Stability and Bifurcation of Dynamical Systems

Total Page:16

File Type:pdf, Size:1020Kb

Stability and Bifurcation of Dynamical Systems STABILITY AND BIFURCATION OF DYNAMICAL SYSTEMS Scope: • To remind basic notions of Dynamical Systems and Stability Theory; • To introduce fundaments of Bifurcation Theory, and establish a link with Stability Theory; • To give an outline of the Center Manifold Method and Normal Form theory. 1 Outline: 1. General definitions 2. Fundaments of Stability Theory 3. Fundaments of Bifurcation Theory 4. Multiple bifurcations from a known path 5. The Center Manifold Method (CMM) 6. The Normal Form Theory (NFT) 2 1. GENERAL DEFINITIONS We give general definitions for a N-dimensional autonomous systems. ••• Equations of motion: x(t )= Fx ( ( t )), x ∈ »N where x are state-variables , { x} the state-space , and F the vector field . ••• Orbits: Let xS (t ) be the solution to equations which satisfies prescribed initial conditions: x S(t )= F ( x S ( t )) 0 xS (0) = x The set of all the values assumed by xS (t ) for t > 0is called an orbit of the dynamical system. Geometrically, an orbit is a curve in the phase-space, originating from x0. The set of all orbits is the phase-portrait or phase-flow . 3 ••• Classifications of orbits: Orbits are classified according to their time-behavior. Equilibrium (or fixed -) point : it is an orbit xS (t ) =: xE independent of time (represented by a point in the phase-space); Periodic orbit : it is an orbit xS (t ) =:xP (t ) such that xP(t+ T ) = x P () t , with T the period (it is a closed curve, called cycle ); Quasi-periodic orbit : it is an orbit xS (t ) =:xQ (t ) such that, given an arbitrary small ε > 0 , there exists a time τ for which xQ(t+τ ) − x Q () t ≤ ε holds for any t; (it is a curve that densely fills a ‘tubular’ space); Non-periodic orbit : orbit xS (t ) with no special properties. The first three are recurrent states ; the last one a non-recurrent state . 4 2. FUNDAMENTS OF STABILITY THEORY Stability of orbits Basic idea: An orbit is stable if all orbits, originating close to it, remain confined in a small neighborhood; otherwise, it unstable . This notion specializes as follows. Stability of an equilibrium point (Liapunov): xE is stable if, for every neighborhood of xE, there exists a neighborhood ⊆ of xE, such that an orbit x(t) starting in remains in for all t ≥ 0 . If , in addition, x(t ) → x E as t → ∞ , then xE is asymptotically stable . Stability of a general orbit (orbital stability): xS (t ) is orbitally stable if all orbits, originating from nearby initial points, remain ‘close’ to it, irrespectively of their time-parametrization. 5 Quantitative analysis: the variational equation Orbit xS (t ) to be analyzed: x S(t )= F ( x S ( t )) Perturbed motion: x()t= x () t + δ x () t S Equations for the perturbed motion , Taylor- expanded: xS()t+δ x () t = Fx ( S () t + δ x ()) t 2 =Fx(S ())t + Fxx ( S ()) ttδ x () + O( δ x ()) t i.e.: xJx ttt x t2 J t Fx t δ()=S () δ ()O( + δ ()),S (): = x ( S ()) 6 By linearizing in δx(t): δx()t= J () t δ x () t S This is called the variational equation (based on xS (t ) ); it is generally non-autonomous, since xS (t ) depends on t. Special cases: o xS ( t ) is an equilibrium point xE: δx()t= Jx δ (), t J : = Fx () E Ex E in which JE has constant coefficients. o xS ( t ) is a periodic orbit xP(t) of period T: δxJ()ttt= () δ x (), J (): t = Fx ( ()) t P Px P in which JP(t)= J P(t+T) has periodic coefficients (Floquet Theory). We will confine ourselves to equilibrium points. 7 Stability of an equilibrium point We study the stability of an equilibrium point xE. ••• Linearized stability: 2 We first study linearized stability of xE, by ignoring the reminder O(δ x ()t ) in the equation for perturbed motion. Variational equation: δx()t= JE δ x () t Eigenvalue problem: (JE −λ Iu ) = 0 8 Discussion: o if all the eigenvalues λ have negative real parts, then δ x(t )→ 0 as t → ∞ ; therefore xE is asymptotically stable ; o if at least one eigenvalue λ has positive real part, then δ x(t ) → ∞ as t → ∞ ; therefore xE is unstable ; o if all the eigenvalues λ have non-positive real parts, and at least one of them has zero real part, then, the asymptotic behavior of δ x(t ) , as t → ∞ , depends on the eigenspace associated with Re( λ)=0, namely: (a) if it is complete (simple or semi-simple roots λ), δ x(t ) is oscillatory, hence xE is neutrally stable ; (b) if this is incomplete (non-semi-simple roots λ), δ x(t ) → ∞ , hence xE is unstable . 9 Hyperbolic and non-hyperbolic equilibrium points: We introduce the following definition, based on the type of the eigenvalues of JE: o the equilibria at which all the eigenvalues λ have non-zero real parts are hyperbolic points ; o the equilibria at which at least one of the eigenvalues λ has zero real part are non-hyperbolic points (also named critical ). Note: the most interesting case of non-hyperbolic point, is that in which the eigenvalues have either negative and zero real parts (neutrally stable linear system ). 10 ••• Nonlinear stability of hyperbolic points : 2 Since the remainder term O(δ x ()t ) in the nonlinear equation 2 δxJx()t=S () tt δ () + O( δ x ()) t can be made as small as we wish, by selecting a sufficiently small neighborhood of xE, results for linear system apply also to nonlinear system. Therefore: A hyperbolic point is asymptotically stable if all the eigenvalues of the Jacobian matrix JE have negative real parts; is unstable if at least one eigenvalue has positive real part. ••• Nonlinear stability of non-hyperbolic points : Nonlinear terms decide the true character of the equilibrium, stable or unstable. Therefore, linear stability analysis fails to give an answer, and a nonlinear analysis is necessary. 11 Example: A one-dimensional system admitting a non-hyperbolic equilibrium point x E=0 is considered: xFxx=( ), ∈» , F (0) == F x (0) 0 By letting x=x E+δx and expanding in series, the equation reads: 1 1 δ x = F (0) + F (0) δxF+(0) δ xF2 + (0) δδ x 3 + O( x 4 ) x 2xx 6 xxx The phase-portrait is illustrated in the figure. 12 3. FUNDAMENTS OF BIFURCATION THEORY Bifurcation theory considers families of systems depending on parameters. Its aim is to divide the parameter space in regions in which the system has qualitatively similar behaviors. At the separating boundaries, sudden alteration of the dynamics takes place. They are called bifurcations . Parameter-dependent systems ••• Autonomous dynamical system: N M x(t )= F ( x ( t ),µ ),x ∈» , µ ∈ » where µ are parameters. ••• Phase-portrait: Since orbits xS= x S (t ,µ ) depend on parameters, when these latter are (quasi-statically) varied, the whole phase-portrait is modified. 13 Structural Stability A phase-portrait is robust , or structurally stable , if small perturbations of the vector-field (as εG( x ,µ ) , with ε 1) do not qualitatively change it, but only entails smooth deformations. Note: Stability and Structural Stability should not be confused. The former refers to a selected orbit , and depends on the phase-portraits surrounding it; the latter refer on the whole phase-portrait . Example of robust dynamics: 14 Bifurcation: general definition A bifurcation is a qualitative change of dynamics . It occurs at a bifurcation value µ= µ c of the parameters at which structural stability is lost. Therefore, the dynamics at µc +δ µ , with δ µ arbitrary small, is topologically inequivalent from that at µc . Note: at a bifurcation, stability of equilibria changes, or the number of equilibria and/or periodic orbits change. 15 • Example: saddle-node bifurcation: Dynamical system: x =µ + x 2 y = − y Equilibrium: xE=±−µ , y E = 0 Equilibrium path (or bifurcation diagram ): 16 Jacobian matrix at equilibrium: ±2 − µ 0 J E = 0− 1 The equilibrium at µ=0 is not-hyperbolic; here a bifurcation occurs. Phase-portraits: 17 Bifurcation of equilibrium points : Let xE= x E (µ ) be an equilibrium path, i.e. F( x E (),µ µ )= 0 ∀ µ and let 0 xE:= x E (µ0 ) be the equilibrium at µ= µ 0 . We want to analyze changes of the system dynamics, when the parameters µ0 are perturbed to µ0 + δ µ . 18 Linear dynamics around the perturbed equilibrium point xE (µ ) : x()t= x E ()µ + δ x () t x (µ ) +δ x()t = F ( x (),)µ µ +F( x (),)µ µ δx ()t + O( δ x ()) t 2 E E x E δx()t= J E ()µ δ x (), t J E ():µ = Fx ( x E (),)µ µ Series expansion of the Jacobian matrix at the perturbed point xE (µ ) : J E()µ = Fx ( x E (),µ0 µ 0 ) 2 +[Fxx ((),) x Eµ00 µ x Eµ ()µ 0 +Fxµ ((),)] x E µµ 00 δ µ + O( δ µ ) or, in short: J=: J0 + J 0 δµ E E E µ The local flow around xE (µ ) is governed by the eigenvalues of J E ; these 0 are perturbations of the eigenvalues of J E . 19 Hyperbolic and non-hyperbolic equilibria 0 0 o If xE is hyperbolic, the sign of the real part of the eigenvalues of J E does not change under sufficiently small perturbations δ µ , so that the dynamics remain substantially unaltered. We conclude that the local phase-portrait at a hyperbolic equilibrium point is structurally stable. 0 0 o If xE is non-hyperbolic, one or more eigenvalues of J E have zero real parts.
Recommended publications
  • Chapter 2 Structural Stability
    Chapter 2 Structural stability 2.1 Denitions and one-dimensional examples A very important notion, both from a theoretical point of view and for applications, is that of stability: the qualitative behavior should not change under small perturbations. Denition 2.1.1: A Cr map f is Cm structurally stable (with 1 m r ∞) if there exists a neighbour- hood U of f in the Cm topology such that every g ∈ U is topologically conjugated to f. Remark 2.1.1. The reason that for structural stability we just ask the existence of a topological conju- gacy with close maps is because we are interested only in the qualitative properties of the dynamics. For 1 1 R instance, the maps f(x)= 2xand g(x)= 3xhave the same qualitative dynamics over (and indeed are topologically conjugated; see below) but they cannot be C1-conjugated. Indeed, assume there is a C1- dieomorphism h: R → R such that h g = f h. Then we must have h(0) = 0 (because the origin is the unique xed point of both f and g) and 1 1 h0(0) = h0 g(0) g0(0)=(hg)0(0)=(fh)0(0) = f 0 h(0) h0(0) = h0(0); 3 2 but this implies h0(0) = 0, which is impossible. Let us begin with examples of non-structurally stable maps. 2 Example 2.1.1. For ε ∈ R let Fε: R → R given by Fε(x)=xx +ε. We have kFε F0kr = |ε| for r all r 0, and hence Fε → F0 in the C topology.
    [Show full text]
  • Solution Bounds, Stability and Attractors' Estimates of Some Nonlinear Time-Varying Systems
    1 Solution Bounds, Stability and Attractors’ Estimates of Some Nonlinear Time-Varying Systems Mark A. Pinsky and Steve Koblik Abstract. Estimation of solution norms and stability for time-dependent nonlinear systems is ubiquitous in numerous applied and control problems. Yet, practically valuable results are rare in this area. This paper develops a novel approach, which bounds the solution norms, derives the corresponding stability criteria, and estimates the trapping/stability regions for a broad class of the corresponding systems. Our inferences rest on deriving a scalar differential inequality for the norms of solutions to the initial systems. Utility of the Lipschitz inequality linearizes the associated auxiliary differential equation and yields both the upper bounds for the norms of solutions and the relevant stability criteria. To refine these inferences, we introduce a nonlinear extension of the Lipschitz inequality, which improves the developed bounds and estimates the stability basins and trapping regions for the corresponding systems. Finally, we conform the theoretical results in representative simulations. Key Words. Comparison principle, Lipschitz condition, stability criteria, trapping/stability regions, solution bounds AMS subject classification. 34A34, 34C11, 34C29, 34C41, 34D08, 34D10, 34D20, 34D45 1. INTRODUCTION. We are going to study a system defined by the equation n (1) xAtxftxFttt , , [0 , ), x , ft ,0 0 where matrix A nn and functions ft:[ , ) nn and F : n are continuous and bounded, and At is also continuously differentiable. It is assumed that the solution, x t, x0 , to the initial value problem, x t0, x 0 x 0 , is uniquely defined for tt0 . Note that the pertained conditions can be found, e.g., in [1] and [2].
    [Show full text]
  • Strange Attractors and Classical Stability Theory
    Nonlinear Dynamics and Systems Theory, 8 (1) (2008) 49–96 Strange Attractors and Classical Stability Theory G. Leonov ∗ St. Petersburg State University Universitetskaya av., 28, Petrodvorets, 198504 St.Petersburg, Russia Received: November 16, 2006; Revised: December 15, 2007 Abstract: Definitions of global attractor, B-attractor and weak attractor are introduced. Relationships between Lyapunov stability, Poincare stability and Zhukovsky stability are considered. Perron effects are discussed. Stability and instability criteria by the first approximation are obtained. Lyapunov direct method in dimension theory is introduced. For the Lorenz system necessary and sufficient conditions of existence of homoclinic trajectories are obtained. Keywords: Attractor, instability, Lyapunov exponent, stability, Poincar´esection, Hausdorff dimension, Lorenz system, homoclinic bifurcation. Mathematics Subject Classification (2000): 34C28, 34D45, 34D20. 1 Introduction In almost any solid survey or book on chaotic dynamics, one encounters notions from classical stability theory such as Lyapunov exponent and characteristic exponent. But the effect of sign inversion in the characteristic exponent during linearization is seldom mentioned. This effect was discovered by Oscar Perron [1], an outstanding German math- ematician. The present survey sets forth Perron’s results and their further development, see [2]–[4]. It is shown that Perron effects may occur on the boundaries of a flow of solutions that is stable by the first approximation. Inside the flow, stability is completely determined by the negativeness of the characteristic exponents of linearized systems. It is often said that the defining property of strange attractors is the sensitivity of their trajectories with respect to the initial data. But how is this property connected with the classical notions of instability? For continuous systems, it was necessary to remember the almost forgotten notion of Zhukovsky instability.
    [Show full text]
  • Chapter 8 Stability Theory
    Chapter 8 Stability theory We discuss properties of solutions of a first order two dimensional system, and stability theory for a special class of linear systems. We denote the independent variable by ‘t’ in place of ‘x’, and x,y denote dependent variables. Let I ⊆ R be an interval, and Ω ⊆ R2 be a domain. Let us consider the system dx = F (t, x, y), dt (8.1) dy = G(t, x, y), dt where the functions are defined on I × Ω, and are locally Lipschitz w.r.t. variable (x, y) ∈ Ω. Definition 8.1 (Autonomous system) A system of ODE having the form (8.1) is called an autonomous system if the functions F (t, x, y) and G(t, x, y) are constant w.r.t. variable t. That is, dx = F (x, y), dt (8.2) dy = G(x, y), dt Definition 8.2 A point (x0, y0) ∈ Ω is said to be a critical point of the autonomous system (8.2) if F (x0, y0) = G(x0, y0) = 0. (8.3) A critical point is also called an equilibrium point, a rest point. Definition 8.3 Let (x(t), y(t)) be a solution of a two-dimensional (planar) autonomous system (8.2). The trace of (x(t), y(t)) as t varies is a curve in the plane. This curve is called trajectory. Remark 8.4 (On solutions of autonomous systems) (i) Two different solutions may represent the same trajectory. For, (1) If (x1(t), y1(t)) defined on an interval J is a solution of the autonomous system (8.2), then the pair of functions (x2(t), y2(t)) defined by (x2(t), y2(t)) := (x1(t − s), y1(t − s)), for t ∈ s + J (8.4) is a solution on interval s + J, for every arbitrary but fixed s ∈ R.
    [Show full text]
  • Writing the History of Dynamical Systems and Chaos
    Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as
    [Show full text]
  • Robot Dynamics and Control Lecture 8: Basic Lyapunov Stability Theory
    MCE/EEC 647/747: Robot Dynamics and Control Lecture 8: Basic Lyapunov Stability Theory Reading: SHV Appendix Mechanical Engineering Hanz Richter, PhD MCE503 – p.1/17 Stability in the sense of Lyapunov A dynamic system x˙ = f(x) is Lyapunov stable or internally stable about an equilibrium point xeq if state trajectories are confined to a bounded region whenever the initial condition x0 is chosen sufficiently close to xeq. Mathematically, given R> 0 there always exists r > 0 so that if ||x0 − xeq|| <r, then ||x(t) − xeq|| <R for all t> 0. As seen in the figure R defines a desired confinement region, while r defines the neighborhood of xeq where x0 must belong so that x(t) does not exit the confinement region. R r xeq x0 x(t) MCE503 – p.2/17 Stability in the sense of Lyapunov... Note: Lyapunov stability does not require ||x(t)|| to converge to ||xeq||. The stronger definition of asymptotic stability requires that ||x(t)|| → ||xeq|| as t →∞. Input-Output stability (BIBO) does not imply Lyapunov stability. The system can be BIBO stable but have unbounded states that do not cause the output to be unbounded (for example take x1(t) →∞, with y = Cx = [01]x). The definition is difficult to use to test the stability of a given system. Instead, we use Lyapunov’s stability theorem, also called Lyapunov’s direct method. This theorem is only a sufficient condition, however. When the test fails, the results are inconclusive. It’s still the best tool available to evaluate and ensure the stability of nonlinear systems.
    [Show full text]
  • Analysis of ODE Models
    Analysis of ODE Models P. Howard Fall 2009 Contents 1 Overview 1 2 Stability 2 2.1 ThePhasePlane ................................. 5 2.2 Linearization ................................... 10 2.3 LinearizationandtheJacobianMatrix . ...... 15 2.4 BriefReviewofLinearAlgebra . ... 20 2.5 Solving Linear First-Order Systems . ...... 23 2.6 StabilityandEigenvalues . ... 28 2.7 LinearStabilitywithMATLAB . .. 35 2.8 Application to Maximum Sustainable Yield . ....... 37 2.9 Nonlinear Stability Theorems . .... 38 2.10 Solving ODE Systems with matrix exponentiation . ......... 40 2.11 Taylor’s Formula for Functions of Multiple Variables . ............ 44 2.12 ProofofPart1ofPoincare–Perron . ..... 45 3 Uniqueness Theory 47 4 Existence Theory 50 1 Overview In these notes we consider the three main aspects of ODE analysis: (1) existence theory, (2) uniqueness theory, and (3) stability theory. In our study of existence theory we ask the most basic question: are the ODE we write down guaranteed to have solutions? Since in practice we solve most ODE numerically, it’s possible that if there is no theoretical solution the numerical values given will have no genuine relation with the physical system we want to analyze. In our study of uniqueness theory we assume a solution exists and ask if it is the only possible solution. If we are solving an ODE numerically we will only get one solution, and if solutions are not unique it may not be the physically interesting solution. While it’s standard in advanced ODE courses to study existence and uniqueness first and stability 1 later, we will start with stability in these note, because it’s the one most directly linked with the modeling process.
    [Show full text]
  • Structural Stability of Piecewise Smooth Systems
    STRUCTURAL STABILITY OF PIECEWISE SMOOTH SYSTEMS MIREILLE E. BROUCKE, CHARLES C. PUGH, AND SLOBODAN N. SIMIC´ † Abstract A.F. Filippov has developed a theory of dynamical systems that are governed by piecewise smooth vector fields [2]. It is mainly a local theory. In this article we concentrate on some of its global and generic aspects. We establish a generic structural stability theorem for Filip- pov systems on surfaces, which is a natural generalization of Mauricio Peixoto’s classic result [12]. We show that the generic Filippov system can be obtained from a smooth system by a process called pinching. Lastly, we give examples. Our work has precursors in an announcement by V.S. Kozlova [6] about structural stability for the case of planar Fil- ippov systems, and also the papers of Jorge Sotomayor and Jaume Llibre [8] and Marco Antonio Teixiera [17], [18]. Partially supported by NASA grant NAG-2-1039 and EPRI grant EPRI-35352- 6089.† STRUCTURAL STABILITY OF PIECEWISE SMOOTH SYSTEMS 1 1. Introduction Imagine two independently defined smooth vector fields on the 2- sphere, say X+ and X−. While a point p is in the Northern hemisphere let it move under the influence of X+, and while it is in the Southern hemisphere, let it move under the influence of X−. At the equator, make some intelligent decision about the motion of p. See Figure 1. This will give an orbit portrait on the sphere. What can it look like? Figure 1. A piecewise smooth vector field on the 2-sphere. How do perturbations affect it? How does it differ from the standard vector field case in which X+ = X−? These topics will be put in proper context and addressed in Sections 2-7.
    [Show full text]
  • Combinatorial and Analytical Problems for Fractals and Their Graph Approximations
    UPPSALA DISSERTATIONS IN MATHEMATICS 112 Combinatorial and analytical problems for fractals and their graph approximations Konstantinos Tsougkas Department of Mathematics Uppsala University UPPSALA 2019 Dissertation presented at Uppsala University to be publicly examined in Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, Friday, 15 February 2019 at 13:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Ben Hambly (Mathematical Institute, University of Oxford). Abstract Tsougkas, K. 2019. Combinatorial and analytical problems for fractals and their graph approximations. Uppsala Dissertations in Mathematics 112. 37 pp. Uppsala: Department of Mathematics. ISBN 978-91-506-2739-8. The recent field of analysis on fractals has been studied under a probabilistic and analytic point of view. In this present work, we will focus on the analytic part developed by Kigami. The fractals we will be studying are finitely ramified self-similar sets, with emphasis on the post-critically finite ones. A prototype of the theory is the Sierpinski gasket. We can approximate the finitely ramified self-similar sets via a sequence of approximating graphs which allows us to use notions from discrete mathematics such as the combinatorial and probabilistic graph Laplacian on finite graphs. Through that approach or via Dirichlet forms, we can define the Laplace operator on the continuous fractal object itself via either a weak definition or as a renormalized limit of the discrete graph Laplacians on the graphs. The aim of this present work is to study the graphs approximating the fractal and determine connections between the Laplace operator on the discrete graphs and the continuous object, the fractal itself.
    [Show full text]
  • Stability Theory for Ordinary Differential Equations 1. Introduction and Preliminaries
    JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 1, June 1988 Stability Theory for Ordinary Differential Equations Sung Kyu Choi, Keon-Hee Lee and Hi Jun Oh ABSTRACT. For a given autonomous system xf = /(a?), we obtain some properties on the location of positive limit sets and investigate some stability concepts which are based upon the existence of Liapunov functions. 1. Introduction and Preliminaries The classical theorem of Liapunov on stability of the origin 鉛 = 0 for a given autonomous system xf = makes use of an auxiliary function V(.x) which has to be positive definite. Also, the time deriva­ tive V'(⑦) of this function, as computed along the solution, has to be negative definite. It is our aim to investigate some stability concepts of solutions for a given autonomous system which are based upon the existence of suitable Liapunov functions. Let U C Rn be an open subset containing 0 G Rn. Consider the autonomous system x' = /(⑦), where xf is the time derivative of the function :r(t), defined by the continuous function f : U — Rn. When / is C1, to every point t()in R and Xq in 17, there corresponds the unique solution xq) of xf = f(x) such that ^(to) = ⑦⑴ For such a solution, let us denote I(xq) = (aq) the interval where it is defined (a, ⑵ may be infinity). Let f : (a, &) -나 R be a continuous function. Then f is decreasing on (a, b) if and only if the upper right-sided Dini derivative D+f(t) = lim sup f〔t + h(-f(t) < o 九 一>o+ h Received by the editors on March 25, 1988.
    [Show full text]
  • Stability and Explanatory Significance of Some Simple Evolutionary Models
    Stability and Explanatory Significance of Some Simple Evolutionary Models Brian Skyrms University of California, Irvine 1. Introduction. The explanatory value of equilibrium depends on the underlying dynamics. First there are questions of dynamical stability of the equilibrium that are internal to the dynamical system in question. Is the equilibrium locally stable, so that states near to it stay near to it, or better, asymptotically stable, so that states near to it are carried to it by the dynamics? If not, we should not expect to see this equilibrium. But even if an equilibrium is asymptotically stable, that is no guarantee that the system will reach that equilibrium unless we know that the system's initial state is sufficiently close to the equilibrium. Global stability of an equilibrium, when we have it, gives the equilibrium a much more powerful explanatory role. An equilibrium is globally asymptotically stable if the dynamics carries every possible initial state in the interior of the state space to that equilibrium. If an equilibrium is globally stable, it can have explanatory value even when we are completely uncertain about the initial state of the system. Once questions of dynamical stability are answered with respect to the dynamical system in question, there is the further question of structural stability of that system itself. That is to say, are dynamical systems close to the one in question (in a sense to be made 1 precise) topologically equivalent to that system? If not, a slight mispecification of the model may make predictions that are drastically wrong. Structural stability is defined in terms of small changes in the model.
    [Show full text]
  • Arnold: Swimming Against the Tide / Boris Khesin, Serge Tabachnikov, Editors
    ARNOLD: Real Analysis A Comprehensive Course in Analysis, Part 1 Barry Simon Boris A. Khesin Serge L. Tabachnikov Editors http://dx.doi.org/10.1090/mbk/086 ARNOLD: AMERICAN MATHEMATICAL SOCIETY Photograph courtesy of Svetlana Tretyakova Photograph courtesy of Svetlana Vladimir Igorevich Arnold June 12, 1937–June 3, 2010 ARNOLD: Boris A. Khesin Serge L. Tabachnikov Editors AMERICAN MATHEMATICAL SOCIETY Providence, Rhode Island Translation of Chapter 7 “About Vladimir Abramovich Rokhlin” and Chapter 21 “Several Thoughts About Arnold” provided by Valentina Altman. 2010 Mathematics Subject Classification. Primary 01A65; Secondary 01A70, 01A75. For additional information and updates on this book, visit www.ams.org/bookpages/mbk-86 Library of Congress Cataloging-in-Publication Data Arnold: swimming against the tide / Boris Khesin, Serge Tabachnikov, editors. pages cm. ISBN 978-1-4704-1699-7 (alk. paper) 1. Arnold, V. I. (Vladimir Igorevich), 1937–2010. 2. Mathematicians–Russia–Biography. 3. Mathematicians–Soviet Union–Biography. 4. Mathematical analysis. 5. Differential equations. I. Khesin, Boris A. II. Tabachnikov, Serge. QA8.6.A76 2014 510.92–dc23 2014021165 [B] Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are now being handled by Copyright Clearance Center’s RightsLink service.
    [Show full text]