Introduction and Animation Basics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Motion Enriching Using Humanoide Captured Motions
MASTER THESIS: MOTION ENRICHING USING HUMANOIDE CAPTURED MOTIONS STUDENT: SINAN MUTLU ADVISOR : A NTONIO SUSÌN SÀNCHEZ SEPTEMBER, 8TH 2010 COURSE: MASTER IN COMPUTING LSI DEPERTMANT POLYTECNIC UNIVERSITY OF CATALUNYA 1 Abstract Animated humanoid characters are a delight to watch. Nowadays they are extensively used in simulators. In military applications animated characters are used for training soldiers, in medical they are used for studying to detect the problems in the joints of a patient, moreover they can be used for instructing people for an event(such as weather forecasts or giving a lecture in virtual environment). In addition to these environments computer games and 3D animation movies are taking the benefit of animated characters to be more realistic. For all of these mediums motion capture data has a great impact because of its speed and robustness and the ability to capture various motions. Motion capture method can be reused to blend various motion styles. Furthermore we can generate more motions from a single motion data by processing each joint data individually if a motion is cyclic. If the motion is cyclic it is highly probable that each joint is defined by combinations of different signals. On the other hand, irrespective of method selected, creating animation by hand is a time consuming and costly process for people who are working in the art side. For these reasons we can use the databases which are open to everyone such as Computer Graphics Laboratory of Carnegie Mellon University. Creating a new motion from scratch by hand by using some spatial tools (such as 3DS Max, Maya, Natural Motion Endorphin or Blender) or by reusing motion captured data has some difficulties. -
Automated Staging for Virtual Cinematography Amaury Louarn, Marc Christie, Fabrice Lamarche
Automated Staging for Virtual Cinematography Amaury Louarn, Marc Christie, Fabrice Lamarche To cite this version: Amaury Louarn, Marc Christie, Fabrice Lamarche. Automated Staging for Virtual Cinematography. MIG 2018 - 11th annual conference on Motion, Interaction and Games, Nov 2018, Limassol, Cyprus. pp.1-10, 10.1145/3274247.3274500. hal-01883808 HAL Id: hal-01883808 https://hal.inria.fr/hal-01883808 Submitted on 28 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Automated Staging for Virtual Cinematography Amaury Louarn Marc Christie Fabrice Lamarche IRISA / INRIA IRISA / INRIA IRISA / INRIA Rennes, France Rennes, France Rennes, France [email protected] [email protected] [email protected] Scene 1: Camera 1, CU on George front screencenter and Marty 3/4 backright screenleft. George and Marty are in chair and near bar. (a) Scene specification (b) Automated placement of camera and characters (c) Resulting shot enforcing the scene specification Figure 1: Automated staging for a simple scene, from a high-level language specification (a) to the resulting shot (c). Our system places both actors and camera in the scene. Three constraints are displayed in (b): Close-up on George (green), George seen from the front (blue), and George screencenter, Marty screenleft (red). -
Computerising 2D Animation and the Cleanup Power of Snakes
Computerising 2D Animation and the Cleanup Power of Snakes. Fionnuala Johnson Submitted for the degree of Master of Science University of Glasgow, The Department of Computing Science. January 1998 ProQuest Number: 13818622 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13818622 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 GLASGOW UNIVERSITY LIBRARY U3 ^coji^ \ Abstract Traditional 2D animation remains largely a hand drawn process. Computer-assisted animation systems do exists. Unfortunately the overheads these systems incur have prevented them from being introduced into the traditional studio. One such prob lem area involves the transferral of the animator’s line drawings into the computer system. The systems, which are presently available, require the images to be over- cleaned prior to scanning. The resulting raster images are of unacceptable quality. Therefore the question this thesis examines is; given a sketchy raster image is it possible to extract a cleaned-up vector image? Current solutions fail to extract the true line from the sketch because they possess no knowledge of the problem area. -
Automatic 2.5D Cartoon Modelling
Automatic 2.5D Cartoon Modelling Fengqi An School of Computer Science and Engineering University of New South Wales A dissertation submitted for the degree of Master of Science 2012 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES T hesis!Dissertation Sheet Surname or Family name. AN First namEY. Fengqi Orner namels: Zane Abbreviatlo(1 for degree as given in the University calendar: MSc School: Computer Science & Engineering Faculty: Engineering Title; Automatic 2.50 Cartoon Modelling Abstract 350 words maximum: (PLEASE TYPE) Declarat ion relating to disposition of project thesis/dissertation I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole orin part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all property rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of thts thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation· Abstracts International (this is applicable to-doctoral theses only) .. ... .............. ~..... ............... 24 I 09 I 2012 Signature · · ·· ·· ·· ···· · ··· ·· ~ ··· · ·· ··· ···· Date The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction for a period of up to 2 years must be made in writi'ng. Requests for -
Lightweight Procedural Animation with Believable Physical Interactions
Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment Conference Lightweight Procedural Animation with Believable Physical Interactions Ian Horswill Northwestern University, Departments of EECS and Radio/Television/Film 2133 Sheridan Road, Evanston IL 60208 [email protected] Abstract matics system. Posture control is performed by applying I describe a procedural animation system that uses tech- simulated forces and torques to the torso and pelvis. niques from behavior-based robot control, combined with a Interestingly, the use of a dynamic simulation actually minimalist physical simulation, to produce believable cha- simplifies control, allowing the use of relatively crude con- racter motions in a dynamic world. Although less realistic trol signals, which are then smoothed by the passive dy- than motion capture or full biomechanical simulation, the namics of the character body and body-environment inte- system produces compelling, responsive character behavior. raction; similar results have been found in both human and It is also fast, supports believable physical interactions be- robot motor control (Williamson, 2003). tween characters such as hugging, and makes it easy to au- Twig shows that surprisingly simple techniques can gen- thor new behaviors. erate believable2 motions and interactions. Much of the focus of this paper will be on ways in which Twig is able to Overview1 cheat to avoid doing complicated modeling or control, while still maintaining believability. This work is indebted Versatile procedural animation is a necessary component to the work of Jakobsen (Jakobsen, 2001) and Perlin (Per- for applications such as interactive drama, in which charac- lin, 1995, 2003; Perlin & Goldberg, 1996), both for their ters participate in complex interactions that cannot be pre- general approaches of using simple techniques to generate planned at authoring time. -
Inverse Kinematics Last Time? Today Keyframing Procedural Animation Physically-Based Animation
Last Time? • Navier-Stokes Equations • Conservation of Inverse Kinematics Momentum & Mass • Incompressible Flow Today Keyframing • How do we animate? • Use spline curves to automate the in betweening – Keyframing – Good control – Less tedious than drawing every frame – Procedural Animation • Creating a good animation still requires considerable – Physically-Based Animation skill and talent – Forward and Inverse Kinematics – Motion Capture • Rigid Body Dynamics • Finite Element Method ACM © 1987 “Principles of traditional animation applied to 3D computer animation” Procedural Animation Physically-Based Animation • Describes the motion algorithmically, • Assign physical properties to objects as a function of small number of (masses, forces, inertial properties) parameters • Example: a clock with second, minute • Simulate physics by solving equations and hour hands • Realistic but difficult to control – express the clock motions in terms of a “seconds” variable – the clock is animated by varying the v0 seconds parameter mg • Example: A bouncing ball -kt –Abs(sin(ωt+θ0))*e 1 Articulated Models Skeleton Hierarchy • Articulated models: • Each bone transformation – rigid parts described relative xyzhhhhhh,,,,,qf s – connected by joints to the parent in hips the hierarchy: qfttt,, s • They can be animated by specifying the joint left-leg ... angles as functions of time. r-thigh qc qi qi ()t r-calf y vs qfff, x r-foot z t1 t2 t1 t2 1 DOF: knee 2 DOF: wrist 3 DOF: arm Forward Kinematics Inverse Kinematics (IK) • Given skeleton xyzhhhhhh,,,,,qf -
The Uses of Animation 1
The Uses of Animation 1 1 The Uses of Animation ANIMATION Animation is the process of making the illusion of motion and change by means of the rapid display of a sequence of static images that minimally differ from each other. The illusion—as in motion pictures in general—is thought to rely on the phi phenomenon. Animators are artists who specialize in the creation of animation. Animation can be recorded with either analogue media, a flip book, motion picture film, video tape,digital media, including formats with animated GIF, Flash animation and digital video. To display animation, a digital camera, computer, or projector are used along with new technologies that are produced. Animation creation methods include the traditional animation creation method and those involving stop motion animation of two and three-dimensional objects, paper cutouts, puppets and clay figures. Images are displayed in a rapid succession, usually 24, 25, 30, or 60 frames per second. THE MOST COMMON USES OF ANIMATION Cartoons The most common use of animation, and perhaps the origin of it, is cartoons. Cartoons appear all the time on television and the cinema and can be used for entertainment, advertising, 2 Aspects of Animation: Steps to Learn Animated Cartoons presentations and many more applications that are only limited by the imagination of the designer. The most important factor about making cartoons on a computer is reusability and flexibility. The system that will actually do the animation needs to be such that all the actions that are going to be performed can be repeated easily, without much fuss from the side of the animator. -
Ipi Soft Motion Capture Software Inspires Feature Length Machinima
iPi Soft Motion Capture Software Inspires Feature Length Machinima Horror Movie Ticket Zer0 Director Ian Chisholm Uses End-to-End Markerless Performance Capture Pipeline For Character Animation; Film Now Airing on YouTube _____ MOSCOW, RUSSIA – September 25, 2018 – For his most ambitious project to date, the feature length horror film Ticket Zer0, motion capture director/writer Ian Chisholm once again leaned heavily on iPi Motion Capture, the advanced markerless motion capture technology from iPi Soft. The 66-minute animated machinima cinematic production is currently available for streaming on YouTube or Blu-Ray here. Ticket Zer0 is a follow-up to Chisholm’s Clear Skies trilogy series (viewed by hundreds of thousands on YouTube), which also used iPi Mocap throughout for performance capture. Ticket Zer0 tells the story of the night shift at a deserted industrial facility. When a troubleshooter is sent in to fix a mysterious problem, something far more sinister emerges than any of them could have imagined. Chisholm notes production for Ticket Zer0 took almost five years to complete and used iPi Motion Capture for recording movement in every single frame for all the characters in the film. “iPi Soft technology has proven to be an invaluable creative resource for me as a filmmaker during motion capture sessions,” he says. “There wasn't anything on screen that wasn't recorded by iPi Mocap. The ability to perform the motion capture was exactly what I needed to expand and improve the immersive quality of my film.” Workflow Details: For motion capture production, Chisholm used iPi Mocap in conjunction with six Sony PS3 Eye cameras along with two PlayStation Move controllers to track hand movements. -
Procedural Animation
Procedural Animation Computer Graphics Seminar 2017 Spring Andreas Sepp Coming up today ● Keyframe animation ● Procedural animation for basic character animation ○ Procedural animation with keyframe animation ○ Inverse kinematics ● Procedural animation as a broader field ○ Artificial life animation ○ Physics based modelling and animation Basic keyframe animation ● Animator draws or models the starting and ending points of a transition, called keyframes, and sets their position in time ● The remaining frames inbetween 2 keyframes are interpolated from them ● The animator is in control of everything at every point in time key key key Basic keyframe animation problems ● Transitions in interactive setting ○ Blend walking and running animation? ○ Create a walk ↔ run transition animation? ■ 15 animations - 105 blends required ● Unrealistic movement ○ No proper feedback from the environment ○ Not acceptable anymore Procedural Animation ● a type of computer animation, used to automatically generate animation in real-time to allow for a more diverse series of actions than could otherwise be created using predefined animations ● Animator not in control of everything anymore ● a) Integrated with keyframe animation ○ Roughly follows keyframes ○ Change dynamically ■ e.g. getting hit while running, going up the stairs ● b) Fully procedural animation ○ Initial parameters and some sort of input parameters are provided to control the animation ■ Initial position; forces, torques in time Keyframe + procedural animation ● Dynamic combining of multiple animations ○ Lower body running ○ Upper body swinging a sword ○ Body recoiling to a blow ● What you can achieve with just 14 keyframes and procedural animation: ○ http://www.gamasutra.com/view/news/216973/Video_An_indie_a pproach_to_procedural_animation.php [4:00-10:00] To actually feel connected to the world.. -
Application of Performance Motion Capture Technology in Film and Television Performance Animation
Proceedings of the 2nd International Symposium on Computer, Communication, Control and Automation (ISCCCA-13) Application of Performance Motion Capture Technology in Film and Television Performance Animation ZHANG Manyu Dept. Animation of Art, Tianjin Academy of Fine Arts Tianjin , CHINA E-mail: [email protected] Abstract—In today’s animation films, virtual character tissue simulation technique” for the first time, so that acting animation is a research field developing rapidly in computer skills of actors can be delivered to viewers maximally. graphics, and motion capture is the most significant What’s more, people realize that “motion capture component, which has brought about revolutionary change for technology” shall be called as “performance capture 3D animation production technology. It makes that animation technology” increasingly. Orangutan Caesar presented in producers are able to drive animation image models directly with the use of actors’ performance actions and expressions, Rise of the Apes through “motion capture” technology is which has simplified animation manufacturing operation very classical. Various complicated and subtle expressions greatly and enhanced quality for animation production. and body languages of Caesar’s not vanished bestiality and initially emerged human nature have been presented Keywords- film and television films, motion capture, naturally and freshly in the film, which has achieved the technology excellent realm of mixing the false with the genuine. When Caesar stands in front of Doctor Will in equal gesture, its I. INTRODUCTION independence and arbitrariness in its expression with dignity With the development of modern computer technology, of orangutan has undoubtedly let viewers understand computer animation technology has developed rapidly. -
Animation 1 of 3: Basics, Keyframing Sample Exam Review
2 Lecture 17 of 41 Lecture Outline Animation 1 of 3: Basics, Keyframing Reading for Last Class: §2.6, 20.1, Eberly 2e; OpenGL primer material Sample Exam Review Reading for Today: §5.1 – 5.2, Eberly 2e Reading for Next Lecture (Two Classes from Now): §4.4 – 4.7, Eberly 2e Last Time: Shading and Transparency in OpenGL William H. Hsu Transparency revisited Department of Computing and Information Sciences, KSU OpenGL how-to: http://bit.ly/hRaQgk Alpha blending (15.020, 15.040) KSOL course pages: http://bit.ly/hGvXlH / http://bit.ly/eVizrE Public mirror web site: http://www.kddresearch.org/Courses/CIS636 Screen-door transparency (15.030) Instructor home page: http://www.cis.ksu.edu/~bhsu Painter’s algorithm & depth buffering (z-buffering) Today: Introduction to Animation Readings: What is it and how does it work? Today: §5.1 – 5.2, Eberly 2e – see http://bit.ly/ieUq45 Brief history Next class: no new reading – review Chapters 1 – 4, 20 Optional review session during next class period; evening exam time TBD Principles of traditional animation Lecture 18 reading (two class days from today): §4.4 – 4.7, Eberly 2e Keyframe animation Articulated figures: inbetweening CIS 536/636 Computing & Information Sciences CIS 536/636 Computing & Information Sciences Lecture 17 of 41 Lecture 17 of 41 Introduction to Computer Graphics Kansas State University Introduction to Computer Graphics Kansas State University 3 4 Review: Where We Are Painter’s Algorithm vs. z-Buffering © 2004 – 2009 Wikipedia, Painter’s Algorithm http://bit.ly/eeebCN © -
Skeletal Animations Part II
3D Video Games 2021-05-11 09: Computer Animations for games 3/3 Skeletal animations Part II Course Plan lec. 1: Introduction lec. 2: Mathematics for 3D Games lec. 3: Scene Graph lec. 4: Game 3D Physics + lec. 5: Game Particle Systems ◗ lec. 6: Game 3D Models lec. 7: Game Textures ◗ lec. 8: Game 3D Animations lec. 9: Game 3D Audio lec. 10: Networking for 3D Games lec. 11: Artificial Intelligence for 3D Games lec. 12: Game 3D Rendering Techniques 120 Mixing keyframes and entire animations (notes) Poses in a skeletal animations can be easily blended (blending local per-bone transforms) This interpolation is very expressive: very different frames can be blended with good results much more than with blend-shapes! Keyframes can be very far apart E.g.: decent walk-cycles with just 4 key-frames! (2 per step) E.g.: decent attack animations with just 2 key-frames! (but better results are always obtained inserting new key-frames) Entire animations can be mixed. Two ways: Transitions between two animations (or more) Compositing (layering) two animations (or more) 121 Marco Tarini Università degli studi di Milano 1 3D Video Games 2021-05-11 09: Computer Animations for games 3/3 Skeletal animations Part II Pose = keyframe Compress animations animation “walk” t = 0 keyframe A stored pose t = 1 0.75 A ---+ 0.25 B t = 2 0.50 A ---+ 0.50 B Inbetween pose, t = 3 0.25 A ---+ 0.75 B computed on the fly t = 4 keyframe B t = 5 0.50 B ---+ 0.50 C t = 6 keyframe C 122 Interpolation of poses (at runtime): transition between animations Eg: