Scleral Lenses to the Rescue in the Management of Ocular Surface
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
In Vivo Confocal Microscopy of Toxic Keratopathy
Eye (2017) 31, 140–147 OPEN Official journal of The Royal College of Ophthalmologists www.nature.com/eye CLINICAL STUDY In vivo confocal Y Chen, Q Le, J Hong, L Gong and J Xu microscopy of toxic keratopathy Abstract Purpose To explore the morphological although a wide variety of chemicals and characteristics of toxic keratopathy (TK), systemic medications can also cause TK.1 Cases which clinically presented as superficial of drug-induced TK have been prevalent in punctate keratopathy (SPK), with the ophthalmic clinics for two reasons. On the one application of in vivo laser-scanning confocal hand, most of the topically applied drugs, either microscopy (LSCM), and evaluate its potential prescribed or sold over-the-counter, are capable in the early diagnosis of TK. of causing corneal damage at sufficient Patients and methods This was a cross- concentrations.2 Patients who have glaucoma, sectional study involving 16 patients with viral keratitis, keratoconjunctivitis sicca or other TK and 16 patients with dry eye (DE), ocular surface conditions, generally need demonstrating SPK under slit-lamp multidrug remedies, and these pre-existing observation, and 10 normal eyes were conditions may especially predispose them to enrolled in the study. All participants drug toxicity. The preservative in the eye drops, underwent history interviews, fluorescein mainly benzalkonium chloride (BAC), is another staining, tear film break-up time (BUT) tests, important cause for epithelial lesions. On the Schirmer tests, and in vivo LSCM. other hand, the use of eye drops for a week or Results The area grading of corneal more may cause TK, which can often be confused fluorescein punctate staining was higher in with the worsening of the patient’s initial disease the TK group than the DE group. -
Differentiate Red Eye Disorders
Introduction DIFFERENTIATE RED EYE DISORDERS • Needs immediate treatment • Needs treatment within a few days • Does not require treatment Introduction SUBJECTIVE EYE COMPLAINTS • Decreased vision • Pain • Redness Characterize the complaint through history and exam. Introduction TYPES OF RED EYE DISORDERS • Mechanical trauma • Chemical trauma • Inflammation/infection Introduction ETIOLOGIES OF RED EYE 1. Chemical injury 2. Angle-closure glaucoma 3. Ocular foreign body 4. Corneal abrasion 5. Uveitis 6. Conjunctivitis 7. Ocular surface disease 8. Subconjunctival hemorrhage Evaluation RED EYE: POSSIBLE CAUSES • Trauma • Chemicals • Infection • Allergy • Systemic conditions Evaluation RED EYE: CAUSE AND EFFECT Symptom Cause Itching Allergy Burning Lid disorders, dry eye Foreign body sensation Foreign body, corneal abrasion Localized lid tenderness Hordeolum, chalazion Evaluation RED EYE: CAUSE AND EFFECT (Continued) Symptom Cause Deep, intense pain Corneal abrasions, scleritis, iritis, acute glaucoma, sinusitis, etc. Photophobia Corneal abrasions, iritis, acute glaucoma Halo vision Corneal edema (acute glaucoma, uveitis) Evaluation Equipment needed to evaluate red eye Evaluation Refer red eye with vision loss to ophthalmologist for evaluation Evaluation RED EYE DISORDERS: AN ANATOMIC APPROACH • Face • Adnexa – Orbital area – Lids – Ocular movements • Globe – Conjunctiva, sclera – Anterior chamber (using slit lamp if possible) – Intraocular pressure Disorders of the Ocular Adnexa Disorders of the Ocular Adnexa Hordeolum Disorders of the Ocular -
Eyelid and Orbital Infections
27 Eyelid and Orbital Infections Ayub Hakim Department of Ophthalmology, Western Galilee - Nahariya Medical Center, Nahariya, Israel 1. Introduction The major infections of the ocular adnexal and orbital tissues are preseptal cellulitis and orbital cellulitis. They occur more frequently in children than in adults. In Schramm's series of 303 cases of orbital cellulitis, 68% of the patients were younger than 9 years old and only 17% were older than 15 years old. Orbital cellulitis is less common, but more serious than preseptal. Both conditions happen more commonly in the winter months when the incidence of paranasal sinus infections is increased. There are specific causes for each of these types of cellulitis, and each may be associated with serious complications, including vision loss, intracranial infection and death. Studies of orbital cellulitis and its complication report mortality in 1- 2% and vision loss in 3-11%. In contrast, mortality and vision loss are extremely rare in preseptal cellulitis. 1.1 Definitions Preseptal and orbital cellulites are the most common causes of acute orbital inflammation. Preseptal cellulitis is an infection of the soft tissue of the eyelids and periocular region that is localized anterior to the orbital septum outside the bony orbit. Orbital cellulitis ( 3.5 per 100,00 ) is an infection of the soft tissues of the orbit that is localized posterior to the orbital septum and involves the fat and muscles contained within the bony orbit. Both types are normally distinguished clinically by anatomic location. 1.2 Pathophysiology The soft tissues of the eyelids, adnexa and orbit are sterile. Infection usually originates from adjacent non-sterile sites but may also expand hematogenously from distant infected sites when septicemia occurs. -
Refractive Surgery Faqs. Refractive Surgery the OD's Role in Refractive
9/18/2013 Refractive Surgery Refractive Surgery FAQs. Help your doctor with refractive surgery patient education Corneal Intraocular Bill Tullo, OD, FAAO, LASIK Phakic IOL Verisys Diplomate Surface Ablation Vice-President of Visian PRK Clinical Services LASEK CLE – Clear Lens Extraction TLC Laser Eye Centers Epi-LASIK Cataract Surgery AK - Femto Toric IOL Multifocal IOL ICRS - Intacs Accommodative IOL Femtosecond Assisted Inlays Kamra The OD’s role in Refractive Surgery Refractive Error Determine the patient’s interest Myopia Make the patient aware of your ability to co-manage surgery Astigmatism Discuss advancements in the field Hyperopia Outline expectations Presbyopia/monovision Presbyopia Enhancements Risks Make a recommendation Manage post-op care and expectations Myopia Myopic Astigmatism FDA Approval Common Use FDA Approval Common Use LASIK: 1D – 14D LASIK: 1D – 8D LASIK: -0.25D – -6D LASIK: -0.25D – -3.50D PRK: 1D – 13D PRK: 1D – 6D PRK: -0.25D – -6D PRK: -0.25D – -3.50D Intacs: 1D- 3D Intacs: 1D- 3D Intacs NONE Intacs: NONE P-IOL: 3D- 20D P-IOL: 8D- 20D P-IOL: NONE P-IOL: NONE CLE/CAT: any CLE/CAT: any CLE/CAT: -0.75D - -3D CLE/CAT: -0.75D - -3D 1 9/18/2013 Hyperopia Hyperopic Astigmatism FDA Approval Common Use FDA Approval Common Use LASIK: 0.25D – 6D LASIK: 0.25D – 4D LASIK: 0.25D – 6D LASIK: 0.25D – 4D PRK: 0.25D – 6D PRK: 0.25D – 4D PRK: 0.25D – 6D PRK: 0.25D – 4D Intacs: NONE Intacs: NONE Intacs: NONE Intacs: NONE P-IOL: NONE P-IOL: NONE P-IOL: NONE P-IOL: -
Posterior Cornea and Thickness Changes After Scleral Lens Wear in Keratoconus Patients
Contact Lens and Anterior Eye xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Contact Lens and Anterior Eye journal homepage: www.elsevier.com/locate/clae Posterior cornea and thickness changes after scleral lens wear in keratoconus patients Maria Serramitoa, Carlos Carpena-Torresa, Jesús Carballoa, David Piñerob,c, Michael Lipsond, ⁎ Gonzalo Carracedoa,e, a Department of Optics II (Optometry and Vision), Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain b Group of Optics and Visual Perception, Department of Optics, Pharmacology and Anatomy, University of Alicante, Spain c Department of Ophthalmology (OFTALMAR), Vithas Medimar International Hospital, Alicante, Spain d Department of Ophthalmology and Visual Science, University of Michigan, Northville, MI, USA e Ocupharm Group Research, Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain ARTICLE INFO ABSTRACT Keywords: Purpose: To evaluate the changes in the corneal thickness, anterior chamber depth and posterior corneal cur- Scleral lenses vature and aberrations after scleral lens wear in keratoconus patients with and without intrastromal corneal ring Keratoconus segments (ICRS). Corneal curvature Methods: Twenty-six keratoconus subjects (36.95 ± 8.95 years) were evaluated after 8 h of scleral lens wear. Corneal aberrations The subjects were divided into two groups: those with ICRS (ICRS group) and without ICRS (KC group). The Anterior chamber study variables evaluated before and immediately after scleral lens wear included corneal thickness evaluated in Corneal thickness different quadrants, posterior corneal curvature at 2, 4, 6 and 8 mm of corneal diameter, posterior corneal aberrations for 4, 6 and 8 mm of pupil size and anterior chamber depth. -
Diagnosis and Treatment of Neurotrophic Keratopathy
An Evidence-based Approach to the Diagnosis and Treatment of Neurotrophic Keratopathy ACTIVITY DIRECTOR A CME MONOGRAPH Esen K. Akpek, MD This monograph was published by Johns Hopkins School of Medicine in partnership Wilmer Eye Institute with Catalyst Medical Education, LLC. It is Johns Hopkins School of Medicine not affiliated with JAMA medical research Baltimore, Maryland publishing. Visit catalystmeded.com/NK for online testing to earn your CME credit. FACULTY Natalie Afshari, MD Mina Massaro-Giordano, MD Shiley Eye Institute University of Pennsylvania School of Medicine University of California, San Diego Philadelphia, Pennsylvania La Jolla, California Nakul Shekhawat, MD, MPH Sumayya Ahmad, MD Wilmer Eye Institute Mount Sinai School of Medicine Johns Hopkins School of Medicine New York, New York Baltimore, Maryland Pedram Hamrah, MD, FRCS, FARVO Christopher E. Starr, MD Tufts University School of Medicine Weill Cornell Medical College Boston, Massachusetts New York, New York ACTIVITY DIRECTOR FACULTY Esen K. Akpek, MD Natalie Afshari, MD Mina Massaro-Giordano, MD Professor of Ophthalmology Professor of Ophthalmology Professor of Clinical Ophthalmology Director, Ocular Surface Diseases Chief of Cornea and Refractive Surgery University of Pennsylvania School and Dry Eye Clinic Vice Chair of Education of Medicine Wilmer Eye Institute Fellowship Program Director of Cornea Philadelphia, Pennsylvania Johns Hopkins School of Medicine and Refractive Surgery Baltimore, Maryland Shiley Eye Institute Nakul Shekhawat, MD, MPH University of California, -
Medical Policy Gas Permeable Scleral Contact Lens
Medical Policy Gas Permeable Scleral Contact Lens Table of Contents Policy: Commercial Coding Information Information Pertaining to All Policies Policy: Medicare Description References Authorization Information Policy History Policy Number: 371 BCBSA Reference Number: 9.03.25 Related Policies Corneal Topography/Computer-Assisted Corneal Topography/Photokeratoscopy, #301 Implantation of Intrastromal Corneal Ring Segments, #235 Policy Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Medicare HMO BlueSM and Medicare PPO BlueSM Members Rigid gas permeable scleral lens may be considered MEDICALLY NECESSARY for patients who have not responded to topical medications or standard spectacle or contact lens fitting, for the following conditions: Corneal ectatic disorders (e.g., keratoconus, keratoglubus, pellucid marginal degeneration, Terrien’s marginal degeneration, Fuchs’ superficial marginal keratitis, post-surgical ectasia); Corneal scarring and/or vascularization; Irregular corneal astigmatism (e.g., after keratoplasty or other corneal surgery); Ocular surface disease (e.g., severe dry eye, persistent epithelial defects, neurotrophic keratopathy, exposure keratopathy, graft vs. host disease, sequelae of Stevens Johnson syndrome, mucus membrane pemphigoid, post-ocular surface tumor excision, post-glaucoma filtering surgery) with pain and/or decreased visual acuity. Prior Authorization Information Commercial Members: Managed Care (HMO and POS) Prior authorization is NOT required. Commercial Members: PPO, and Indemnity -
Freedman Eyelid Abnormalities
1/16/2018 1 1/16/2018 Upper Lid Lower Lid Protractors Retractors: Levator m. 3rd nerve function Muller’s m. Cranial Nerve VII function Sympathetic Function Inferior Tarsal Muscle Things to Note Lid Apposition to Globe Position of Lid Margins MRD = 3‐5 mm Canthal Insertions Brow Positions 2 1/16/2018 Ptosis Usually age related levator dehiscence, but sometimes a sign of neurologic, mechanical orbital or inflammatory disease Blepharospasm Sign of External Irritation or Neurologic Disease 3 1/16/2018 First Consider Underlying Orbital Disease Orbital Cellulitis, Pseudotumor, Wegener’s Graves Ophthalmopathy, Orbital Varix Orbital Tumors that can mimic inflammatory process: Lacrimal Gland CA, Lymphoma, Lymphangioma, etc. Lacrimal Gland – Dacryoadenitis or tumor Sinus Mucocele Without Inflammatory Appearance, consider above but also… Allergic Eyelid Edema Hormonal Shifts Systemic Disorder – Cardiac, Renal, Hepatic, Thyroid with edema Cutaneous Lymphoma Graves Ophthalmopathy –can just have lid edema w/o inflammatory appearance Lymphedema after trauma, surgery to lids or orbit (e.g. lymphatics in lateral canthus) Traumatic Leak of CSF into upper eyelid (JAMA Oph 2014;312:1485) Blepharochalasis Not True Edema, but might mimic it: Dermatochalasis, Hidden Eyelid or Sub‐Conjunctival Mass, Prolapsed Orbital Fat When your concerned about: Orbital Cellulitis Orbital Pseudotumor Orbital Malignancy Vascular – e.g. CC fistula Proptosis Chemosis Poor Motility Poor Vision Pupil abnormality – e.g. RAPD Orbital Pseudotumor 4 1/16/2018 Good Vision Good Motility -
Blepharitis and the Sjögren's Patient
Volume 28, Issue 10 November 2010 Blepharitis and the Sjögren’s Patient by Gary N. Foulks, MD, Arthur and Virginia Keeney,Professor of Ophthalmology, University of Louisville, Louisville, KY lepharitis, one of the most common problems seen by eye care specialists, may affect as many as 30 mil- The SSF Announces Blion Americans.1 Its prevalence increases with age, though eye care specialists are seeing it more in young- 2010 Research Grant Recipients – er patients. Most significantly, this condition appears to be more prevalent in Sjögren’s syndrome patients.2,3 If left untreated, blepharitis can impact a patient’s Donations Made the Difference! eye health, appearance, contact lens use, and quality by Katherine Hammitt, SSF Vice President of Research, and of life. Unchecked blepharitis can compromise results Cynthia Williamson, SSF Research Associate of cataract or LASIK surgery. e are experiencing a distressing dichotomy in research What is Blepharitis? with more scientific opportunities in Sjögren’s than ever Blepharitis involves inflammation of the eyelid.4 It Wbefore that are ripe for research, and yet, with tough economic times experienced in the U.S. and throughout can be caused by a variety of factors (e.g., age, allergy, the world, the future of medical and scientific research is immune system problems, hormone changes, bacteria, uncertain. The National Institutes of Health, the federal and dermatitis). agency and largest dispenser of research funds in the world, Symptoms can range from irritation and redness of reports that the percentage of research grant applications the eyelid margin to problems with reading, using a that are funded by the NIH has dropped from 40% to computer, or watching television. -
Eye Care in the Intensive Care Unit (ICU)
Ophthalmic Services Guidance Eye Care in the Intensive Care Unit (ICU) June 2017 18 Stephenson Way, London, NW1 2HD T. 020 7935 0702 [email protected] rcophth.ac.uk @RCOphth © The Royal College of Ophthalmologists 2017 All rights reserved For permission to reproduce any of the content contained herein please contact [email protected] Contents Section page 1 Summary 3 2 Introduction 3 Protecting the eye of the vulnerable patient 4 3 Identifying disease of the eye 6 Exposure keratopathy and corneal abrasion 6 Chemosis 8 Microbial infections 8 4 Rare eye conditions in ICU 10 Red eye in a septic patient: possible endogenous endophthalmitis 10 Other problems 11 5 Delivering treatment to the eye when it is prescribed 11 Red eye in ICU patient 12 6. Systemic fungal infection and the eye for intensivists 14 7. Tips for ophthalmologists seeing patients in ICU 14 8. Authors 16 9. References 17 Date of review: July 2020 2017/PROF/350 2 1 Summary This document aims to provide advice and information for clinical staff who are involved in eye care in the ICU. It is primarily intended to help non-ophthalmic ICU staff to: 1. protect the eye in vulnerable patients, thus preventing ICU-related eye problems 2. identify disease affecting the eye in ITU patients, and specifically those which might need ophthalmic referral 3. deliver treatment to the eye when it is prescribed It concentrates primarily on the common problems of the eye surface but also touches on other less common conditions. As such, it should also be helpful to those ophthalmologists asked for advice about ICU patients. -
Shift Work: a Risk Factor for Central Serous Chorioretinopathy
Shift Work: A Risk Factor for Central Serous Chorioretinopathy ELODIE BOUSQUET, MYRIAM DHUNDASS, MATHIEU LEHMANN, PIERRE-RAPHAE¨L ROTHSCHILD, VIRGINIE BAYON, DAMIEN LEGER, CIARA BERGIN, ALI DIRANI, TALAL BEYDOUN, AND FRANCINE BEHAR-COHEN PURPOSE: To investigate if shift work or sleep distur- and focal serous detachments of the neurosensory retina bances are risk factors for central serous chorioretinop- and retinal pigment epithelium alterations. The role of athy (CSCR). choroid hyperpermeability in the pathogenesis of CSCR DESIGN: Prospective case-control study. has been well documented recently with multimodal imag- 2 METHODS: Forty patients with active CSCR and 40 ing modalities. In CSCR patients, a thick choroid has controls (age- and sex-matched) were prospectively been reported not only in the affected eye but also in the recruited from the Ophthalmology Department of Hoˆtel fellow eye, which is consistent with bilateral choroidal Dieu Hospital, Paris, between November 2013 and hyperpermeability.2,3 December 2014. All patients were asked to complete a To date, several risk factors for CSCR have been questionnaire addressing previously described risk factors identified,3 and the most consistent is corticosteroid and working hours, as well as the Insomnia Severity exposure from therapeutic administration or from endog- Index (ISI), a validated instrument for assessing sleep enous overproduction, as in Cushing syndrome.4–6 disturbances. Corticosteroids were recently shown to induce RESULTS: The mean age of the CSCR group was 44 -
Toxic Keratopathy Following the Use of Alcohol-Containing Antiseptics in Nonocular Surgery
Research Brief Report Toxic Keratopathy Following the Use of Alcohol-Containing Antiseptics in Nonocular Surgery Hsin-Yu Liu, MD; Po-Ting Yeh, MD; Kuan-Ting Kuo, MD; Jen-Yu Huang, MD; Chang-Ping Lin, MD; Yu-Chih Hou, MD IMPORTANCE Corneal abrasion is the most common ocular complication associated with nonocular surgery, but toxic keratopathy is rare. OBSERVATION Three patients developed severe toxic keratopathy after orofacial surgery on the left side with general anesthesia. All patients underwent surgery in the right lateral tilt position with ocular protection but reported irritation and redness in their right eyes after the operation. Alcohol-containing antiseptic solutions were used for presurgical preparation. Ophthalmic examination showed decreased visual acuity ranging from 20/100 to 20/400, corneal edema and opacity, anterior chamber reaction, or stromal neovascularization in the patients’ right eyes. Confocal microscopy showed moderate to severe loss of corneal endothelial cells in all patients. Despite prompt treatment with topical corticosteroids, these Author Affiliations: Department of Ophthalmology, National Taiwan 3 patients eventually required cataract surgery, endothelial keratoplasty, or penetrating University Hospital, College of keratoplasty, respectively. After the operation, the patients’ visual acuity improved to 20/30 Medicine, National Taiwan University, or 20/40. Data analysis was conducted from December 6, 2010, to June 15, 2015. Taipei, Taiwan (Liu, Yeh, Huang, Lin, Hou); Department of Pathology, National Taiwan University Hospital, CONCLUSIONS AND RELEVANCE Alcohol-containing antiseptic solutions may cause severe College of Medicine, National Taiwan toxic keratopathy; this possibility should be considered in orofacial surgery management. University, Taipei, Taiwan (Kuo). Using alcohol-free antiseptic solutions in the periocular region and taking measures to protect Corresponding Author: Yu-Chih the dependent eye in the lateral tilt position may reduce the risk of severe corneal injury.