Exposure Keratopathy After Cosmetic CO2 Laser Skin Resurfacing

Total Page:16

File Type:pdf, Size:1020Kb

Exposure Keratopathy After Cosmetic CO2 Laser Skin Resurfacing Cornea 19(6): 846–848, 2000. © 2000 Lippincott Williams & Wilkins, Inc., Philadelphia Exposure Keratopathy After Cosmetic CO2 Laser Skin Resurfacing Anita I. Miedziak, M.D., John D. Gottsch, M.D., and Nicholas T. Iliff, M.D. Purpose. To report two cases of exposure keratopathy after cos- had also a full face lift with bilateral lower lid blepharoplasty 25 metic CO2 laser skin resurfacing. Methods. Two patients pre- years before this evaluation. Patient’s past and present medical sented with bilateral intrapalpebral epitheliopathy. They were ex- history was negative. Her best corrected visual acuity was 20/20 amined, treated, and followed for several weeks. Results. Nonsur- OD and 20/30 OS. Her external examination revealed a 3-mm gical treatment options, including a variety of lubricants, punctal bilateral lower lid retraction, mild bilateral ptosis (Fig. 1A), and a plugs, and lid taping, did not lead to a complete resolution of 1-mm lagophthalmos OU. There was a mild, bilateral lower lid symptoms. Surgical options were recommended. Conclusion. Ex- posure keratopathy should be recognized as a potential side effect laxity noted (tested by distraction test) with slight left lower punc- tal ectropion. Otherwise lid approximation to the globe was good of not only incisional lid surgery but also facial CO2 laser skin resurfacing procedures. OU. Pupillary and visual field examinations were normal. Con- Key Words: Exposure keratopathy—CO2 laser skin resurfacing— junctivae were 2+ injected OD and 1+ OS. Corneas manifested Cosmetic lid surgery—Iatrogenic keratopathy—Lower lid retrac- intrapalpebral punctate epitheliopathy that was more prominent in tion. the right eye (Fig. 2). Corneal stroma, endothelium, and anterior segment were normal bilaterally. Funduscopic examination was unremarkable. Basal secretion test was 9 mm OD and 4 mm OS. The patient was treated with aggressive lubrication in the form of Exposure keratopathy can manifest itself as burning, stinging, nonpreserved artificial tears every 1–2 hours while awake (Refresh itching, foreign body sensation, photophobia, soreness, tearing, Plus and Celluvisc; Allergan, Irvine, CA, U.S.A.), a lubricating blurred vision, or ocular fatigue. Excessive exposure is usually a ointment at bedtime, and overnight lid taping. Bilateral upper and 1 result of inadequate lid apposition or diminished blink reflex. lower punctal plugs were originally inserted, but the patient de- Thyroid eye disease, facial nerve palsy, and ectropion are the most veloped excessive tearing and the upper plugs were removed. Over 1,2 common causes of exposure keratopathy. Iatrogenic causes re- a several week period the patient’s symptoms improved somewhat lated to cosmetic lid and facial surgery are also known etiolo- but she still suffered irritation (corneal staining was completely 3,4 gies. absent only when all four plugs were in place). She was unable to We report two cases of exposure keratopathy arising as com- decrease the frequency of topical lubricating medications to <4–6 plications of CO2 laser cosmetic lower lid and mid-facial surgery. times a day without recurrence of symptoms. Exposure keratopathy resulting from laser skin resurfacing is not well documented in the ophthalmic literature as a possible side effect of this procedure. CASE 1 A 73-year-old woman presented reporting bilateral redness, tearing, photophobia, and ocular pain, especially upon awakening. These symptoms had persisted for 2 years, but she noticed a sig- nificant increase in their severity over 4 weeks before presentation. Her past ocular history was pertinent for a bilateral upper blepha- roplasty 10 years previously, a CO2 laser skin resurfacing 2 years prior, and another resurfacing 4 weeks before presentation. She Submitted October 27, 1999. Revision received February 23, 2000. Ac- cepted February 26, 2000. From the Cornea and External Diseases Department (A.I.M, J.D.G.) and the Oculoplastics Department (N.T.I.), The Wilmer Eye Institute, The Johns Hopkins University, Baltimore, Maryland, U.S.A. Address correspondence and reprint request to Dr. J. Gottsch, Cornea Department, The Wilmer Eye Institute, The Johns Hopkins University, 600 N. Wolfe Street, Maummene 327, Baltimore, MD 21205, U.S.A. E-mail: FIG. 1. External photograph presenting lower lid retractions in pa- [email protected] tientsfromcase1(A)and2(B). 846 EXPOSURE KERATOPATHY AFTER COSMETIC CO2 LASER SKIN RESURFACING 847 CASE 2 A 68-year-old woman presented reporting a decrease in visual acuity in her right eye. She had noticed constant bilateral dryness and intolerance of daily wear soft contact lenses that she had successfully worn in the past. Symptoms were present for 1 year but increased over 3 months before presentation. Contact lenses were discontinued a year before her initial evaluation at our insti- tution. The patient’s surgical history was pertinent for a full face lift 20 years previously. Her past ocular history was positive for bilateral upper and lower blepharoplasty 10 years prior. She also had a combined face lift and CO2 laser total face skin resurfacing 1 year before presentation. She used artificial tears four times a day OU and a lubricating ointment at bedtime. Her best corrected visual acuity was 20/50 OD and 20/25 OS. She demonstrated bilateral lower lid retraction (3 mm OD and 2 mm OS), and mild ptosis OU (Fig. 1B). There was no lid laxity noted by snap-back testing. A mild lagophthalmos was present OD. The patient had prominent eyes with retrusion of the inferior orbital rims. Pupillary and visual field examinations were normal. Conjunctivae were 1+ injected OU. Corneas manifested bilateral intrapalpebral punctate epitheliopathy. Heaped-up corneal epithelium, mild subepithelial haze, and fibrosis were also noted OD (Fig. 3). Corneal stroma, FIG. 3. Case 2. Narrow (A) and wide (B) beam slit-lamp photographs presenting findings of intrapalpebral epitheliopathy, heaped-up epi- thelium, and subepithelial haze OD. endothelium, anterior segment, and fundi were normal bilaterally. Corneal sensation and tear break-up times were normal in both eyes as well as basal secretion test (>10 mm bilaterally). The patient’s artificial tears regimen (Refresh Plus) was increased to every 2 hours while awake and the bedtime ointment was contin- ued. Bilateral lower lid silicone punctal plugs were used and the patient’s symptoms improved but did not completely resolve. She was unable to resume her contact lens wear. Midface lift was recommended for the management of the lower lid retraction. DISCUSSION Exposure keratopathy results from neurologic or mechanical disorders leading to an increase in the palpebral fissure width and/or inadequate lid closure.1,2 Evaporation of tear film is directly related to exposed ocular surface area and to the amount and quality of tears produced. Excessive exposure of a cornea to the external environment can lead to desiccation and loss of surface epithelium. Epithelial punctate keratopathy of intrapalpebral cor- FIG. 2. Case 1. Wide beam slit lamp photograph of fluorescein nea is the usual initial manifestation of the disease; later punctate stained cornea with bilateral interpalpebral punctate epitheliopathy lesions may coalesce forming chronic, nonhealing epithelial de- OD (A) and OS (B). fects. Infectious keratitis, corneal vascularization, or melting can Cornea, Vol. 19, No. 6, 2000 848 A.I. MIEDZIAK ET AL. subsequently develop. Unless a prompt and appropriate treatment and the suborbital orbicularis fat) can help to restore a more nor- is undertaken, permanent scarring or visual loss can occur. mal lower lid position.8 These two cases represent a milder (punctate keratitis, case 1) A complete ocular examination should be considered before any 9 and more severe (corneal subepithelial fibrosis, case 2) spectrum elective periocular surgery, including CO2 laser skin resurfacing. of corneal complications due to lower lid retraction. The proce- Pertinent aspects of ocular history and any risk factors for potential dure, which appeared to precipitate the symptoms of exposure in postoperative ocular problems should be identified. The presence these cases, was CO2 laser skin resurfacing of the lower lids and of dry eye syndrome, thyroid disorder, lower lid laxity, myopia, face. The CO2 laser application vaporizes the epidermis and ther- shallow orbits, maxillary hypoplasia, or nerve palsy (fifth and/or mally shrinks papillary dermis, causing an increase in skin elas- seventh nerve) should be sought, documented, and assessed to ticity and a decrease in the amount of wrinkling.5 A recent histo- avoid complications such as those presented in this short case logic analysis of eyelid skin after CO2 laser resurfacing by Mannor series. The history of prior cosmetic lid or facial surgeries should et al.6 reviewed progression of skin changes occurring after this be elicited and their potential ocular consequences should be type of procedure. It described early disorganization of both epi- evaluated and incorporated into the final decision making process dermis and dermis, tissue edema, and disruption of elastin fibers. when any additional periocular procedures are contemplated. These changes were mostly resolved 3 months posttreatment, re- vealing reorganized epidermis and dermis, flattened rete pegs, and REFERENCES new collagen and elastin deposits. These specific changes in skin architecture result in a smoother-looking and thicker skin. But 1. Donzis PB, Mondino BJ. Management of noninfectious corneal ulcers. thermal shrinkage of collagen fibers can also cause up to 25% Surv Ophthalmol 1987;32:94–110. reduction in the surface area of treated skin7 that could lead to the 2. Murillo-Lopez F, Pflugfelder SC. Dry eye. In: Krachmer JH, Mannis MJ, Holland EJ, eds. Cornea and external diseases: clinical diagnosis secondary lower lid retraction noted in the two reported cases. and management. St. Louis: Mosby-Year Book, Inc., 1998:663–86. Both patients had undergone multiple cosmetic surgeries. Each 3. Hamako C, Baylis HI. Lower eyelid retraction after blepharoplasty. consecutive cosmetic lid procedure increases the risk of corneal Am J Ophthalmol 1980;89:517–21. exposure. The repetitive horizontal and vertical lid shortening lim- 4.
Recommended publications
  • In Vivo Confocal Microscopy of Toxic Keratopathy
    Eye (2017) 31, 140–147 OPEN Official journal of The Royal College of Ophthalmologists www.nature.com/eye CLINICAL STUDY In vivo confocal Y Chen, Q Le, J Hong, L Gong and J Xu microscopy of toxic keratopathy Abstract Purpose To explore the morphological although a wide variety of chemicals and characteristics of toxic keratopathy (TK), systemic medications can also cause TK.1 Cases which clinically presented as superficial of drug-induced TK have been prevalent in punctate keratopathy (SPK), with the ophthalmic clinics for two reasons. On the one application of in vivo laser-scanning confocal hand, most of the topically applied drugs, either microscopy (LSCM), and evaluate its potential prescribed or sold over-the-counter, are capable in the early diagnosis of TK. of causing corneal damage at sufficient Patients and methods This was a cross- concentrations.2 Patients who have glaucoma, sectional study involving 16 patients with viral keratitis, keratoconjunctivitis sicca or other TK and 16 patients with dry eye (DE), ocular surface conditions, generally need demonstrating SPK under slit-lamp multidrug remedies, and these pre-existing observation, and 10 normal eyes were conditions may especially predispose them to enrolled in the study. All participants drug toxicity. The preservative in the eye drops, underwent history interviews, fluorescein mainly benzalkonium chloride (BAC), is another staining, tear film break-up time (BUT) tests, important cause for epithelial lesions. On the Schirmer tests, and in vivo LSCM. other hand, the use of eye drops for a week or Results The area grading of corneal more may cause TK, which can often be confused fluorescein punctate staining was higher in with the worsening of the patient’s initial disease the TK group than the DE group.
    [Show full text]
  • Refractive Surgery Faqs. Refractive Surgery the OD's Role in Refractive
    9/18/2013 Refractive Surgery Refractive Surgery FAQs. Help your doctor with refractive surgery patient education Corneal Intraocular Bill Tullo, OD, FAAO, LASIK Phakic IOL Verisys Diplomate Surface Ablation Vice-President of Visian PRK Clinical Services LASEK CLE – Clear Lens Extraction TLC Laser Eye Centers Epi-LASIK Cataract Surgery AK - Femto Toric IOL Multifocal IOL ICRS - Intacs Accommodative IOL Femtosecond Assisted Inlays Kamra The OD’s role in Refractive Surgery Refractive Error Determine the patient’s interest Myopia Make the patient aware of your ability to co-manage surgery Astigmatism Discuss advancements in the field Hyperopia Outline expectations Presbyopia/monovision Presbyopia Enhancements Risks Make a recommendation Manage post-op care and expectations Myopia Myopic Astigmatism FDA Approval Common Use FDA Approval Common Use LASIK: 1D – 14D LASIK: 1D – 8D LASIK: -0.25D – -6D LASIK: -0.25D – -3.50D PRK: 1D – 13D PRK: 1D – 6D PRK: -0.25D – -6D PRK: -0.25D – -3.50D Intacs: 1D- 3D Intacs: 1D- 3D Intacs NONE Intacs: NONE P-IOL: 3D- 20D P-IOL: 8D- 20D P-IOL: NONE P-IOL: NONE CLE/CAT: any CLE/CAT: any CLE/CAT: -0.75D - -3D CLE/CAT: -0.75D - -3D 1 9/18/2013 Hyperopia Hyperopic Astigmatism FDA Approval Common Use FDA Approval Common Use LASIK: 0.25D – 6D LASIK: 0.25D – 4D LASIK: 0.25D – 6D LASIK: 0.25D – 4D PRK: 0.25D – 6D PRK: 0.25D – 4D PRK: 0.25D – 6D PRK: 0.25D – 4D Intacs: NONE Intacs: NONE Intacs: NONE Intacs: NONE P-IOL: NONE P-IOL: NONE P-IOL: NONE P-IOL:
    [Show full text]
  • Posterior Cornea and Thickness Changes After Scleral Lens Wear in Keratoconus Patients
    Contact Lens and Anterior Eye xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Contact Lens and Anterior Eye journal homepage: www.elsevier.com/locate/clae Posterior cornea and thickness changes after scleral lens wear in keratoconus patients Maria Serramitoa, Carlos Carpena-Torresa, Jesús Carballoa, David Piñerob,c, Michael Lipsond, ⁎ Gonzalo Carracedoa,e, a Department of Optics II (Optometry and Vision), Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain b Group of Optics and Visual Perception, Department of Optics, Pharmacology and Anatomy, University of Alicante, Spain c Department of Ophthalmology (OFTALMAR), Vithas Medimar International Hospital, Alicante, Spain d Department of Ophthalmology and Visual Science, University of Michigan, Northville, MI, USA e Ocupharm Group Research, Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain ARTICLE INFO ABSTRACT Keywords: Purpose: To evaluate the changes in the corneal thickness, anterior chamber depth and posterior corneal cur- Scleral lenses vature and aberrations after scleral lens wear in keratoconus patients with and without intrastromal corneal ring Keratoconus segments (ICRS). Corneal curvature Methods: Twenty-six keratoconus subjects (36.95 ± 8.95 years) were evaluated after 8 h of scleral lens wear. Corneal aberrations The subjects were divided into two groups: those with ICRS (ICRS group) and without ICRS (KC group). The Anterior chamber study variables evaluated before and immediately after scleral lens wear included corneal thickness evaluated in Corneal thickness different quadrants, posterior corneal curvature at 2, 4, 6 and 8 mm of corneal diameter, posterior corneal aberrations for 4, 6 and 8 mm of pupil size and anterior chamber depth.
    [Show full text]
  • Diagnosis and Treatment of Neurotrophic Keratopathy
    An Evidence-based Approach to the Diagnosis and Treatment of Neurotrophic Keratopathy ACTIVITY DIRECTOR A CME MONOGRAPH Esen K. Akpek, MD This monograph was published by Johns Hopkins School of Medicine in partnership Wilmer Eye Institute with Catalyst Medical Education, LLC. It is Johns Hopkins School of Medicine not affiliated with JAMA medical research Baltimore, Maryland publishing. Visit catalystmeded.com/NK for online testing to earn your CME credit. FACULTY Natalie Afshari, MD Mina Massaro-Giordano, MD Shiley Eye Institute University of Pennsylvania School of Medicine University of California, San Diego Philadelphia, Pennsylvania La Jolla, California Nakul Shekhawat, MD, MPH Sumayya Ahmad, MD Wilmer Eye Institute Mount Sinai School of Medicine Johns Hopkins School of Medicine New York, New York Baltimore, Maryland Pedram Hamrah, MD, FRCS, FARVO Christopher E. Starr, MD Tufts University School of Medicine Weill Cornell Medical College Boston, Massachusetts New York, New York ACTIVITY DIRECTOR FACULTY Esen K. Akpek, MD Natalie Afshari, MD Mina Massaro-Giordano, MD Professor of Ophthalmology Professor of Ophthalmology Professor of Clinical Ophthalmology Director, Ocular Surface Diseases Chief of Cornea and Refractive Surgery University of Pennsylvania School and Dry Eye Clinic Vice Chair of Education of Medicine Wilmer Eye Institute Fellowship Program Director of Cornea Philadelphia, Pennsylvania Johns Hopkins School of Medicine and Refractive Surgery Baltimore, Maryland Shiley Eye Institute Nakul Shekhawat, MD, MPH University of California,
    [Show full text]
  • Medical Policy Gas Permeable Scleral Contact Lens
    Medical Policy Gas Permeable Scleral Contact Lens Table of Contents Policy: Commercial Coding Information Information Pertaining to All Policies Policy: Medicare Description References Authorization Information Policy History Policy Number: 371 BCBSA Reference Number: 9.03.25 Related Policies Corneal Topography/Computer-Assisted Corneal Topography/Photokeratoscopy, #301 Implantation of Intrastromal Corneal Ring Segments, #235 Policy Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Medicare HMO BlueSM and Medicare PPO BlueSM Members Rigid gas permeable scleral lens may be considered MEDICALLY NECESSARY for patients who have not responded to topical medications or standard spectacle or contact lens fitting, for the following conditions: Corneal ectatic disorders (e.g., keratoconus, keratoglubus, pellucid marginal degeneration, Terrien’s marginal degeneration, Fuchs’ superficial marginal keratitis, post-surgical ectasia); Corneal scarring and/or vascularization; Irregular corneal astigmatism (e.g., after keratoplasty or other corneal surgery); Ocular surface disease (e.g., severe dry eye, persistent epithelial defects, neurotrophic keratopathy, exposure keratopathy, graft vs. host disease, sequelae of Stevens Johnson syndrome, mucus membrane pemphigoid, post-ocular surface tumor excision, post-glaucoma filtering surgery) with pain and/or decreased visual acuity. Prior Authorization Information Commercial Members: Managed Care (HMO and POS) Prior authorization is NOT required. Commercial Members: PPO, and Indemnity
    [Show full text]
  • Eye Care in the Intensive Care Unit (ICU)
    Ophthalmic Services Guidance Eye Care in the Intensive Care Unit (ICU) June 2017 18 Stephenson Way, London, NW1 2HD T. 020 7935 0702 [email protected] rcophth.ac.uk @RCOphth © The Royal College of Ophthalmologists 2017 All rights reserved For permission to reproduce any of the content contained herein please contact [email protected] Contents Section page 1 Summary 3 2 Introduction 3 Protecting the eye of the vulnerable patient 4 3 Identifying disease of the eye 6 Exposure keratopathy and corneal abrasion 6 Chemosis 8 Microbial infections 8 4 Rare eye conditions in ICU 10 Red eye in a septic patient: possible endogenous endophthalmitis 10 Other problems 11 5 Delivering treatment to the eye when it is prescribed 11 Red eye in ICU patient 12 6. Systemic fungal infection and the eye for intensivists 14 7. Tips for ophthalmologists seeing patients in ICU 14 8. Authors 16 9. References 17 Date of review: July 2020 2017/PROF/350 2 1 Summary This document aims to provide advice and information for clinical staff who are involved in eye care in the ICU. It is primarily intended to help non-ophthalmic ICU staff to: 1. protect the eye in vulnerable patients, thus preventing ICU-related eye problems 2. identify disease affecting the eye in ITU patients, and specifically those which might need ophthalmic referral 3. deliver treatment to the eye when it is prescribed It concentrates primarily on the common problems of the eye surface but also touches on other less common conditions. As such, it should also be helpful to those ophthalmologists asked for advice about ICU patients.
    [Show full text]
  • Toxic Keratopathy Following the Use of Alcohol-Containing Antiseptics in Nonocular Surgery
    Research Brief Report Toxic Keratopathy Following the Use of Alcohol-Containing Antiseptics in Nonocular Surgery Hsin-Yu Liu, MD; Po-Ting Yeh, MD; Kuan-Ting Kuo, MD; Jen-Yu Huang, MD; Chang-Ping Lin, MD; Yu-Chih Hou, MD IMPORTANCE Corneal abrasion is the most common ocular complication associated with nonocular surgery, but toxic keratopathy is rare. OBSERVATION Three patients developed severe toxic keratopathy after orofacial surgery on the left side with general anesthesia. All patients underwent surgery in the right lateral tilt position with ocular protection but reported irritation and redness in their right eyes after the operation. Alcohol-containing antiseptic solutions were used for presurgical preparation. Ophthalmic examination showed decreased visual acuity ranging from 20/100 to 20/400, corneal edema and opacity, anterior chamber reaction, or stromal neovascularization in the patients’ right eyes. Confocal microscopy showed moderate to severe loss of corneal endothelial cells in all patients. Despite prompt treatment with topical corticosteroids, these Author Affiliations: Department of Ophthalmology, National Taiwan 3 patients eventually required cataract surgery, endothelial keratoplasty, or penetrating University Hospital, College of keratoplasty, respectively. After the operation, the patients’ visual acuity improved to 20/30 Medicine, National Taiwan University, or 20/40. Data analysis was conducted from December 6, 2010, to June 15, 2015. Taipei, Taiwan (Liu, Yeh, Huang, Lin, Hou); Department of Pathology, National Taiwan University Hospital, CONCLUSIONS AND RELEVANCE Alcohol-containing antiseptic solutions may cause severe College of Medicine, National Taiwan toxic keratopathy; this possibility should be considered in orofacial surgery management. University, Taipei, Taiwan (Kuo). Using alcohol-free antiseptic solutions in the periocular region and taking measures to protect Corresponding Author: Yu-Chih the dependent eye in the lateral tilt position may reduce the risk of severe corneal injury.
    [Show full text]
  • Refractive Management/Intervention 2017-2019
    Academy MOC Essentials® Practicing Ophthalmologists Curriculum 2017–2019 Refractive Management/Intervention *** Refractive Management/Intervention 2 © AAO 2017-2019 Practicing Ophthalmologists Curriculum Disclaimer and Limitation of Liability As a service to its members and American Board of Ophthalmology (ABO) diplomates, the American Academy of Ophthalmology has developed the Practicing Ophthalmologists Curriculum (POC) as a tool for members to prepare for the Maintenance of Certification (MOC) -related examinations. The Academy provides this material for educational purposes only. The POC should not be deemed inclusive of all proper methods of care or exclusive of other methods of care reasonably directed at obtaining the best results. The physician must make the ultimate judgment about the propriety of the care of a particular patient in light of all the circumstances presented by that patient. The Academy specifically disclaims any and all liability for injury or other damages of any kind, from negligence or otherwise, for any and all claims that may arise out of the use of any information contained herein. References to certain drugs, instruments, and other products in the POC are made for illustrative purposes only and are not intended to constitute an endorsement of such. Such material may include information on applications that are not considered community standard, that reflect indications not included in approved FDA labeling, or that are approved for use only in restricted research settings. The FDA has stated that it is the responsibility of the physician to determine the FDA status of each drug or device he or she wishes to use, and to use them with appropriate patient consent in compliance with applicable law.
    [Show full text]
  • Overflow Tearing in Infants
    The Tearing Patient: Diagnosis and Management Written By: Kristina M. Price, MD, and Michael J. Richard, MD Edited by Ingrid U. Scott, MD, MPH, and Sharon Fekrat, MD Excessive tearing, also known as epiphora, is due to a disruption in the balance between tear production and tear loss. Numerous etiologies lead to an excess of tears, and there are a number of ways to diagnose and treat this condition. Currently, there is not a firm consensus on the best way to evaluate the tearing patient. However, a simple algorithm may aid the general ophthalmologist in the evaluation and management of this common condition. Anatomy and Physiology of the Lacrimal System The main lacrimal gland, the accessory lacrimal glands and the conjunctival epithelium are responsible for producing tears. Tears are spread over the surface of the eye by blinking to establish the precorneal tear film. Each contraction of the orbicularis muscle helps move the tears across the ocular surface toward the lacrimal drainage system. Ideally, the basal tear secretion rate equals the rate of tear drainage and evaporation. Basal tear secretion occurs at a rate of about 1.2 µl/minute, although reflexive tear secretion can increase this up to 100-fold. Tears enter the puncta at a rate of 0.6 µl/min; about 90 percent are reabsorbed through the nasolacrimal duct mucosa and 10 percent drain into the floor of the nasal cavity. Tears evaporate from the ocular surface at a variable rate, but ideally tear evaporation roughly equals the difference between basal secretion and drainage. The ocular surface (including the lacrimal lakes in the conjunctival fornices, the marginal tear strip and the precorneal tear film) can hold only 8 µl of tears at any time.
    [Show full text]
  • Dr. Bozung, Not Your Average Dry
    9/11/2019 Not Your Average Dry Eye WHAT IS DRY EYE? Alison Bozung, OD, FAAO Bascom Palmer Eye Institute 1 2 Dry Eye Dry Eye • TFOS DEWS II, 2017 • Symptoms – “A multifactorial disease of the ocular surface characterized by a loss of homeostasis of the tear film, and accompanied by ocular – Redness, burning, blurred vision, pain, tearing symptoms, in which tear film instability and hyperosmolarity, ocular surface inflammation and damage, and neurosensory abnormalities play etiological roles.” • Prevalence – Anywhere from 5-50% of individuals have symptoms of dry eye (TFOS DEWS II) Thinkaboutyoureyes.com, https://medicaldialogues.in/new-delhi-20-people-develop-blur-vision-after-being-given-contaminated-avastin-injection/, https://www.lasikmd.com/blog/the-risks- that-come-with-rubbing-your-eyes, https://www.powerofpositivity.com/10-things-that-cause-eye-pain/ 3 4 Dry Eye Dry Eye • Signs 1. Aqueous Deficient (ADDE) • Conjunctival injection, meibomian gland dysfunction, corneal and conjunctival staining, reduced tear prism, rapid tear break up, 2. Evaporative (EDE) corneal scarring and thinning 3. Mixed Does that explain everything..? https://www.eyedolatryblog.com/2011/12/patients-guide-to-dry-eye-syndrome_15.html, https://www.pharmaceutical-journal.com/eye-care/pharmacy-technicians-guide-blepharitis- managing-eyelid-inflammation/20203771.article?firstPass=false, 5 6 1 9/11/2019 Beyond your “Typical” Dry Eye • Today’s Discussion: 1. Exposure Keratopathy 2. Ocular Graft Versus Host Disease 3. Neurotrophic Keratopathy Craig JP et al. TFOS DEWS II report executive summary. Ocul Surf. 2017;15:802-812. 7 8 What defines exposure keratopathy? • Desiccation of the cornea occurring from inadequate eyelid closure or decreased blink frequency.
    [Show full text]
  • Scleral Lenses to the Rescue in the Management of Ocular Surface
    SCLERAL LENSES TO THE RESCUE IN THE Lindsay B. Howse, OD MANAGEMENT OF OCULAR SURFACE [email protected] DISEASE FINANCIAL DISCLOSURES None. OUTLINE •Overview of OSD & Dry eye • Definition • Types of OSD • Current OSD management options •Role of Scleral CLs in managing OSD • Benefits • Case examples • Short-term effects • Long-term effects •Fundamentals of Scleral CL fitting • Tips and tricks for an ideal fit OSD is “clinical damage to the intrapalpebral ocular surface or symptoms of such disruption for a variety of causes”. (AOA Optometric Clinical Practical Guidelines) WHAT IS OCULAR SURFACE DISEASE? Report of the International Dry Eye WorkShop 2007 “Dry eye is a multifactorial disease of the tears and ocular surface that results in symptoms of discomfort, visual disturbance and tear film instability with potential damage to the ocular surface. It is accompanied by increased osmolarity of the tear film and inflammation of the ocular surface”. (International Dry Eye Workshop 2007) WHAT IS DRY EYE DISEASE? Report of the International Dry Eye WorkShop 2007 TOOLS FOR MANAGING OSD/DRY EYE •Mild/Moderate Disease: • Environmental modifications • Artificial tears • Hot compresses • Omega-3 supplementation • Punctal plugs/punctal cautery • Steroids • Cyclosporine A • Lifitegrast • Tetracyclines •Severe Disease: • Autologous serum tears • Bandage soft contact lenses • Amniotic membranes • Surgical intervention (Tarsorrhaphy) • Scleral Contact Lenses http://www.boringchoreshandyman.com.au/portfolio/boring-chores-handyman-10/ SCLERAL LENSES
    [Show full text]
  • Controversies in Glaucoma Therapy
    Controversies in Glaucoma Therapy J. James Thimons, O.D.,FAAO Chairman, National Glaucoma Society Director, Glaucoma Institute @ Ophthalmic Consultants of Connecticutt 1. To Sleep Perchance to Dream! The Role of Sleep Dysfunction in Glaucoma To Sleep Perchance to Dream • Sleep Dysfunction: It’s Role in patient Health • Sleep Apnea: The Impact of sleep dysfunction in glaucoma TO SLEEP PERCHANCE TO DREAM • MOJON DS, etal • OPTIC NEUROPATHY / SLEEP APNEA • OPHTH 105:874-77 1998 • SEVEN PATIENTS • 3 SEVERE / NASAL STEPS 2 /ARCUATE DEFECT 3 • 2 MODERATE / ARCUATE DEFECT • 1 MILD • ETIOLOGY- DECREASED BLOOD FLOW Obstructive Sleep Apnea Bendel, R et al.( Mayo Clinic, Jacksonville) OAS- Repeated apnea episodes Daytime symptoms Daytime sleepiness Chronic fatigue Decreased cognitive function Etiology Collapse of the pharyngeal airway Last 10-60 seconds OSA Diagnosis Overnight polysomnography EEG, EMG, EOG EKG, Nasal buccal airflow,and pulse oximetry(arterial oxygen) Respiratory Disturbance Index 10 >= OASS 83 patients with apnea Outcomes Median age 62 Median RDI 37 Median IOP 16mmHg OSA • Outcomes • 2.4% patients with OHTN • 33% COAG • No relation to gender , age, or BMI • Relation between IOP increase and BMI level Sleep Apnea & NTG • Mojon DS et al; Ophthalmologica 2002 • 16 patients with NTG had PSN • RDI > defined as mild • < 45 - 0% • 46-64 - 50% • 65 & > 63% Sleep Apnea: The Silent Assassin • Co-Morbidities of Sleep apnea • Increased risk of CVA • Irregular Menstrual Cycles (40%) • Children May exhibit “ Failure to Thrive”: T & A
    [Show full text]