Geochemistry, Chinese Academy of Science, Guiyang 550002, China Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved March 24, 2015 (received for review February 13, 2015) We report the surface exploration by the lunar rover Yutu that flows in Mare Imbrium was obtained only by remote sensing from landed on the young lava flow in the northeastern part of the orbit. On December 14, 2013, Chang’e-3 successfully landed on the Mare Imbrium, which is the largest basin on the nearside of the young and high-Ti lava flow in the northeastern Mare Imbrium, Moon and is filled with several basalt units estimated to date from about 10 km south from the old low-Ti basalt unit (Fig.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Warren and Taylor-2014-In Tog-The Moon-'Author's Personal Copy'.Pdf
    This article was originally published in Treatise on Geochemistry, Second Edition published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non- commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial Warren P.H., and Taylor G.J. (2014) The Moon. In: Holland H.D. and Turekian K.K. (eds.) Treatise on Geochemistry, Second Edition, vol. 2, pp. 213-250. Oxford: Elsevier. © 2014 Elsevier Ltd. All rights reserved. Author's personal copy 2.9 The Moon PH Warren, University of California, Los Angeles, CA, USA GJ Taylor, University of Hawai‘i, Honolulu, HI, USA ã 2014 Elsevier Ltd. All rights reserved. This article is a revision of the previous edition article by P. H. Warren, volume 1, pp. 559–599, © 2003, Elsevier Ltd. 2.9.1 Introduction: The Lunar Context 213 2.9.2 The Lunar Geochemical Database 214 2.9.2.1 Artificially Acquired Samples 214 2.9.2.2 Lunar Meteorites 214 2.9.2.3 Remote-Sensing Data 215 2.9.3 Mare Volcanism
    [Show full text]
  • Rare Earth Elements in Planetary Crusts: Insights from Chemically Evolved Igneous Suites on Earth and the Moon
    minerals Article Rare Earth Elements in Planetary Crusts: Insights from Chemically Evolved Igneous Suites on Earth and the Moon Claire L. McLeod 1,* and Barry J. Shaulis 2 1 Department of Geology and Environmental Earth Sciences, 203 Shideler Hall, Miami University, Oxford, OH 45056, USA 2 Department of Geosciences, Trace Element and Radiogenic Isotope Lab (TRaIL), University of Arkansas, Fayetteville, AR 72701, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-513-529-9662 Received: 5 July 2018; Accepted: 8 October 2018; Published: 16 October 2018 Abstract: The abundance of the rare earth elements (REEs) in Earth’s crust has become the intense focus of study in recent years due to the increasing societal demand for REEs, their increasing utilization in modern-day technology, and the geopolitics associated with their global distribution. Within the context of chemically evolved igneous suites, 122 REE deposits have been identified as being associated with intrusive dike, granitic pegmatites, carbonatites, and alkaline igneous rocks, including A-type granites and undersaturated rocks. These REE resource minerals are not unlimited and with a 5–10% growth in global demand for REEs per annum, consideration of other potential REE sources and their geological and chemical associations is warranted. The Earth’s moon is a planetary object that underwent silicate-metal differentiation early during its history. Following ~99% solidification of a primordial lunar magma ocean, residual liquids were enriched in potassium, REE, and phosphorus (KREEP). While this reservoir has not been directly sampled, its chemical signature has been identified in several lunar lithologies and the Procellarum KREEP Terrane (PKT) on the lunar nearside has an estimated volume of KREEP-rich lithologies at depth of 2.2 × 108 km3.
    [Show full text]
  • Orbit and Spin
    Orbit and Spin Overview: A whole-body activity that explores the relative sizes, distances, orbit, and spin of the Sun, Earth, and Moon. Target Grade Level: 3-5 Estimated Duration: 2 40-minute sessions Learning Goals: Students will be able to… • compare the relative sizes of the Earth, Moon, and Sun. • contrast the distance between the Earth and Moon to the distance between the Earth and Sun. • differentiate between the motions of orbit and spin. • demonstrate the spins of the Earth and the Moon, as well as the orbits of the Earth around the Sun, and the Moon around the Earth. Standards Addressed: Benchmarks (AAAS, 1993) The Physical Setting, 4A: The Universe, 4B: The Earth National Science Education Standards (NRC, 1996) Physical Science, Standard B: Position and motion of objects Earth and Space Science, Standard D: Objects in the sky, Changes in Earth and sky Table of Contents: Background Page 1 Materials and Procedure 5 What I Learned… Science Journal Page 14 Earth Picture 15 Sun Picture 16 Moon Picture 17 Earth Spin Demonstration 18 Moon Orbit Demonstration 19 Extensions and Adaptations 21 Standards Addressed, detailed 22 Background: Sun The Sun is the center of our Solar System, both literally—as all of the planets orbit around it, and figuratively—as its rays warm our planet and sustain life as we know it. The Sun is very hot compared to temperatures we usually encounter. Its mean surface temperature is about 9980° Fahrenheit (5800 Kelvin) and its interior temperature is as high as about 28 million° F (15,500,000 Kelvin).
    [Show full text]
  • GCSE Astronomy Course Sample N Section 3 Topic 2 N the Moon’S Orbit
    Sample of the GCSE Astronomy Course from Section 3 Topic 2 The Moon’s orbit Introduction We can see that the Moon changes its appearance by the day. In this topic you will study the orbit of the Moon and the changes that this brings about. You will learn about the phases of the Moon, why you can only see one side of the Moon from Earth, and what gives rise to our ability to see a small fraction of the far side. You will probably need 2 hours to complete this topic. Objectives When you have completed this topic you will be able to: n explain the rotation and revolution (orbit) of the Moon n describe the phases of the lunar cycle n explain the synchronous nature of the Moon’s orbit and rotation n explain the causes of lunar libration and its effect on the visibility of the lunar disc. Rotation and orbit of the Moon The Moon rotates about its axis in 27.3 days. The Moon orbits round the Earth in a period which is also 27.3 days. This means that we only see one side of the Moon (around 59 per cent of the lunar disc). The axis of the Moon has a slight tilt. The Moon’s equator is tilted by 1.5° to the plane of its orbit around the Earth. You may recall from Section 2 that the plane in which the Earth orbits the Sun is called the ecliptic. The plane of the Moon’s orbit is 5.1° to the ecliptic and the orbit is elliptical.
    [Show full text]
  • Pdf [35] Ghoddousi-Fard, R
    International Journal of Astronomy and Astrophysics, 2021, 11, 343-369 https://www.scirp.org/journal/ijaa ISSN Online: 2161-4725 ISSN Print: 2161-4717 Updating the Historical Perspective of the Interaction of Gravitational Field and Orbit in Sun-Planet-Moon System Yin Zhu Agriculture Department of Hubei Province, Wuhan, China How to cite this paper: Zhu, Y. (2021) Abstract Updating the Historical Perspective of the Interaction of Gravitational Field and Orbit Studying the two famous old problems that why the moon can move around in Sun-Planet-Moon System. International the Sun and why the orbit of the Moon around the Earth cannot be broken Journal of Astronomy and Astrophysics, = 2 11, 343-369. off by the Sun under the condition calculating with F GMm R , the at- https://doi.org/10.4236/ijaa.2021.113016 tractive force of the Sun on the Moon is almost 2.2 times that of the Earth, we found that the planet and moon are unified as one single gravitational unit Received: May 17, 2021 2 Accepted: July 20, 2021 which results in that the Sun cannot have the force of F= GMm R on the Published: July 23, 2021 moon. The moon is moved by the gravitational unit orbiting around the Sun. It could indicate that the gravitational field of the moon is limited inside the Copyright © 2021 by author(s) and Scientific Research Publishing Inc. unit and the gravitational fields of both the planet and moon are unified as This work is licensed under the Creative one single field interacting with the Sun.
    [Show full text]
  • Moon-Earth-Sun: the Oldest Three-Body Problem
    Moon-Earth-Sun: The oldest three-body problem Martin C. Gutzwiller IBM Research Center, Yorktown Heights, New York 10598 The daily motion of the Moon through the sky has many unusual features that a careful observer can discover without the help of instruments. The three different frequencies for the three degrees of freedom have been known very accurately for 3000 years, and the geometric explanation of the Greek astronomers was basically correct. Whereas Kepler’s laws are sufficient for describing the motion of the planets around the Sun, even the most obvious facts about the lunar motion cannot be understood without the gravitational attraction of both the Earth and the Sun. Newton discussed this problem at great length, and with mixed success; it was the only testing ground for his Universal Gravitation. This background for today’s many-body theory is discussed in some detail because all the guiding principles for our understanding can be traced to the earliest developments of astronomy. They are the oldest results of scientific inquiry, and they were the first ones to be confirmed by the great physicist-mathematicians of the 18th century. By a variety of methods, Laplace was able to claim complete agreement of celestial mechanics with the astronomical observations. Lagrange initiated a new trend wherein the mathematical problems of mechanics could all be solved by the same uniform process; canonical transformations eventually won the field. They were used for the first time on a large scale by Delaunay to find the ultimate solution of the lunar problem by perturbing the solution of the two-body Earth-Moon problem.
    [Show full text]
  • Effects of the Moon on the Earth in the Past, Present, and Future
    Effects of the Moon on the Earth in the Past, Present, and Future Rina Rast*, Sarah Finney, Lucas Cheng, Joland Schmidt, Kessa Gerein, & Alexandra Miller† Abstract The Moon has fascinated human civilization for millennia. Exploration of the lunar surface played a pioneering role in space exploration, epitomizing the heights to which modern science could bring mankind. In the decades since then, human interest in the Moon has dwindled. Despite this fact, the Moon continues to affect the Earth in ways that seldom receive adequate recognition. This paper examines the ways in which our natural satellite is responsible for the tides, and also produces a stabilizing effect on Earth’s rotational axis. In addition, phenomena such as lunar phases, eclipses and lunar libration will be explained. While investigating the Moon’s effects on the Earth in the past and present, it is hoped that human interest in it will be revitalized as it continues to shape life on our blue planet. Keywords: Moon, Earth, tides, Earth’s axis, lunar phases, eclipses, seasons, lunar libration Introduction lunar phases, eclipses and libration. In recognizing and propagating these effects, the goal of this study is to rekindle the fascination humans once held for the Moon Decades have come and gone since humans’ fascination and space exploration in general. with the Moon galvanized exploration of the galaxy and observation of distant stars. During the Space Race of the 1950s and 1960s, nations strived and succeeded in reaching Four Prominent Lunar Effects on Earth Earth’s natural satellite to propel mankind to new heights. Although this interest has dwindled and humans have Effect on Oceans and Tides largely distanced themselves from the Moon’s relevance, its effects on Earth remain as far-reaching as ever.
    [Show full text]
  • Glossary of Lunar Terminology
    Glossary of Lunar Terminology albedo A measure of the reflectivity of the Moon's gabbro A coarse crystalline rock, often found in the visible surface. The Moon's albedo averages 0.07, which lunar highlands, containing plagioclase and pyroxene. means that its surface reflects, on average, 7% of the Anorthositic gabbros contain 65-78% calcium feldspar. light falling on it. gardening The process by which the Moon's surface is anorthosite A coarse-grained rock, largely composed of mixed with deeper layers, mainly as a result of meteor­ calcium feldspar, common on the Moon. itic bombardment. basalt A type of fine-grained volcanic rock containing ghost crater (ruined crater) The faint outline that remains the minerals pyroxene and plagioclase (calcium of a lunar crater that has been largely erased by some feldspar). Mare basalts are rich in iron and titanium, later action, usually lava flooding. while highland basalts are high in aluminum. glacis A gently sloping bank; an old term for the outer breccia A rock composed of a matrix oflarger, angular slope of a crater's walls. stony fragments and a finer, binding component. graben A sunken area between faults. caldera A type of volcanic crater formed primarily by a highlands The Moon's lighter-colored regions, which sinking of its floor rather than by the ejection of lava. are higher than their surroundings and thus not central peak A mountainous landform at or near the covered by dark lavas. Most highland features are the center of certain lunar craters, possibly formed by an rims or central peaks of impact sites.
    [Show full text]
  • Analytical Formulation of Lunar Cratering Asymmetries Nan Wang (王楠) and Ji-Lin Zhou (周济林)
    A&A 594, A52 (2016) Astronomy DOI: 10.1051/0004-6361/201628598 & c ESO 2016 Astrophysics Analytical formulation of lunar cratering asymmetries Nan Wang (王`) and Ji-Lin Zhou (hN林) School of Astronomy and Space Science and Key Laboratory of Modern Astronomy and Astrophysics in Ministry of Education, Nanjing University, 210046 Nanjing, PR China e-mail: [email protected] Received 28 March 2016 / Accepted 3 July 2016 ABSTRACT Context. The cratering asymmetry of a bombarded satellite is related to both its orbit and impactors. The inner solar system im- pactor populations, that is, the main-belt asteroids (MBAs) and the near-Earth objects (NEOs), have dominated during the late heavy bombardment (LHB) and ever since, respectively. Aims. We formulate the lunar cratering distribution and verify the cratering asymmetries generated by the MBAs as well as the NEOs. Methods. Based on a planar model that excludes the terrestrial and lunar gravitations on the impactors and assuming the impactor encounter speed with Earth venc is higher than the lunar orbital speed vM, we rigorously integrated the lunar cratering distribution, and derived its approximation to the first order of vM=venc. Numerical simulations of lunar bombardment by the MBAs during the LHB were performed with an Earth–Moon distance aM = 20−60 Earth radii in five cases. Results. The analytical model directly proves the existence of a leading/trailing asymmetry and the absence of near/far asymmetry. The approximate form of the leading/trailing asymmetry is (1+A1 cos β), which decreases as the apex distance β increases. The numer- ical simulations show evidence of a pole/equator asymmetry as well as the leading/trailing asymmetry, and the former is empirically described as (1 + A2 cos 2'), which decreases as the latitude modulus j'j increases.
    [Show full text]
  • Lab # 3: Phases of the Moon
    Name(s): Date: 3 Phases of the Moon 3.1 Introduction Every once in a while, your teacher or TA is confronted by a student with the question “Why can I see the Moon today, is something wrong?”. Surprisingly, many students have never noticed that the Moon is visible in the daytime. The reason they are surprised is that it confronts their notion that the shadow of the Earth is the cause of the phases–it is obvious to them that the Earth cannot be causing the shadow if the Moon, Sun and Earth are simultaneously in view! Maybe you have a similar idea. You are not alone, surveys of science knowledge show that the idea that the shadow of the Earth causes lunar phases is one of the most common misconceptions among the general public. Today, you will learn why the Moon has phases, the names of these phases, and the time of day when these phases are visible. Even though they adhered to a “geocentric” (Earth-centered) view of the Universe, it may surprise you to learn that the ancient Greeks completely understood why the Moon has phases. In fact, they noticed during lunar eclipses (when the Moon does pass through the Earth’s shadow) that the shadow was curved, and that the Earth, like the Moon, must be spherical. The notion that Columbus feared he would fall of the edge of the flat Earth is pure fantasy—it was not a flat Earth that was the issue of the time, but how big the Earth actually was that made Columbus’ voyage uncertain.
    [Show full text]