Medical Policy Gas Permeable Scleral Contact Lens

Total Page:16

File Type:pdf, Size:1020Kb

Medical Policy Gas Permeable Scleral Contact Lens Medical Policy Gas Permeable Scleral Contact Lens Table of Contents Policy: Commercial Coding Information Information Pertaining to All Policies Policy: Medicare Description References Authorization Information Policy History Policy Number: 371 BCBSA Reference Number: 9.03.25 Related Policies Corneal Topography/Computer-Assisted Corneal Topography/Photokeratoscopy, #301 Implantation of Intrastromal Corneal Ring Segments, #235 Policy Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Medicare HMO BlueSM and Medicare PPO BlueSM Members Rigid gas permeable scleral lens may be considered MEDICALLY NECESSARY for patients who have not responded to topical medications or standard spectacle or contact lens fitting, for the following conditions: Corneal ectatic disorders (e.g., keratoconus, keratoglubus, pellucid marginal degeneration, Terrien’s marginal degeneration, Fuchs’ superficial marginal keratitis, post-surgical ectasia); Corneal scarring and/or vascularization; Irregular corneal astigmatism (e.g., after keratoplasty or other corneal surgery); Ocular surface disease (e.g., severe dry eye, persistent epithelial defects, neurotrophic keratopathy, exposure keratopathy, graft vs. host disease, sequelae of Stevens Johnson syndrome, mucus membrane pemphigoid, post-ocular surface tumor excision, post-glaucoma filtering surgery) with pain and/or decreased visual acuity. Prior Authorization Information Commercial Members: Managed Care (HMO and POS) Prior authorization is NOT required. Commercial Members: PPO, and Indemnity Prior authorization is NOT required. Medicare Members: HMO BlueSM Prior authorization is NOT required. Medicare Members: PPO BlueSM Prior authorization is NOT required. 1 CPT Codes / HCPCS Codes / ICD-9 Codes The following codes are included below for informational purposes. Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member. A draft of future ICD-10 Coding related to this document, as it might look today, is included below for your reference. Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable. CPT Codes CPT codes: Code Description Prescription of optical and physical characteristics of and fitting of contact lens, with 92313 medical supervision of adaptation; corneoscleral lens Prescription of optical and physical characteristics of contact lens, with medical supervision of adaptation and direction of fitting by independent technician; 92317 corneoscleral lens 92071 Fitting of contact lens for treatment of ocular surface disease 92072 Fitting of contact lens for management of keratoconus, initial fitting Modification of contact lens (separate procedure), with medical supervision of 92325 adaptation HCPCS Codes HCPCS Code Description codes: S0515 Scleral lens, liquid bandage device, per lens V2531 Contact lens, sclera, gas permeable, per lens ICD-9 Diagnosis Codes ICD-9 Code Description Diagnosis Codes 367.22 Irregular astigmatism 370.60 Corneal neovascularization, unspecified 370.61 Localized vascularization of cornea 370.62 Pannus (corneal) 370.63 Deep vascularization of cornea 370.64 Ghost vessels (corneal) 371.00 Corneal opacity, unspecified 371.01 Minor opacity of cornea 371.02 Peripheral opacity of cornea 371.03 Central opacity of cornea 371.04 Adherent leucoma 371.40 Corneal degeneration, unspecified 371.42 Recurrent erosion of cornea 371.43 Band-shaped keratopathy 371.44 Other calcerous degenerations of cornea 371.45 Keratomalacia NOS 371.46 Nodular degeneration of cornea 371.48 Peripheral degenerations of cornea 371.49 Other corneal degenerations 371.60 Keratoconus, unspecified 2 371.61 Keratoconus, stable condition 371.62 Keratoconus, acute hydrops 371.70 Corneal deformity, unspecified 371.71 Corneal ectasia 371.72 Descemetocele 371.73 Corneal staphyloma 375.15 Tear film insufficiency, unspecified 694.61 Benign mucous membrane pemphigoid with ocular involvement 695.13 Stevens-Johnson syndrome 695.14 Stevens-Johnson syndrome-toxic epidermal necrolysis overlap syndrome 996.51 Mechanical complication due to corneal graft ICD-10 Diagnosis Codes ICD-10-CM Diagnosis codes: Code Description H04.121 Dry eye syndrome of right lacrimal gland H04.122 Dry eye syndrome of left lacrimal gland H04.123 Dry eye syndrome of bilateral lacrimal glands H04.129 Dry eye syndrome of unspecified lacrimal gland H16.401 Unspecified corneal neovascularization, right eye H16.402 Unspecified corneal neovascularization, left eye H16.403 Unspecified corneal neovascularization, bilateral H16.409 Unspecified corneal neovascularization, unspecified eye H16.411 Ghost vessels (corneal), right eye H16.412 Ghost vessels (corneal), left eye H16.413 Ghost vessels (corneal), bilateral H16.419 Ghost vessels (corneal), unspecified eye H16.421 Pannus (corneal), right eye H16.422 Pannus (corneal), left eye H16.423 Pannus (corneal), bilateral H16.429 Pannus (corneal), unspecified eye H16.431 Localized vascularization of cornea, right eye H16.432 Localized vascularization of cornea, left eye H16.433 Localized vascularization of cornea, bilateral H16.439 Localized vascularization of cornea, unspecified eye H16.441 Deep vascularization of cornea, right eye H16.442 Deep vascularization of cornea, left eye H16.443 Deep vascularization of cornea, bilateral H16.449 Deep vascularization of cornea, unspecified eye H17.00 Adherent leukoma, unspecified eye H17.01 Adherent leukoma, right eye H17.02 Adherent leukoma, left eye H17.03 Adherent leukoma, bilateral H17.10 Central corneal opacity, unspecified eye H17.11 Central corneal opacity, right eye H17.12 Central corneal opacity, left eye H17.13 Central corneal opacity, bilateral H17.811 Minor opacity of cornea, right eye H17.812 Minor opacity of cornea, left eye H17.813 Minor opacity of cornea, bilateral 3 H17.819 Minor opacity of cornea, unspecified eye H17.821 Peripheral opacity of cornea, right eye H17.822 Peripheral opacity of cornea, left eye H17.823 Peripheral opacity of cornea, bilateral H17.829 Peripheral opacity of cornea, unspecified eye H17.89 Other corneal scars and opacities H17.9 Unspecified corneal scar and opacity H18.40 Unspecified corneal degeneration H18.421 Band keratopathy, right eye H18.422 Band keratopathy, left eye H18.423 Band keratopathy, bilateral H18.429 Band keratopathy, unspecified eye H18.43 Other calcerous corneal degeneration H18.441 Keratomalacia, right eye H18.442 Keratomalacia, left eye H18.443 Keratomalacia, bilateral H18.449 Keratomalacia, unspecified eye H18.451 Nodular corneal degeneration, right eye H18.452 Nodular corneal degeneration, left eye H18.453 Nodular corneal degeneration, bilateral H18.459 Nodular corneal degeneration, unspecified eye H18.461 Peripheral corneal degeneration, right eye H18.462 Peripheral corneal degeneration, left eye H18.463 Peripheral corneal degeneration, bilateral H18.469 Peripheral corneal degeneration, unspecified eye H18.49 Other corneal degeneration H18.601 Keratoconus, unspecified, right eye H18.602 Keratoconus, unspecified, left eye H18.603 Keratoconus, unspecified, bilateral H18.609 Keratoconus, unspecified, unspecified eye H18.611 Keratoconus, stable, right eye H18.612 Keratoconus, stable, left eye H18.613 Keratoconus, stable, bilateral H18.619 Keratoconus, stable, unspecified eye H18.621 Keratoconus, unstable, right eye H18.622 Keratoconus, unstable, left eye H18.623 Keratoconus, unstable, bilateral H18.629 Keratoconus, unstable, unspecified eye H18.70 Unspecified corneal deformity H18.711 Corneal ectasia, right eye H18.712 Corneal ectasia, left eye H18.713 Corneal ectasia, bilateral H18.719 Corneal ectasia, unspecified eye H18.721 Corneal staphyloma, right eye H18.722 Corneal staphyloma, left eye H18.723 Corneal staphyloma, bilateral H18.729 Corneal staphyloma, unspecified eye H18.731 Descemetocele, right eye H18.732 Descemetocele, left eye H18.733 Descemetocele, bilateral H18.739 Descemetocele, unspecified eye 4 H18.791 Other corneal deformities, right eye H18.792 Other corneal deformities, left eye H18.793 Other corneal deformities, bilateral H18.799 Other corneal deformities, unspecified eye H18.831 Recurrent erosion of cornea, right eye H18.832 Recurrent erosion of cornea, left eye H18.833 Recurrent erosion of cornea, bilateral H18.839 Recurrent erosion of cornea, unspecified eye H52.211 Irregular astigmatism, right eye H52.212 Irregular astigmatism, left eye H52.213 Irregular astigmatism, bilateral H52.219 Irregular astigmatism, unspecified eye L12.1 Cicatricial pemphigoid L51.1 Stevens-Johnson syndrome L51.3 Stevens-Johnson syndrome-toxic epidermal necrolysis overlap syndrome Breakdown (mechanical) of other ocular prosthetic devices, implants and grafts, initial T85.318A encounter Breakdown (mechanical) of other ocular prosthetic devices, implants and grafts, T85.318D subsequent encounter Breakdown (mechanical) of other ocular prosthetic devices, implants and grafts, T85.318S sequela T85.328A Displacement of other ocular prosthetic devices, implants and grafts, initial encounter Displacement of other ocular prosthetic devices, implants and grafts, subsequent T85.328D encounter T85.328S Displacement of other ocular prosthetic devices, implants and grafts, sequela Other mechanical complication of other ocular prosthetic devices, implants and grafts, T85.398A initial encounter Other
Recommended publications
  • In Vivo Confocal Microscopy of Toxic Keratopathy
    Eye (2017) 31, 140–147 OPEN Official journal of The Royal College of Ophthalmologists www.nature.com/eye CLINICAL STUDY In vivo confocal Y Chen, Q Le, J Hong, L Gong and J Xu microscopy of toxic keratopathy Abstract Purpose To explore the morphological although a wide variety of chemicals and characteristics of toxic keratopathy (TK), systemic medications can also cause TK.1 Cases which clinically presented as superficial of drug-induced TK have been prevalent in punctate keratopathy (SPK), with the ophthalmic clinics for two reasons. On the one application of in vivo laser-scanning confocal hand, most of the topically applied drugs, either microscopy (LSCM), and evaluate its potential prescribed or sold over-the-counter, are capable in the early diagnosis of TK. of causing corneal damage at sufficient Patients and methods This was a cross- concentrations.2 Patients who have glaucoma, sectional study involving 16 patients with viral keratitis, keratoconjunctivitis sicca or other TK and 16 patients with dry eye (DE), ocular surface conditions, generally need demonstrating SPK under slit-lamp multidrug remedies, and these pre-existing observation, and 10 normal eyes were conditions may especially predispose them to enrolled in the study. All participants drug toxicity. The preservative in the eye drops, underwent history interviews, fluorescein mainly benzalkonium chloride (BAC), is another staining, tear film break-up time (BUT) tests, important cause for epithelial lesions. On the Schirmer tests, and in vivo LSCM. other hand, the use of eye drops for a week or Results The area grading of corneal more may cause TK, which can often be confused fluorescein punctate staining was higher in with the worsening of the patient’s initial disease the TK group than the DE group.
    [Show full text]
  • Differentiate Red Eye Disorders
    Introduction DIFFERENTIATE RED EYE DISORDERS • Needs immediate treatment • Needs treatment within a few days • Does not require treatment Introduction SUBJECTIVE EYE COMPLAINTS • Decreased vision • Pain • Redness Characterize the complaint through history and exam. Introduction TYPES OF RED EYE DISORDERS • Mechanical trauma • Chemical trauma • Inflammation/infection Introduction ETIOLOGIES OF RED EYE 1. Chemical injury 2. Angle-closure glaucoma 3. Ocular foreign body 4. Corneal abrasion 5. Uveitis 6. Conjunctivitis 7. Ocular surface disease 8. Subconjunctival hemorrhage Evaluation RED EYE: POSSIBLE CAUSES • Trauma • Chemicals • Infection • Allergy • Systemic conditions Evaluation RED EYE: CAUSE AND EFFECT Symptom Cause Itching Allergy Burning Lid disorders, dry eye Foreign body sensation Foreign body, corneal abrasion Localized lid tenderness Hordeolum, chalazion Evaluation RED EYE: CAUSE AND EFFECT (Continued) Symptom Cause Deep, intense pain Corneal abrasions, scleritis, iritis, acute glaucoma, sinusitis, etc. Photophobia Corneal abrasions, iritis, acute glaucoma Halo vision Corneal edema (acute glaucoma, uveitis) Evaluation Equipment needed to evaluate red eye Evaluation Refer red eye with vision loss to ophthalmologist for evaluation Evaluation RED EYE DISORDERS: AN ANATOMIC APPROACH • Face • Adnexa – Orbital area – Lids – Ocular movements • Globe – Conjunctiva, sclera – Anterior chamber (using slit lamp if possible) – Intraocular pressure Disorders of the Ocular Adnexa Disorders of the Ocular Adnexa Hordeolum Disorders of the Ocular
    [Show full text]
  • Development of in Vitro Corneal Models: Opportunity for Pharmacological Testing
    Review Development of In Vitro Corneal Models: Opportunity for Pharmacological Testing Valentina Citi 1, Eugenia Piragine 1, Simone Brogi 1,* , Sara Ottino 2 and Vincenzo Calderone 1 1 Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; [email protected] (V.C.); [email protected] (E.P.); [email protected] (V.C.) 2 Farmigea S.p.A., Via G.B. Oliva 6/8, 56121 Pisa, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-050-2219-613 Received: 24 October 2020; Accepted: 30 October 2020; Published: 2 November 2020 Abstract: The human eye is a specialized organ with a complex anatomy and physiology, because it is characterized by different cell types with specific physiological functions. Given the complexity of the eye, ocular tissues are finely organized and orchestrated. In the last few years, many in vitro models have been developed in order to meet the 3Rs principle (Replacement, Reduction and Refinement) for eye toxicity testing. This procedure is highly necessary to ensure that the risks associated with ophthalmic products meet appropriate safety criteria. In vitro preclinical testing is now a well-established practice of significant importance for evaluating the efficacy and safety of cosmetic, pharmaceutical, and nutraceutical products. Along with in vitro testing, also computational procedures, herein described, for evaluating the pharmacological profile of potential ocular drug candidates including their toxicity, are in rapid expansion. In this review, the ocular cell types and functionality are described, providing an overview about the scientific challenge for the development of three-dimensional (3D) in vitro models.
    [Show full text]
  • Refractive Surgery Faqs. Refractive Surgery the OD's Role in Refractive
    9/18/2013 Refractive Surgery Refractive Surgery FAQs. Help your doctor with refractive surgery patient education Corneal Intraocular Bill Tullo, OD, FAAO, LASIK Phakic IOL Verisys Diplomate Surface Ablation Vice-President of Visian PRK Clinical Services LASEK CLE – Clear Lens Extraction TLC Laser Eye Centers Epi-LASIK Cataract Surgery AK - Femto Toric IOL Multifocal IOL ICRS - Intacs Accommodative IOL Femtosecond Assisted Inlays Kamra The OD’s role in Refractive Surgery Refractive Error Determine the patient’s interest Myopia Make the patient aware of your ability to co-manage surgery Astigmatism Discuss advancements in the field Hyperopia Outline expectations Presbyopia/monovision Presbyopia Enhancements Risks Make a recommendation Manage post-op care and expectations Myopia Myopic Astigmatism FDA Approval Common Use FDA Approval Common Use LASIK: 1D – 14D LASIK: 1D – 8D LASIK: -0.25D – -6D LASIK: -0.25D – -3.50D PRK: 1D – 13D PRK: 1D – 6D PRK: -0.25D – -6D PRK: -0.25D – -3.50D Intacs: 1D- 3D Intacs: 1D- 3D Intacs NONE Intacs: NONE P-IOL: 3D- 20D P-IOL: 8D- 20D P-IOL: NONE P-IOL: NONE CLE/CAT: any CLE/CAT: any CLE/CAT: -0.75D - -3D CLE/CAT: -0.75D - -3D 1 9/18/2013 Hyperopia Hyperopic Astigmatism FDA Approval Common Use FDA Approval Common Use LASIK: 0.25D – 6D LASIK: 0.25D – 4D LASIK: 0.25D – 6D LASIK: 0.25D – 4D PRK: 0.25D – 6D PRK: 0.25D – 4D PRK: 0.25D – 6D PRK: 0.25D – 4D Intacs: NONE Intacs: NONE Intacs: NONE Intacs: NONE P-IOL: NONE P-IOL: NONE P-IOL: NONE P-IOL:
    [Show full text]
  • Olivia Steinberg ICO Primary Care/Ocular Disease Resident American Academy of Optometry Residents Day Submission
    Olivia Steinberg ICO Primary Care/Ocular Disease Resident American Academy of Optometry Residents Day Submission The use of oral doxycycline and vitamin C in the management of acute corneal hydrops: a case comparison Abstract- We compare two patients presenting to clinic with an uncommon complication of keratoconus, acute corneal hydrops. Management of the patients differs. One heals quickly, while the other has a delayed course to resolution. I. Case A a. Demographics: 40 yo AAM b. Case History i. CC: red eye, tearing, decreased VA x 1 day OS ii. POHx: (+) keratoconus OU iii. PMHx: depression, anxiety, asthma iv. Meds: Albuterol, Ziprasidone v. Scleral CL wearer for approximately 6 months OU vi. Denies any pain OS, denies previous occurrence OU, no complaints OD c. Pertinent Findings i. VA cc (CL’s)- 20/25 OD, 20/200 PH 20/60+2 OS ii. Slit Lamp 1. Inferior corneal thinning and Fleisher ring OD, central scarring OD, 2+ diffuse microcystic edema OS, Descemet’s break OS (photos and anterior segment OCT) 2. 2+ diffuse injection OS 3. D&Q A/C OU iii. Intraocular Pressures: deferred OD due to CL, 9mmHg OS (tonopen) iv. Fundus Exam- unremarkable OU II. Case B a. Demographics: 39 yo AAM b. Case History i. CC: painful, red eye, tearing, decreased VA x 1 day OS ii. POHx: unremarkable iii. PMHx: hypertension iv. Meds: unknown HTN medication v. Wears Soflens toric CL’s OU; reports previous doctor had difficulty achieving proper fit OU; denies diagnosis of keratoconus OU vi. Denies any injury OS, denies previous occurrence OU, no complaints OD c.
    [Show full text]
  • Posterior Cornea and Thickness Changes After Scleral Lens Wear in Keratoconus Patients
    Contact Lens and Anterior Eye xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Contact Lens and Anterior Eye journal homepage: www.elsevier.com/locate/clae Posterior cornea and thickness changes after scleral lens wear in keratoconus patients Maria Serramitoa, Carlos Carpena-Torresa, Jesús Carballoa, David Piñerob,c, Michael Lipsond, ⁎ Gonzalo Carracedoa,e, a Department of Optics II (Optometry and Vision), Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain b Group of Optics and Visual Perception, Department of Optics, Pharmacology and Anatomy, University of Alicante, Spain c Department of Ophthalmology (OFTALMAR), Vithas Medimar International Hospital, Alicante, Spain d Department of Ophthalmology and Visual Science, University of Michigan, Northville, MI, USA e Ocupharm Group Research, Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain ARTICLE INFO ABSTRACT Keywords: Purpose: To evaluate the changes in the corneal thickness, anterior chamber depth and posterior corneal cur- Scleral lenses vature and aberrations after scleral lens wear in keratoconus patients with and without intrastromal corneal ring Keratoconus segments (ICRS). Corneal curvature Methods: Twenty-six keratoconus subjects (36.95 ± 8.95 years) were evaluated after 8 h of scleral lens wear. Corneal aberrations The subjects were divided into two groups: those with ICRS (ICRS group) and without ICRS (KC group). The Anterior chamber study variables evaluated before and immediately after scleral lens wear included corneal thickness evaluated in Corneal thickness different quadrants, posterior corneal curvature at 2, 4, 6 and 8 mm of corneal diameter, posterior corneal aberrations for 4, 6 and 8 mm of pupil size and anterior chamber depth.
    [Show full text]
  • Download Article (PDF)
    Advances in Health Sciences Research, volume 26 2nd Bakti Tunas Husada-Health Science International Conference (BTH-HSIC 2019) Adherent Leukoma Associated with Measles: A Low Vision Case Report Giselle R. Shi1*, Dr. Maria Cecilia L. Yu1 1Centro Escolar University, *[email protected] Abstract— Objective: To assess if the patient has a and eye disorders that may lead to blindness [3-4]. low vision condition and to give proper management to The higher risks of complications are infants under the patient who has adherent leukoma associated with the age of 1, immune-compromised children and measles. Method: The patient was referred back by an adults especially pregnant woman. The common ophthalmologist to the optometrist for low vision effect of the measles virus to the eyes is the corneal assessment and management. The demographic profile damage which becomes cloudy or hazy. Infected was taken along with case history taking. Subjective children can also have measles keratitis which they examinations were performed like the distance visual acuity test, subjective refraction, binocular vision test, have excessive tearing and excessive sensitivity to visual field test, contrast sensitivity test, near vision test, light. It can also affect the retina, blood vessels and and color vision test. After that, objective examinations optic nerve. Due to scarring or swelling of the retina, like fixation, and retinoscopy was performed. Result patients may loss his or her vision. [4] and discussion: In the subjective refraction, the left eye The layers of the cornea should be transparent had -20.00Dsph with a visual acuity of 20/70-1. Near so that the cornea itself would look transparent as a visual acuity in the right eye was all 8M at 9cm without, whole.
    [Show full text]
  • Pattern of Corneal Opacity in Ibadan, Nigeria
    Annals of African Medicine Vol. 3, No. 4; 2004: 185 – 187 PATTERN OF CORNEAL OPACITY IN IBADAN, NIGERIA A. O. Ashaye and T. S. Oluleye Department of Ophthalmology, University College Hospital, Ibadan, Nigeria Reprint requests to: A. O. Ashaye, Department of Ophthalmology, University College Hospital, Ibadan, Nigeria Abstract Background: The prevalence and causes of corneal blindness vary from one region of the world to another. There is even variation within the developing countries of Africa. Method: A retrospective review of 675 patients with corneal scarring out of the 3,753 new patients corneal scarring in patients attending the eye clinic of the University College Hospital (UCH) Ibadan over a 5year period. Results: Subjects in age groups 0 to 10years and 21 to 30years were mostly affected. Males were more affected with a ratio of 3:1. Most presentations were in the months of January to March and July to September. Almost half (48.99%) of the patients had uniocular blindness and no case of bilateral blindness from corneal opacity was found. The main causes of corneal opacity were trauma (51.1%) and microbial keratitis (26.70%) both of which are avoidable causes of blindness. No case of trachomatous corneal scarring was found in the group studied. Conclusion: Key words: Cornea, opacity, blindness Introduction opacity in the south western part of Nigeria. As a preliminary to community based study to identify the The cornea is exposed to the atmosphere and so often relative importance of known causes of corneal suffers injury, inflammation or infection. Corneal blindness as seen in the south western part of Nigeria, opacity results from a process, which upset its the aetiology of cases seen in hospital was anatomy and physiology.
    [Show full text]
  • World Report on Vision Infographic
    World report on vision The Facts Projected number of people estimated to have age related macular degeneration and glaucoma, 2020–2030. 243.4 million 195.6 million Everyone, if they live long enough, will experience at least one eye condition in their lifetime. Age related macular degeneration (any) Cataract surgery US$ 6.9 billion 95.4 million Refractive error 76 million US$ 7.4 billion Glaucoma 2020 2030 US$14.3 billion (is the investment) needed globally to treat existing Eye conditions are projected to unaddressed cases of refractive error and cataract. increase due to a variety of factors, including ageing population, lifestyle and NCDs. At least 2.2 billion people live with a vision impairment In at least 1 billion of these cases, vision impairment low- and middle- high-income regions could have been prevented income regions or has yet to be addressed Unaddressed distance vision impairment in many low- and middle- income regions is 4x higher than in high- income regions. Unaddressed refractive error (123.7 million) Cataract (65.2 million) Glaucoma (6.9 million) Corneal opacities (4.2 million) Diabetic Retinopathy (3 million) Trachoma (2 million) Unaddressed presbyopia (826 million) Eye conditions The problem Some eye conditions do not typically cause vision impairment, but others can. Common eye conditions that do not typically cause vision impairment Eyelid Conjunctivitis Dry eye Eyelid Conjunctivitis Dry eye Availability inflammation Accessibility Cyst or Stye Benign growth SubconjunctivalSubconjunctival in thethe eyeeye haemorrhagehaemorrhage Acceptability Common eye conditions that can cause vision impairment Eye care services are poorly integrated into health systems. The availability, accessibility and acceptability of eye Cataract Corneal opacity GlaucomaGlaucoma care services have an influence on eye conditions and vision impairment.
    [Show full text]
  • Diagnosis and Treatment of Neurotrophic Keratopathy
    An Evidence-based Approach to the Diagnosis and Treatment of Neurotrophic Keratopathy ACTIVITY DIRECTOR A CME MONOGRAPH Esen K. Akpek, MD This monograph was published by Johns Hopkins School of Medicine in partnership Wilmer Eye Institute with Catalyst Medical Education, LLC. It is Johns Hopkins School of Medicine not affiliated with JAMA medical research Baltimore, Maryland publishing. Visit catalystmeded.com/NK for online testing to earn your CME credit. FACULTY Natalie Afshari, MD Mina Massaro-Giordano, MD Shiley Eye Institute University of Pennsylvania School of Medicine University of California, San Diego Philadelphia, Pennsylvania La Jolla, California Nakul Shekhawat, MD, MPH Sumayya Ahmad, MD Wilmer Eye Institute Mount Sinai School of Medicine Johns Hopkins School of Medicine New York, New York Baltimore, Maryland Pedram Hamrah, MD, FRCS, FARVO Christopher E. Starr, MD Tufts University School of Medicine Weill Cornell Medical College Boston, Massachusetts New York, New York ACTIVITY DIRECTOR FACULTY Esen K. Akpek, MD Natalie Afshari, MD Mina Massaro-Giordano, MD Professor of Ophthalmology Professor of Ophthalmology Professor of Clinical Ophthalmology Director, Ocular Surface Diseases Chief of Cornea and Refractive Surgery University of Pennsylvania School and Dry Eye Clinic Vice Chair of Education of Medicine Wilmer Eye Institute Fellowship Program Director of Cornea Philadelphia, Pennsylvania Johns Hopkins School of Medicine and Refractive Surgery Baltimore, Maryland Shiley Eye Institute Nakul Shekhawat, MD, MPH University of California,
    [Show full text]
  • Eye Care in the Intensive Care Unit (ICU)
    Ophthalmic Services Guidance Eye Care in the Intensive Care Unit (ICU) June 2017 18 Stephenson Way, London, NW1 2HD T. 020 7935 0702 [email protected] rcophth.ac.uk @RCOphth © The Royal College of Ophthalmologists 2017 All rights reserved For permission to reproduce any of the content contained herein please contact [email protected] Contents Section page 1 Summary 3 2 Introduction 3 Protecting the eye of the vulnerable patient 4 3 Identifying disease of the eye 6 Exposure keratopathy and corneal abrasion 6 Chemosis 8 Microbial infections 8 4 Rare eye conditions in ICU 10 Red eye in a septic patient: possible endogenous endophthalmitis 10 Other problems 11 5 Delivering treatment to the eye when it is prescribed 11 Red eye in ICU patient 12 6. Systemic fungal infection and the eye for intensivists 14 7. Tips for ophthalmologists seeing patients in ICU 14 8. Authors 16 9. References 17 Date of review: July 2020 2017/PROF/350 2 1 Summary This document aims to provide advice and information for clinical staff who are involved in eye care in the ICU. It is primarily intended to help non-ophthalmic ICU staff to: 1. protect the eye in vulnerable patients, thus preventing ICU-related eye problems 2. identify disease affecting the eye in ITU patients, and specifically those which might need ophthalmic referral 3. deliver treatment to the eye when it is prescribed It concentrates primarily on the common problems of the eye surface but also touches on other less common conditions. As such, it should also be helpful to those ophthalmologists asked for advice about ICU patients.
    [Show full text]
  • Cxl Co-Management and Clinical Pearls
    CXL CO-MANAGEMENT AND SPONSORED BY CLINICAL PEARLS Avedro gathered leading refractive surgeons and eye care professionals for a roundtable discussion during the 2018 annual meeting of the American Society of Cataract and Refractive Surgery in Washington, DC. The discussion centered around the co-management of keratoconus patients with your optometric network, as well as corneal cross-linking (CXL) clinical pearls. IMPORTANCE OF EARLY DIAGNOSIS I examine the patient’s history thoroughly. I ask about last year’s eye- BRANDON D. AYRES, MD AND TREATMENT n Surgeon on the Cornea Richard L. Lindstrom, MD: Now that glass prescription and how fast the Service, Wills Eye Hospital, we have an FDA-approved treatment for patient’s vision is changing. If a patient Philadelphia patients with progressive keratoconus, has had to change eyeglasses four times n Financial disclosure: it is crucial that we educate diagnosing in one year, for example, the keratoco- Consultant (Avedro) providers on the importance of early nus is clearly progressing. diagnosis and treatment to give patients I also use sensitive diagnostics, such as the best chance for a good outcome. tomography and topography, to exam- ine the posterior cornea. I look at the Kathryn M. Hatch, MD: I completely pachymetry and the posterior float maps, KATHRYN M. HATCH, MD agree. Another key component of early which may show early signs of progres- n Director, Refractive Surgery Service, Massachusetts detection is having proper screening sion or corneal ectasia following refractive Eye and Ear; Site Director, tools and more widespread use of such surgery. Anything that I believe shows Massachusetts Eye and Ear, tools.
    [Show full text]