Rare Diseases of the Anterior Segment of the Eye: Update on Diagnosis and Management
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
In Vivo Confocal Microscopy of Toxic Keratopathy
Eye (2017) 31, 140–147 OPEN Official journal of The Royal College of Ophthalmologists www.nature.com/eye CLINICAL STUDY In vivo confocal Y Chen, Q Le, J Hong, L Gong and J Xu microscopy of toxic keratopathy Abstract Purpose To explore the morphological although a wide variety of chemicals and characteristics of toxic keratopathy (TK), systemic medications can also cause TK.1 Cases which clinically presented as superficial of drug-induced TK have been prevalent in punctate keratopathy (SPK), with the ophthalmic clinics for two reasons. On the one application of in vivo laser-scanning confocal hand, most of the topically applied drugs, either microscopy (LSCM), and evaluate its potential prescribed or sold over-the-counter, are capable in the early diagnosis of TK. of causing corneal damage at sufficient Patients and methods This was a cross- concentrations.2 Patients who have glaucoma, sectional study involving 16 patients with viral keratitis, keratoconjunctivitis sicca or other TK and 16 patients with dry eye (DE), ocular surface conditions, generally need demonstrating SPK under slit-lamp multidrug remedies, and these pre-existing observation, and 10 normal eyes were conditions may especially predispose them to enrolled in the study. All participants drug toxicity. The preservative in the eye drops, underwent history interviews, fluorescein mainly benzalkonium chloride (BAC), is another staining, tear film break-up time (BUT) tests, important cause for epithelial lesions. On the Schirmer tests, and in vivo LSCM. other hand, the use of eye drops for a week or Results The area grading of corneal more may cause TK, which can often be confused fluorescein punctate staining was higher in with the worsening of the patient’s initial disease the TK group than the DE group. -
Understanding Corneal Blindness
Understanding Corneal Blindness The cornea copes very well with minor injuries or abrasions. If the highly sensitive cornea is scratched, healthy cells slide over quickly and patch the injury before infection occurs and vision is affected. If the scratch penetrates the cornea more deeply, however, the healing process will take longer, at times resulting in greater pain, blurred vision, tearing, redness, and extreme sensitivity to light. These symptoms require professional treatment. Deeper scratches can also cause corneal scarring, resulting in a haze on the cornea that can greatly impair vision. In this case, a corneal transplant may be needed. Corneal Diseases and Disorders that May Require a Transplant Corneal Infections. Sometimes the cornea is damaged after a foreign object has penetrated the tissue, such as from a poke in the eye. At other times, bacteria or fungi from a contaminated contact lens can pass into the cornea. Situations like these can cause painful inflammation and corneal infections called keratitis. These infections can reduce visual clarity, produce corneal discharges, and perhaps erode the cornea. Corneal infections can also lead to corneal scarring, which can impair vision and may require a corneal transplant. Fuchs' Dystrophy. Fuchs' Dystrophy occurs when endothelial cells gradually deteriorate without any apparent reason. As more endothelial cells are lost over the years, the endothelium becomes less efficient at pumping water out of the stroma (the middle layers of the cornea). This causes the cornea to swell and distort vision. Eventually, the epithelium also takes on water, resulting in pain and severe visual impairment. Epithelial swelling damages vision by changing the cornea's normal curvature, and causing a sightimpairing haze to appear in the tissue. -
Refractive Surgery Faqs. Refractive Surgery the OD's Role in Refractive
9/18/2013 Refractive Surgery Refractive Surgery FAQs. Help your doctor with refractive surgery patient education Corneal Intraocular Bill Tullo, OD, FAAO, LASIK Phakic IOL Verisys Diplomate Surface Ablation Vice-President of Visian PRK Clinical Services LASEK CLE – Clear Lens Extraction TLC Laser Eye Centers Epi-LASIK Cataract Surgery AK - Femto Toric IOL Multifocal IOL ICRS - Intacs Accommodative IOL Femtosecond Assisted Inlays Kamra The OD’s role in Refractive Surgery Refractive Error Determine the patient’s interest Myopia Make the patient aware of your ability to co-manage surgery Astigmatism Discuss advancements in the field Hyperopia Outline expectations Presbyopia/monovision Presbyopia Enhancements Risks Make a recommendation Manage post-op care and expectations Myopia Myopic Astigmatism FDA Approval Common Use FDA Approval Common Use LASIK: 1D – 14D LASIK: 1D – 8D LASIK: -0.25D – -6D LASIK: -0.25D – -3.50D PRK: 1D – 13D PRK: 1D – 6D PRK: -0.25D – -6D PRK: -0.25D – -3.50D Intacs: 1D- 3D Intacs: 1D- 3D Intacs NONE Intacs: NONE P-IOL: 3D- 20D P-IOL: 8D- 20D P-IOL: NONE P-IOL: NONE CLE/CAT: any CLE/CAT: any CLE/CAT: -0.75D - -3D CLE/CAT: -0.75D - -3D 1 9/18/2013 Hyperopia Hyperopic Astigmatism FDA Approval Common Use FDA Approval Common Use LASIK: 0.25D – 6D LASIK: 0.25D – 4D LASIK: 0.25D – 6D LASIK: 0.25D – 4D PRK: 0.25D – 6D PRK: 0.25D – 4D PRK: 0.25D – 6D PRK: 0.25D – 4D Intacs: NONE Intacs: NONE Intacs: NONE Intacs: NONE P-IOL: NONE P-IOL: NONE P-IOL: NONE P-IOL: -
Posterior Cornea and Thickness Changes After Scleral Lens Wear in Keratoconus Patients
Contact Lens and Anterior Eye xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Contact Lens and Anterior Eye journal homepage: www.elsevier.com/locate/clae Posterior cornea and thickness changes after scleral lens wear in keratoconus patients Maria Serramitoa, Carlos Carpena-Torresa, Jesús Carballoa, David Piñerob,c, Michael Lipsond, ⁎ Gonzalo Carracedoa,e, a Department of Optics II (Optometry and Vision), Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain b Group of Optics and Visual Perception, Department of Optics, Pharmacology and Anatomy, University of Alicante, Spain c Department of Ophthalmology (OFTALMAR), Vithas Medimar International Hospital, Alicante, Spain d Department of Ophthalmology and Visual Science, University of Michigan, Northville, MI, USA e Ocupharm Group Research, Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain ARTICLE INFO ABSTRACT Keywords: Purpose: To evaluate the changes in the corneal thickness, anterior chamber depth and posterior corneal cur- Scleral lenses vature and aberrations after scleral lens wear in keratoconus patients with and without intrastromal corneal ring Keratoconus segments (ICRS). Corneal curvature Methods: Twenty-six keratoconus subjects (36.95 ± 8.95 years) were evaluated after 8 h of scleral lens wear. Corneal aberrations The subjects were divided into two groups: those with ICRS (ICRS group) and without ICRS (KC group). The Anterior chamber study variables evaluated before and immediately after scleral lens wear included corneal thickness evaluated in Corneal thickness different quadrants, posterior corneal curvature at 2, 4, 6 and 8 mm of corneal diameter, posterior corneal aberrations for 4, 6 and 8 mm of pupil size and anterior chamber depth. -
Megalocornea Jeffrey Welder and Thomas a Oetting, MS, MD September 18, 2010
Megalocornea Jeffrey Welder and Thomas A Oetting, MS, MD September 18, 2010 Chief Complaint: Visual disturbance when changing positions. History of Present Illness: A 60-year-old man with a history of simple megalocornea presented to the Iowa City Veterans Administration Healthcare System eye clinic reporting visual disturbance while changing head position for several months. He noticed that his vision worsened with his head bent down. He previously had cataract surgery with an iris-sutured IOL due to the large size of his eye, which did not allow for placement of an anterior chamber intraocular lens (ACIOL) or scleral-fixated lens. Past Medical History: Megalocornea Medications: None Family History: No known history of megalocornea Social History: None contributory Ocular Exam: • Visual Acuity (with correction): • OD 20/100 (cause unknown) • OS 20/20 (with upright head position) • IOP: 18mmHg OD, 17mmHg OS • External Exam: normal OU • Pupils: No anisocoria and no relative afferent pupillary defect • Motility: Full OU. • Slit lamp exam: megalocornea (>13 mm in diameter) and with anterior mosaic dystrophy. Iris-sutured posterior chamber IOLs (PCIOLs), stable OD, but pseudophacodonesis OS with loose inferior suture evident. • Dilated funduscopic exam: Normal OU Clinical Course: The patient’s iris-sutured IOL had become loose (tilted and de-centered) in his large anterior chamber, despite several sutures that had been placed in the past, resulting now in visual disturbance with movement. FDA and IRB approval was obtained to place an Artisan iris-clip IOL (Ophtec®). He was taken to the OR where his existing IOL was removed using Duet forceps and scissors. The Artisan IOL was placed using enclavation iris forceps. -
Peripheral Hypertrophic Subepithelial Corneal Degeneration Presenting
Eye (2015) 29, 88–97 & 2015 Macmillan Publishers Limited All rights reserved 0950-222X/15 www.nature.com/eye 1,2 3 4 CLINICAL STUDY Peripheral MSchargus , C Kusserow ,USchlo¨ tzer-Schrehardt , C Hofmann-Rummelt4, G Schlunck1 hypertrophic and G Geerling1,5 subepithelial corneal degeneration presenting with bilateral nasal and temporal corneal changes Abstract 1 Department of Purpose To characterise the history, clinical transmission electron microscopy showed Ophthalmology, University of Wuerzburg, Wuerzburg, and histopathological features of patients histological features that are similar to Germany with bilateral nasal and temporal peripheral Salzmann’s corneal changes without any hypertrophic subepithelial corneal inflammation. We hypothesise that light 2Department of degeneration in a German population. exposure and a localised limbal insufficiency Ophthalmology, University Methods A detailed ophthalmological and could be involved in the pathogenesis. of Bochum, Bochum, dermatological history and clinical findings Eye (2015) 29, 88–97; doi:10.1038/eye.2014.236; Germany were recorded of nine patients with bilateral published online 3 October 2014 3Department of simultaneous nasal and temporal peripheral Ophthalmology, University corneal degeneration from two centers in of Luebeck, Lu¨ beck, Germany. Excised tissues were studied by Introduction Germany histopathology, immunohistochemistry, and transmission electron microscopy. Salzmann’s nodules (SN) are subepithelial, 4 Department of Results Foreign body sensation and need elevated bluish-white corneal opacities of non- Ophthalmology, University inflammatory origin, with a specific peripheral of Erlangen-Nuernberg, of artificial tear substitutes were the only 1–7 Erlangen, Germany symptoms reported regularly. Schirmer’s and circular pattern. What has been termed Jones-test were normal in all, but fluorescein Salzmann’s degeneration is predominantly 5Department of break-up time of 410 s was found in five eyes unilateral, presenting at any time in life with Ophthalmology, University of four patients. -
Its Not Just Dry Eye NCOS2021
5/31/21 DISCLOSURES CORNEA ENDOTHELIOPATHIES NOPE, THAT’S NOT JUST DRY EYE: PRIMARY SECONDARY OTHER CORNEAL DISEASES • Corneal guttata • Contact lens wear • Fuchs dystrophy • Surgical procedures • Posterior Polymorphous Dystrophy (PPD) • Age related Cecelia Koetting, OD FAAO • Congenital hereditary endothelial dystrophy • Iatrogenic (im munodeficiency) (CHED) • Glaucoma induced Virginia Eye Consultants • Iridocorneal endothelial syndrome (ICE) • Ocular inflammation Norfolk, VA 1 2 3 OTHER CORNEAL CORNEAL FUNCTION • Keratoconus • Central cloudy dystrophy of Francois • Pellucid marginal degeneration • Thiel-Behnke corneal dystrophy • Shields the eye from germs, dust, other harmful matter • Lattice Dystrophy • Ocular Bullous pemphigoid WHY IS THE CORNEA IMPORTANT? • Contributes between 65-75% refracting power to the eye • Recurrent corneal erosion (RCE) • SJS • Filters out some of the most harmful UV wavelengths • Granular corneal dystrophy • Band Keratopathy • Reis-Bucklers corneal dystrophy • Corneal ulcer • Schnyder corneal dystrophy • HSV/HZO • Congenital Stromal corneal dystrophy • Pterygium • Fleck corneal dystrophy • Burns/Scars • Macular corneal dystrophy • Perforations • Posterior amorphous corneal dystrophy • Vascularized cornea 4 5 6 CORNEAL ANATOMY CORNEA Epithelium Bowmans Layer • Cornea is a transparent, avascular structure consisting of 6 layers • A- Anterior Epithelium: non-keratinized stratified squamous epithelium; cells migrate from BRIEF ANATOMY REVIEW Stroma basal layer upward and periphery to center • B- Bowmans Membrane: -
Diagnosis and Treatment of Neurotrophic Keratopathy
An Evidence-based Approach to the Diagnosis and Treatment of Neurotrophic Keratopathy ACTIVITY DIRECTOR A CME MONOGRAPH Esen K. Akpek, MD This monograph was published by Johns Hopkins School of Medicine in partnership Wilmer Eye Institute with Catalyst Medical Education, LLC. It is Johns Hopkins School of Medicine not affiliated with JAMA medical research Baltimore, Maryland publishing. Visit catalystmeded.com/NK for online testing to earn your CME credit. FACULTY Natalie Afshari, MD Mina Massaro-Giordano, MD Shiley Eye Institute University of Pennsylvania School of Medicine University of California, San Diego Philadelphia, Pennsylvania La Jolla, California Nakul Shekhawat, MD, MPH Sumayya Ahmad, MD Wilmer Eye Institute Mount Sinai School of Medicine Johns Hopkins School of Medicine New York, New York Baltimore, Maryland Pedram Hamrah, MD, FRCS, FARVO Christopher E. Starr, MD Tufts University School of Medicine Weill Cornell Medical College Boston, Massachusetts New York, New York ACTIVITY DIRECTOR FACULTY Esen K. Akpek, MD Natalie Afshari, MD Mina Massaro-Giordano, MD Professor of Ophthalmology Professor of Ophthalmology Professor of Clinical Ophthalmology Director, Ocular Surface Diseases Chief of Cornea and Refractive Surgery University of Pennsylvania School and Dry Eye Clinic Vice Chair of Education of Medicine Wilmer Eye Institute Fellowship Program Director of Cornea Philadelphia, Pennsylvania Johns Hopkins School of Medicine and Refractive Surgery Baltimore, Maryland Shiley Eye Institute Nakul Shekhawat, MD, MPH University of California, -
Medical Policy Gas Permeable Scleral Contact Lens
Medical Policy Gas Permeable Scleral Contact Lens Table of Contents Policy: Commercial Coding Information Information Pertaining to All Policies Policy: Medicare Description References Authorization Information Policy History Policy Number: 371 BCBSA Reference Number: 9.03.25 Related Policies Corneal Topography/Computer-Assisted Corneal Topography/Photokeratoscopy, #301 Implantation of Intrastromal Corneal Ring Segments, #235 Policy Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Medicare HMO BlueSM and Medicare PPO BlueSM Members Rigid gas permeable scleral lens may be considered MEDICALLY NECESSARY for patients who have not responded to topical medications or standard spectacle or contact lens fitting, for the following conditions: Corneal ectatic disorders (e.g., keratoconus, keratoglubus, pellucid marginal degeneration, Terrien’s marginal degeneration, Fuchs’ superficial marginal keratitis, post-surgical ectasia); Corneal scarring and/or vascularization; Irregular corneal astigmatism (e.g., after keratoplasty or other corneal surgery); Ocular surface disease (e.g., severe dry eye, persistent epithelial defects, neurotrophic keratopathy, exposure keratopathy, graft vs. host disease, sequelae of Stevens Johnson syndrome, mucus membrane pemphigoid, post-ocular surface tumor excision, post-glaucoma filtering surgery) with pain and/or decreased visual acuity. Prior Authorization Information Commercial Members: Managed Care (HMO and POS) Prior authorization is NOT required. Commercial Members: PPO, and Indemnity -
The Latest in Corneal Degenerations and Dystrophies Corneal
5/20/2014 Epithelial (Anterior) Basement Membrane CORNEAL DEGENERATION Dystrophy (EBMD or ABMD) • Non-familial, late onset • Easy to overlook: The Latest In Corneal • Asymmetric, unilateral, central or peripheral – typically bilateral though often asymmetric, Degenerations and Dystrophies • Changes to the tissue caused by inflammation, – females>males, age, or systemic disease. – often first diagnosed b/w ages of 40-70 Blair B Lonsberry, MS, OD, MEd., FAAO Characterized by a deposition of material, a Diplomate, American Board of Optometry • Clinic Director and Professor thinning of tissue, or vascularization Pacific University College of Optometry Portland, OR [email protected] Epithelial (Anterior) Basement Membrane Epithelial (Anterior) Basement Membrane Dystrophy (EBMD or ABMD) Dystrophy (EBMD or ABMD) • Most common • Primary features of this “dystrophy” are: findings are: – abnormal corneal epithelial regeneration and – chalky patches, maturation, – intraepithelial – abnormal basement membrane microcysts, and • Often considered the most common dystrophy, – fine lines (or any but may actually be an age-related degeneration. combination) in the central 2/3rd of CORNEAL DYSTROPHIES – large number of patients with this condition, cornea – increasing prevalence with increasing age, and – its late onset support a degeneration vs. dystrophy. 2 2 8 Epithelial (Anterior) Basement Membrane Epithelial (Anterior) Basement Membrane Corneal Dystrophies Dystrophy (EBMD or ABMD) Dystrophy (EBMD or ABMD) • Group of corneal diseases that are: -
Journal of Ophthalmology & Clinical Research
ISSN: 2573-9573 Case Report Journal of Ophthalmology & Clinical Research Bilateral Congenital Ectropion Uveae, Anterior Segment Dysgenesis and Aniridia with Microspherophakic Congenital Cataracts and RubeosisIridis Rao Muhammad Arif Khan* and Ashal Kaiser Pal *Corresponding author Rao Muhammad Arif Khan, MCPS, FCPS, FPO, FACS, Pediatric Ophthalmologist, King Edward Medical University, Al-Awali Street, Taif Road, Makkah, Saudi Arabia, Pediatric Ophthalmologist, King Edward Medical University, Tel: 00966560479694; E-mail: [email protected] Makkah, Saudi Arabia Submitted: 02 Apr 2018; Accepted: 12 Apr 2018; Published: 19 Apr 2018 Abstract In recent times, multiple eye diseases have been seen associated with an increase in the rate of Demodex infestation as a possible cause, but in the particular case of dry eye syndrome in patients treated with platelet-rich plasma, this increase in mite may be relevant to guide a more adequate treatment focusing on the elimination of the mite in conjunction with the recovery of the ocular ecology. The demodex mite is a commensal parasite that lives in hair follicles, sebaceous glands and meibomian, which in a high rate of infestation can generate alterations in the ocular area. Performing an adequate diagnosis for the detection of the mite and treatment for its eradication can be effective for the recovery of the normal physiology of the tear film that constitutes a cause of dry eye. Introduction Congenital ectropion uvea is a rare ocular manifestation of neural crest syndrome [1]. It is a non-progressive anomaly characterized by presence of iris pigment epithelium on anterior surface of iris from the pigment ruff [2]. Congenital glaucoma is its common association [3-8]. -
Congenital Ocular Anomalies in Newborns: a Practical Atlas
www.jpnim.com Open Access eISSN: 2281-0692 Journal of Pediatric and Neonatal Individualized Medicine 2020;9(2):e090207 doi: 10.7363/090207 Received: 2019 Jul 19; revised: 2019 Jul 23; accepted: 2019 Jul 24; published online: 2020 Sept 04 Mini Atlas Congenital ocular anomalies in newborns: a practical atlas Federico Mecarini1, Vassilios Fanos1,2, Giangiorgio Crisponi1 1Neonatal Intensive Care Unit, Azienda Ospedaliero-Universitaria Cagliari, University of Cagliari, Cagliari, Italy 2Department of Surgery, University of Cagliari, Cagliari, Italy Abstract All newborns should be examined for ocular structural abnormalities, an essential part of the newborn assessment. Early detection of congenital ocular disorders is important to begin appropriate medical or surgical therapy and to prevent visual problems and blindness, which could deeply affect a child’s life. The present review aims to describe the main congenital ocular anomalies in newborns and provide images in order to help the physician in current clinical practice. Keywords Congenital ocular anomalies, newborn, anophthalmia, microphthalmia, aniridia, iris coloboma, glaucoma, blepharoptosis, epibulbar dermoids, eyelid haemangioma, hypertelorism, hypotelorism, ankyloblepharon filiforme adnatum, dacryocystitis, dacryostenosis, blepharophimosis, chemosis, blue sclera, corneal opacity. Corresponding author Federico Mecarini, MD, Neonatal Intensive Care Unit, Azienda Ospedaliero-Universitaria Cagliari, University of Cagliari, Cagliari, Italy; tel.: (+39) 3298343193; e-mail: [email protected].