Comparing Traditional Key Frame Animation Approach and Hybrid Animation Approach of Humanoid Characters
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Motion Enriching Using Humanoide Captured Motions
MASTER THESIS: MOTION ENRICHING USING HUMANOIDE CAPTURED MOTIONS STUDENT: SINAN MUTLU ADVISOR : A NTONIO SUSÌN SÀNCHEZ SEPTEMBER, 8TH 2010 COURSE: MASTER IN COMPUTING LSI DEPERTMANT POLYTECNIC UNIVERSITY OF CATALUNYA 1 Abstract Animated humanoid characters are a delight to watch. Nowadays they are extensively used in simulators. In military applications animated characters are used for training soldiers, in medical they are used for studying to detect the problems in the joints of a patient, moreover they can be used for instructing people for an event(such as weather forecasts or giving a lecture in virtual environment). In addition to these environments computer games and 3D animation movies are taking the benefit of animated characters to be more realistic. For all of these mediums motion capture data has a great impact because of its speed and robustness and the ability to capture various motions. Motion capture method can be reused to blend various motion styles. Furthermore we can generate more motions from a single motion data by processing each joint data individually if a motion is cyclic. If the motion is cyclic it is highly probable that each joint is defined by combinations of different signals. On the other hand, irrespective of method selected, creating animation by hand is a time consuming and costly process for people who are working in the art side. For these reasons we can use the databases which are open to everyone such as Computer Graphics Laboratory of Carnegie Mellon University. Creating a new motion from scratch by hand by using some spatial tools (such as 3DS Max, Maya, Natural Motion Endorphin or Blender) or by reusing motion captured data has some difficulties. -
Automated Staging for Virtual Cinematography Amaury Louarn, Marc Christie, Fabrice Lamarche
Automated Staging for Virtual Cinematography Amaury Louarn, Marc Christie, Fabrice Lamarche To cite this version: Amaury Louarn, Marc Christie, Fabrice Lamarche. Automated Staging for Virtual Cinematography. MIG 2018 - 11th annual conference on Motion, Interaction and Games, Nov 2018, Limassol, Cyprus. pp.1-10, 10.1145/3274247.3274500. hal-01883808 HAL Id: hal-01883808 https://hal.inria.fr/hal-01883808 Submitted on 28 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Automated Staging for Virtual Cinematography Amaury Louarn Marc Christie Fabrice Lamarche IRISA / INRIA IRISA / INRIA IRISA / INRIA Rennes, France Rennes, France Rennes, France [email protected] [email protected] [email protected] Scene 1: Camera 1, CU on George front screencenter and Marty 3/4 backright screenleft. George and Marty are in chair and near bar. (a) Scene specification (b) Automated placement of camera and characters (c) Resulting shot enforcing the scene specification Figure 1: Automated staging for a simple scene, from a high-level language specification (a) to the resulting shot (c). Our system places both actors and camera in the scene. Three constraints are displayed in (b): Close-up on George (green), George seen from the front (blue), and George screencenter, Marty screenleft (red). -
Computerising 2D Animation and the Cleanup Power of Snakes
Computerising 2D Animation and the Cleanup Power of Snakes. Fionnuala Johnson Submitted for the degree of Master of Science University of Glasgow, The Department of Computing Science. January 1998 ProQuest Number: 13818622 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13818622 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 GLASGOW UNIVERSITY LIBRARY U3 ^coji^ \ Abstract Traditional 2D animation remains largely a hand drawn process. Computer-assisted animation systems do exists. Unfortunately the overheads these systems incur have prevented them from being introduced into the traditional studio. One such prob lem area involves the transferral of the animator’s line drawings into the computer system. The systems, which are presently available, require the images to be over- cleaned prior to scanning. The resulting raster images are of unacceptable quality. Therefore the question this thesis examines is; given a sketchy raster image is it possible to extract a cleaned-up vector image? Current solutions fail to extract the true line from the sketch because they possess no knowledge of the problem area. -
Lightweight Procedural Animation with Believable Physical Interactions
Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment Conference Lightweight Procedural Animation with Believable Physical Interactions Ian Horswill Northwestern University, Departments of EECS and Radio/Television/Film 2133 Sheridan Road, Evanston IL 60208 [email protected] Abstract matics system. Posture control is performed by applying I describe a procedural animation system that uses tech- simulated forces and torques to the torso and pelvis. niques from behavior-based robot control, combined with a Interestingly, the use of a dynamic simulation actually minimalist physical simulation, to produce believable cha- simplifies control, allowing the use of relatively crude con- racter motions in a dynamic world. Although less realistic trol signals, which are then smoothed by the passive dy- than motion capture or full biomechanical simulation, the namics of the character body and body-environment inte- system produces compelling, responsive character behavior. raction; similar results have been found in both human and It is also fast, supports believable physical interactions be- robot motor control (Williamson, 2003). tween characters such as hugging, and makes it easy to au- Twig shows that surprisingly simple techniques can gen- thor new behaviors. erate believable2 motions and interactions. Much of the focus of this paper will be on ways in which Twig is able to Overview1 cheat to avoid doing complicated modeling or control, while still maintaining believability. This work is indebted Versatile procedural animation is a necessary component to the work of Jakobsen (Jakobsen, 2001) and Perlin (Per- for applications such as interactive drama, in which charac- lin, 1995, 2003; Perlin & Goldberg, 1996), both for their ters participate in complex interactions that cannot be pre- general approaches of using simple techniques to generate planned at authoring time. -
Inverse Kinematics Last Time? Today Keyframing Procedural Animation Physically-Based Animation
Last Time? • Navier-Stokes Equations • Conservation of Inverse Kinematics Momentum & Mass • Incompressible Flow Today Keyframing • How do we animate? • Use spline curves to automate the in betweening – Keyframing – Good control – Less tedious than drawing every frame – Procedural Animation • Creating a good animation still requires considerable – Physically-Based Animation skill and talent – Forward and Inverse Kinematics – Motion Capture • Rigid Body Dynamics • Finite Element Method ACM © 1987 “Principles of traditional animation applied to 3D computer animation” Procedural Animation Physically-Based Animation • Describes the motion algorithmically, • Assign physical properties to objects as a function of small number of (masses, forces, inertial properties) parameters • Example: a clock with second, minute • Simulate physics by solving equations and hour hands • Realistic but difficult to control – express the clock motions in terms of a “seconds” variable – the clock is animated by varying the v0 seconds parameter mg • Example: A bouncing ball -kt –Abs(sin(ωt+θ0))*e 1 Articulated Models Skeleton Hierarchy • Articulated models: • Each bone transformation – rigid parts described relative xyzhhhhhh,,,,,qf s – connected by joints to the parent in hips the hierarchy: qfttt,, s • They can be animated by specifying the joint left-leg ... angles as functions of time. r-thigh qc qi qi ()t r-calf y vs qfff, x r-foot z t1 t2 t1 t2 1 DOF: knee 2 DOF: wrist 3 DOF: arm Forward Kinematics Inverse Kinematics (IK) • Given skeleton xyzhhhhhh,,,,,qf -
The Uses of Animation 1
The Uses of Animation 1 1 The Uses of Animation ANIMATION Animation is the process of making the illusion of motion and change by means of the rapid display of a sequence of static images that minimally differ from each other. The illusion—as in motion pictures in general—is thought to rely on the phi phenomenon. Animators are artists who specialize in the creation of animation. Animation can be recorded with either analogue media, a flip book, motion picture film, video tape,digital media, including formats with animated GIF, Flash animation and digital video. To display animation, a digital camera, computer, or projector are used along with new technologies that are produced. Animation creation methods include the traditional animation creation method and those involving stop motion animation of two and three-dimensional objects, paper cutouts, puppets and clay figures. Images are displayed in a rapid succession, usually 24, 25, 30, or 60 frames per second. THE MOST COMMON USES OF ANIMATION Cartoons The most common use of animation, and perhaps the origin of it, is cartoons. Cartoons appear all the time on television and the cinema and can be used for entertainment, advertising, 2 Aspects of Animation: Steps to Learn Animated Cartoons presentations and many more applications that are only limited by the imagination of the designer. The most important factor about making cartoons on a computer is reusability and flexibility. The system that will actually do the animation needs to be such that all the actions that are going to be performed can be repeated easily, without much fuss from the side of the animator. -
FLUID MODELING with STOCHASTIC and STRUCTURAL FEATURES a Dissertation Submitted to Kent State University in Partial Fulfillment
FLUID MODELING WITH STOCHASTIC AND STRUCTURAL FEATURES A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Zhi Yuan August 2013 Dissertation written by Zhi Yuan B.S., Huazhong University of Science and Technology, 2005 Ph.D., Kent State University, 2013 Approved by Dr. Ye Zhao , Chair, Doctoral Dissertation Committee Dr. Ruoming Jin , Members, Doctoral Dissertation Committee Dr. Austin Melton Dr. Xiaoyu Zheng Dr. Robin Selinger Accepted by Dr. Javed Khan , Chair, Department of Computer Science Dr. Raymond A. Craig , Dean, College of Arts and Sciences ii TABLE OF CONTENTS LISTOFFIGURES..................................... vi LISTOFTABLES ..................................... ix Acknowledgements ................................... .. x Dedication......................................... xi 1 Introduction ...................................... 1 1.1 Significance,ChallengeandObjectives. ........ 1 1.2 MethodologyandContribution . .... 3 1.3 Background.................................... 5 1.3.1 PhysicallyBasedFluidSimulationMethods . ...... 5 1.3.2 FluidTurbulence ............................. 6 1.3.3 FluidControl ............................... 7 1.3.4 FluidCompression ............................ 8 2 Incorporating Fluctuation and Uncertainty in Particle-basedFluidSimulation. 10 2.1 Introduction.................................... 10 2.2 BasicSPHAlgorithm............................... 15 2.3 StochasticTurbulenceinSPH . ... 16 2.4 TurbulenceEvolution . .. 17 -
Procedural Animation
Procedural Animation Computer Graphics Seminar 2017 Spring Andreas Sepp Coming up today ● Keyframe animation ● Procedural animation for basic character animation ○ Procedural animation with keyframe animation ○ Inverse kinematics ● Procedural animation as a broader field ○ Artificial life animation ○ Physics based modelling and animation Basic keyframe animation ● Animator draws or models the starting and ending points of a transition, called keyframes, and sets their position in time ● The remaining frames inbetween 2 keyframes are interpolated from them ● The animator is in control of everything at every point in time key key key Basic keyframe animation problems ● Transitions in interactive setting ○ Blend walking and running animation? ○ Create a walk ↔ run transition animation? ■ 15 animations - 105 blends required ● Unrealistic movement ○ No proper feedback from the environment ○ Not acceptable anymore Procedural Animation ● a type of computer animation, used to automatically generate animation in real-time to allow for a more diverse series of actions than could otherwise be created using predefined animations ● Animator not in control of everything anymore ● a) Integrated with keyframe animation ○ Roughly follows keyframes ○ Change dynamically ■ e.g. getting hit while running, going up the stairs ● b) Fully procedural animation ○ Initial parameters and some sort of input parameters are provided to control the animation ■ Initial position; forces, torques in time Keyframe + procedural animation ● Dynamic combining of multiple animations ○ Lower body running ○ Upper body swinging a sword ○ Body recoiling to a blow ● What you can achieve with just 14 keyframes and procedural animation: ○ http://www.gamasutra.com/view/news/216973/Video_An_indie_a pproach_to_procedural_animation.php [4:00-10:00] To actually feel connected to the world.. -
Download the Program (PDF)
ヴ ィ ボー ・ ア ニ メー シ カ ョ ワ ン イ フ イ ェ と ス エ ピ テ ッ ィ Viborg クー バ AnimAtion FestivAl ル Kawaii & epikku 25.09.2017 - 01.10.2017 summAry 目次 5 welcome to VAF 2017 6 DenmArk meets JApAn! 34 progrAmme 8 eVents Films For chilDren 40 kAwAii & epikku 8 AnD families Viborg mAngA AnD Anime museum 40 JApAnese Films 12 open workshop: origAmi 42 internAtionAl Films lecture by hAns DybkJær About 12 important ticket information origAmi 43 speciAl progrAmmes Fotorama: 13 origAmi - creAte your own VAF Dog! 44 short Films • It is only possible to order tickets for the VAF screenings via the website 15 eVents At Viborg librAry www.fotorama.dk. 46 • In order to pick up a ticket at the Fotorama ticket booth, a prior reservation Films For ADults must be made. 16 VimApp - light up Viborg! • It is only possible to pick up a reserved ticket on the actual day the movie is 46 JApAnese Films screened. 18 solAr Walk • A reserved ticket must be picked up 20 minutes before the movie starts at 50 speciAl progrAmmes the latest. If not picked up 20 minutes before the start of the movie, your 20 immersion gAme expo ticket order will be annulled. Therefore, we recommended that you arrive at 51 JApAnese short Films the movie theater in good time. 22 expAnDeD AnimAtion • There is a reservation fee of 5 kr. per order. 52 JApAnese short Film progrAmmes • If you do not wish to pay a reservation fee, report to the ticket booth 1 24 mAngA Artist bAttle hour before your desired movie starts and receive tickets (IF there are any 56 internAtionAl Films text authors available.) VAF sum up: exhibitions in Jane Lyngbye Hvid Jensen • If you wish to see a movie that is fully booked, please contact the Fotorama 25 57 Katrine P. -
Introduction to Animation, Key-Frame Animation, Kinematics, Motion Capture
What is Animation? Generate perception of motion with sequence of images shown in rapid succession EECS 487: Interactive • humans “see” smooth motion at 12−70 fps Must be technically excellent, but more importantly, aesthetically, emotionally compelling Computer Graphics • violation of realism may at times be desirable Animation “pipeline”: Lecture 33: • Introduction to animation • Key-frame character animation • Inverse kinematics and motion capture McMillan,O’Brien Traditional Animation Computer Animation 2D animation: 1. Straight ahead: draw each frame, • CADrawing and painting are now routine one frame at a time • but 2D in-betweening (morphing) • lead to spontaneity is hard to get right • great control Instead, we assume 3D model of scene • tedious: 24 fps, 1,440 frames/minute, • for each scene, vary parameters to generate 130K frames for a 1.5 hour movie desired pose for all objects 2. Pose-to-pose (developed by Walt Disney): • stop-motion: shooting miniature physical • director plans shots using storyboards models frame by frame • senior artists sketch key poses (keyframes) • typically when motion changes • interns fill in the in-between frames • all line drawings are painted on cels • composed in layers • background changes infrequently, can be reused • photograph finished cel-stack onto film Yu,Marschner,Durand,Hodgins Some Artistic Considerations Principles of Traditional Animation Eleven principles of traditional Goal: make characters that move in animation compiled by Lasseter: a convincing way to communicate 1. Squash and stretch personality and emotion 2. Slow in, slow out Many of these principles Animation principles developed by 3. Timing follow indirectly from Disney in the 20’s−30’s, adapted by 4. -
Using Dragonframe 4.Pdf
Using DRAGONFRAME 4 Welcome Dragonframe is a stop-motion solution created by professional anima- tors—for professional animators. It's designed to complement how the pros animate. We hope this manual helps you get up to speed with Dragonframe quickly. The chapters in this guide give you the information you need to know to get proficient with Dragonframe: “Big Picture” on page 1 helps you get started with Dragonframe. “User Interface” on page 13 gives a tour of Dragonframe’s features. “Camera Connections” on page 39 helps you connect cameras to Drag- onframe. “Cinematography Tools” on page 73 and “Animation Tools” on page 107 give details on Dragonframe’s main workspaces. “Using the Timeline” on page 129 explains how to use the timeline in the Animation window to edit frames. “Alternative Shooting Techniques (Non Stop Motion)” on page 145 explains how to use Dragonframe for time-lapse. “Managing Your Projects and Files” on page 149 shows how to use Dragonframe to organize and manage your project. “Working with Audio Clips” on page 159 and “Reading Dialogue Tracks” on page 171 explain how to add an audip clip and create a track reading. “Using the X-Sheet” on page 187 explains our virtual exposure sheet. “Automate Lighting with DMX” on page 211 describes how to use DMX to automate lights. “Adding Input and Output Triggers” on page 241 has an overview of using Dragonframe to trigger events. “Motion Control” on page 249 helps you integrate your rig with the Arc Motion Control workspace or helps you use other motion control rigs. -
Anima II – a 3D Animation System
ANIMA II: A 3-D COLOR ANIMATION SYSTEM Ronald J. Hackathorn COMPUTER GRAPHICS RESEARCH GROUP THE OHIO STATE UNIVERSITY ABSTRACT attempt to maximize the trade-offs involved in 3-D color animation. The goal has been to achieve An animation software system has been developed at the capability and image quality necessary for total The Computer Graphics Research Group which allows complex animation and, yet, maintain the ani- a person with no computer background to develop an system efficiency necessary for a production animation idea into a finished color video product mation environment. which may be seen and recorded in real time. The animation may include complex polyhedra forming Anima II is a computer animation system designed words, sentences, plants, animals and other crea- for the production of color, three-dimensional educa- tures. The animation system, called Anima II, has video tapes. It is aimed at the animator, a high as its three basic parts: a data generation rou- tor and artist who requires anything from pur- tine used to make colored, three-dimensional volume of short color sequences for teaching objects, an animation language with a simple poses, to realistic key frame animation involving life- script-like syntax used to describe parallel mo- complex color objects and precisely timed tion and display transformations in a flexible, like movements. The Anima II system provides an scheduled environment, the Myers algorithm used in efficient environment for the creation, animation the visible surface and raster scan calculations and real-time playback display of color-shaded connected for the color display. This paper discusses the polyhedra.