The Proteasome Inhibitor Carfilzomib Functions Independently of P53 to Induce Cytotoxicity and an Atypical NF-Κb Response in Chronic Lymphocytic Leukemia Cells

Total Page:16

File Type:pdf, Size:1020Kb

The Proteasome Inhibitor Carfilzomib Functions Independently of P53 to Induce Cytotoxicity and an Atypical NF-Κb Response in Chronic Lymphocytic Leukemia Cells Published OnlineFirst March 20, 2013; DOI: 10.1158/1078-0432.CCR-12-2754 Clinical Cancer Cancer Therapy: Preclinical Research The Proteasome Inhibitor Carfilzomib Functions Independently of p53 to Induce Cytotoxicity and an Atypical NF-kB Response in Chronic Lymphocytic Leukemia Cells Sneha V. Gupta1, Erin Hertlein2, Yanhui Lu4, Ellen J. Sass2, Rosa Lapalombella2, Timothy L. Chen2, Melanie E. Davis2, Jennifer A. Woyach2, Amy Lehman3, David Jarjoura4, John C. Byrd1,2, and David M. Lucas1,2 Abstract Purpose: The proteasome consists of chymotrypsin-like (CT-L), trypsin-like, and caspase-like subunits that cleave substrates preferentially by amino acid sequence. Proteasomes mediate degradation of regulatory proteins of the p53, Bcl-2, and nuclear factor-kB (NF-kB) families that are aberrantly active in chronic lymphocytic leukemia (CLL). CLL remains an incurable disease, and new treatments are especially needed in the relapsed/refractory setting. We therefore investigated the effects of the proteasome inhibitor carfilzomib (CFZ) in CLL cells. Experimental Design: Tumor cells from CLL patients were assayed in vitro using immunoblotting, real- time polymerase chain reaction, and electrophoretic mobility shift assays. In addition, a p53 dominant- negative construct was generated in a human B-cell line. Results: Unlike bortezomib, CFZ potently induces apoptosis in CLL patient cells in the presence of human serum. CLL cells have significantly lower basal CT-L activity compared to normal B and T cells, although activity is inhibited similarly in T cells versus CLL. Co-culture of CLL cells on stroma protected from CFZ-mediated cytotoxicity; however, PI3K inhibition significantly diminished this stromal protection. CFZ- mediated cytotoxicity in leukemic B cells is caspase-dependent and occurs irrespective of p53 status. In CLL cells, CFZ promotes atypical activation of NF-kB evidenced by loss of cytoplasmic IkBa, phosphorylation of IkBa, and increased p50/p65 DNA binding, without subsequent increases in canonical NF-kB target gene transcription. Conclusions: Together, these data provide new mechanistic insights into the activity of CFZ in CLL and support phase I investigation of CFZ in this disease. Clin Cancer Res; 19(9); 1–14. Ó2013 AACR. Introduction Protein homeostasis is critical for the processes that Chronic lymphocytic leukemia (CLL) is characterized by govern cell survival, and the multicatalytic 26S protea- the growth and accumulation of malignant B-lymphocytes some regulates the turnover of key proteins in these in the blood, bone marrow, lymph nodes, and spleen. processes. Proteasomes consist of a catalytic 20S core Despite the introduction of new therapies, most CLL patients capped by regulatory 19S subunits (1). There are 2 forms eventually relapse and succumb to their disease. Identifica- of the 20S core: c20S and i20S. The former is ubiqui- tion of new strategies for relapsed and refractory CLL is tiously expressed in all cells, and the latter specifically in essential to make a positive impact on patient survival. hematopoietic cells and cells exposed to inflammatory cytokines (2). The active site in the c20S and i20S core has 6 N-terminal threonine proteases consisting of chymo- trypsin-like (CT-L), trypsin-like (T-L), and caspase-like fi 1 2 Authors' Af liations: College of Pharmacy; Department of Internal (C-L) subunits (3, 4). Because selective inhibition of the Medicine; 3Center for Biostatistics, The Ohio State University, Columbus, Ohio; and 4Department of Pharmacology and Molecular Sciences, Johns CT-L site has a minor effect on total cellular protein Hopkins University School of Medicine, Baltimore, Maryland turnover, proteasome inhibitors that block only the Note: Supplementary data for this article are available at Clinical Cancer CT-L subunit are considered optimal (5). Proteasomes Research Online (http://clincancerres.aacrjournals.org/). mediate degradation of a variety of key regulatory factors J.C. Byrd and D.M. Lucas contributed equally to this article. including cell-cycle control proteins (e.g., cyclins (6), p21 (7) and p27 (8), p53 (9), p53 target proteins Puma, Noxa, Corresponding Authors: John C. Byrd, 410 W. 12th Avenue, Room 455 OSUCCC Building, Columbus, OH 43210. Phone: 614-293-8330; Fax: 614- and Bax of the Bcl-2 family (10), and the inhibitor of 292-3312; E-mail: [email protected]; and David M. Lucas. Phone: nuclear factor-kB(NF-kB; IkB; ref. 11). Imbalanced 614-685-5667; Fax: 614-292-3312; E-mail: [email protected] expression of Bcl-2 family proteins, constitutive NF-kB doi: 10.1158/1078-0432.CCR-12-2754 activation, and variable p53 function are hallmarks of Ó2013 American Association for Cancer Research. CLL cells (12–14). www.aacrjournals.org OF1 Downloaded from clincancerres.aacrjournals.org on September 27, 2021. © 2013 American Association for Cancer Research. Published OnlineFirst March 20, 2013; DOI: 10.1158/1078-0432.CCR-12-2754 Gupta et al. patients examined had immunophenotypically defined Translational Relevance CLL as outlined by IWCLL criteria (23) and were newly Standard therapies for chronic lymphocytic leukemia diagnosed or without treatment for a minimum of 30 days (CLL) are often ineffective in p53-mutated cases and at time of collection. The occurrence of del(17p13.1) was detrimental to existing T cells, leaving patients at risk of determined in CLL patient samples by fluorescence in situ opportunistic infections. A major focus of therapeutic hybridization as described (24), and in each positive case at development has been the investigation of agents that least 30% of cells showed this deletion. Normal cells were are cytotoxic to B cells independent of p53 but have obtained from partial leukocyte preparations from the minimal effects on T cells. Proteasome inhibitors have American Red Cross. B- or T-lymphocytes and CLL cells known activity in multiple myeloma, but to date have were negatively selected using RosetteSep reagents (Stem- not shown clinical efficacy in CLL. This manuscript Cell Technologies). The HS-5-GFP stromal cell line was shows B-cell selective efficacy of the proteasome inhib- provided by Dr. Beverly Torok-Storb (Fred Hutchinson itor carfilzomib (CFZ) that is independent of p53, and Cancer Research Center; ref. 25). 293 cells were obtained provides new mechanistic insights to its mode of action from American Type Culture Collection (Manassas, VA) and in CLL patient cells. This work supports an ongoing 697 lymphoblastic cells were obtained from DSMZ. Cells phase I clinical trial of CFZ in CLL. were incubated at 37 C and 5% CO2 in AIM-V medium (Invitrogen) or in RPMI 1640 with 10% FBS or 10% human serum (HS) supplemented with penicillin, streptomycin, and L-glutamine (Sigma). Bortezomib (BTZ, Velcade) is a proteasome inhibitor approved for the treatment of multiple myeloma and man- Viability assays tle cell lymphoma (15). Concentrations of BTZ that pro- Cell viability was monitored by flow cytometry using duce an antitumor response in vitro inhibit activities of the annexin V/propidium iodide (BD Biosciences) on a FC500 CT-L and C-L subunits of the proteasome (2). In spite of a instrument (Beckman Coulter). CellTiter 96 (MTS) assays high degree of cytotoxicity in vitro in CLL cells, BTZ failed to were conducted to monitor growth inhibition per manu- produce objective responses in CLL patients in a phase II facturer’s instructions (Promega). LIVE/DEAD (Invitrogen) clinical trial at the achieved doses (16). The lack of BTZ staining was done to monitor cytotoxicity with drug treat- efficacy in vivo has been attributed to the inactivation of its ments using the manufacturer’s instructions. boronate moiety by dietary flavonoids in human plasma (17). Carfilzomib (CFZ, PR-171) is a novel proteasome Immunoblot analyses inhibitor that specifically and irreversibly inhibits the CT- Nuclear and cytoplasmic lysates were prepared with NE- L activity of the proteasome (18). Unlike BTZ, CFZ has PER Nuclear and Cytoplasmic Extraction kit (Pierce). Anti- minimal activity against off-target enzymes including serine body to polyADP-ribose polymerase (PARP) was from EMD proteases, while at the same time inhibiting the CT-L Biosciences, p21 (OP64) and p53 (OP43) from Calbio- subunit of the proteasome more potently (19–21). Impor- chem, p27 (88264) from Abcam, and pIkBa from Cell tantly, CFZ lacks the boronate moiety of BTZ that is poten- Signaling Technologies. Remaining antibodies were from tially responsible for that agent’s inactivity in CLL patients. Santa Cruz Biotechnology. Bands were quantified on an Here, we investigate the effects of CFZ on CLL patient cells. AlphaImager system (Proteinsimple). This work shows that CFZ irreversibly inhibits the CT-L activity, has potent activity in CLL including cases with del Electrophoretic mobility shift assay A probe containing an NF-kB consensus binding site (17p13.1), and promotes an atypical activation of NF-kB 0 0 that may lack the classical prosurvival effect of this pathway. (5 AGTTGAGGGGACTTTCCCAGGC 3 ; Santa Cruz Bio- technology) was 32P-labeled using the Nick Translation Materials and Methods System (Invitrogen). Five micrograms of nuclear protein was incubated 30 minutes at room temperature in bind- Reagents ing buffer (10 mmol/L Tris-HCl, pH 7.5, 1.0 mmol/L CFZ was provided by Onyx Pharmaceuticals. Boc-D-FMK ethylenediaminetetraacetic acid (EDTA), 4% Ficoll, 1.0 (Enzyme Systems Products) was used at 100 mmol/L. BTZ mmol/L dithiothreitol, 75 mmol/L KCl) plus 250 ng poly was obtained from Millennium Pharmaceuticals Inc., and dI-dC (Sigma). Complexes were separated on polyacryl- TNF from R&D Systems. CD40L was purchased from Pepro- amide gels in Tris-borate EDTA buffer (89 mmol/L Tris- Tech. 2-Fluoro-ara-A (active metabolite of fludarabine), base, 89 mmol/L boric acid, 2.0 mmol/L EDTA), dried, G418, doxycycline, and puromycin were purchased from and autoradiographed. For supershift experiments, anti- Sigma. CpG DSP30 (22) was purchased from Eurofins/ bodies to p65, p50, or c-Rel (Santa Cruz Biotechnology) Operon. were incubated with nuclear extract for 10 minutes before addition of probe.
Recommended publications
  • A Phase II Study of the Novel Proteasome Inhibitor Bortezomib In
    Memorial Sloan-Kettering Cance r Center IRB Protocol IRB#: 05-103 A(14) A Phase II Study of the Novel Proteas ome Inhibitor Bortezomib in Combination with Rituximab, Cyclophosphamide and Prednisone in Patients with Relapsed/Refractory I Indolent B-cell Lymphoproliferative Disorders and Mantle Cell Lymphoma (MCL) MSKCC THERAPEUTIC/DIAGNOSTIC PROTOCOL Principal Investigator: John Gerecitano, M.D., Ph.D. Co-Principal Carol Portlock, M.D. Investigator(s): IFormerly: A Phase I/II Study of the Nove l Proteasome Inhibitor Bortezomib in Combinati on with Rituximab, Cyclophosphamide and Prednisone in Patients with Relapsed/Refractory Indolent B-cell Lymphoproliferative Disorders and Mantle Cell Lymphoma (MCL) Amended: 07/25/12 Memorial Sloan-Kettering Cance r Center IRB Protocol IRB#: 05-103 A(14) Investigator(s): Paul Hamlin, M.D. Commack, NY Steven B. Horwitz, M.D. Philip Schulman, M.D. Alison Moskowitz, M.D. Stuart Lichtman, M.D Craig H. Moskowitz, M.D. Stefan Berger, M.D. Ariela Noy, M.D. Julie Fasano, M.D. M. Lia Palomba, M.D., Ph.D. John Fiore, M.D. Jonathan Schatz, M.D. Steven Sugarman, M.D David Straus, M.D. Frank Y. Tsai, M.D. Andrew D. Zelenetz, M.D., Ph.D. Matthew Matasar, M.D Rockville Center, NY Mark L. Heaney, M.D., Ph.D. Pamela Drullinksy, M.D Nicole Lamanna, M.D. Arlyn Apollo, M.D. Zoe Goldberg, M.D. Radiology Kenneth Ng, M.D. Otilia Dumitrescu, M.D. Tiffany Troso-Sandoval, M.D. Andrei Holodny, M.D. Sleepy Hollow, NY Nuclear Medicine Philip Caron, M.D. Heiko Schoder, M.D. Michelle Boyar, M.D.
    [Show full text]
  • Cardiac Events During Treatment with Proteasome Inhibitor Therapy for Multiple Myeloma John H
    Chen et al. Cardio-Oncology (2017) 3:4 DOI 10.1186/s40959-017-0023-9 RESEARCH Open Access Cardiac events during treatment with proteasome inhibitor therapy for multiple myeloma John H. Chen1*, Daniel J. Lenihan2, Sharon E. Phillips3, Shelton L. Harrell1 and Robert F. Cornell1 Abstract Background: Proteasome inhibitors (PI) bortezomib and carfilzomib are cornerstone therapies for multiple myeloma. Higher incidence of cardiac adverse events (CAEs) has been reported in patients receiving carfilzomib. However, risk factors for cardiac toxicity remain unclear. Our objective was to evaluate the incidence of CAEs associated with PI and recognize risk factors for developing events. Methods: This was a descriptive analysis of 96 patients with multiple myeloma who received bortezomib (n = 44) or carfilzomib (n = 52). We compared the cumulative incidence of CAEs using a log rank test. Patient-related characteristics were assessed and multivariate analysis was used to identify risk factors for developing CAEs. Results: PI-related CAEs occurred in 21 (22%) patients. Bortezomib-associated CAEs occurred in 7 (16%) patients while carfilzomib-associated cardiac events occurred in 14 (27%) patients. The cumulative incidence of CAEs was not significantly different between agents. Events occurred after a median of 67.5 days on PI therapy. Heart failure was the most prevalent event type. More patients receiving carfilzomib were monitored by a cardiologist. By multivariate analysis, a history of prior cardiac events and longer duration of PI therapy were identified as independent risk factors for developing CAEs. Conclusions: AEs were common in patients receiving PIs. Choice of PI did not impact the cumulative incidence of CAEs.
    [Show full text]
  • Enhances the Susceptibility to Viral Infection the Proteasome Inhibitor
    The Proteasome Inhibitor Bortezomib Enhances the Susceptibility to Viral Infection Michael Basler, Christoph Lauer, Ulrike Beck and Marcus Groettrup This information is current as of September 27, 2021. J Immunol 2009; 183:6145-6150; Prepublished online 19 October 2009; doi: 10.4049/jimmunol.0901596 http://www.jimmunol.org/content/183/10/6145 Downloaded from References This article cites 50 articles, 23 of which you can access for free at: http://www.jimmunol.org/content/183/10/6145.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology The Proteasome Inhibitor Bortezomib Enhances the Susceptibility to Viral Infection1 Michael Basler,2*† Christoph Lauer,† Ulrike Beck,† and Marcus Groettrup*† The proteasome, a multicatalytic protease, is responsible for the generation of most MHC class I ligands. Bortezomib, a protea- some inhibitor, is clinically approved for treatment of multiple myeloma and mantle cell myeloma.
    [Show full text]
  • A Novel Proteasome Inhibitor NPI-0052 As an Anticancer Therapy
    British Journal of Cancer (2006) 95, 961 – 965 & 2006 Cancer Research UK All rights reserved 0007 – 0920/06 $30.00 www.bjcancer.com Minireview A novel proteasome inhibitor NPI-0052 as an anticancer therapy 1 1 ,1 D Chauhan , T Hideshima and KC Anderson* 1Department of Medical Oncology, Harvard Medical School, Dana Farber Cancer Institute, The Jerome Lipper Multiple Myeloma Center, Boston, MA 02115, USA Proteasome inhibitor Bortezomib/Velcade has emerged as an effective anticancer therapy for the treatment of relapsed and/or refractory multiple myeloma (MM), but prolonged treatment can be associated with toxicity and development of drug resistance. In this review, we discuss the recent discovery of a novel proteasome inhibitor, NPI-0052, that is distinct from Bortezomib in its chemical structure, mechanisms of action, and effects on proteasomal activities; most importantly, it overcomes resistance to conventional and Bortezomib therapies. In vivo studies using human MM xenografts shows that NPI-0052 is well tolerated, prolongs survival, and reduces tumour recurrence. These preclinical studies provided the basis for Phase-I clinical trial of NPI-0052 in relapsed/ refractory MM patients. British Journal of Cancer (2006) 95, 961–965. doi:10.1038/sj.bjc.6603406 www.bjcancer.com & 2006 Cancer Research UK Keywords: protein degradation; proteasomes; multiple myeloma; novel therapy; apoptosis; drug resistance The systemic regulation of protein synthesis and protein degrada- inducible immunoproteasomes b-5i, b-1i, b-2i with different tion is essential
    [Show full text]
  • The Combined Effects of Proteasome Inhibitor Bortezomib with Topoisomerase I and II Inhibitors on Topoisomerase Enzymes
    Turkish Journal of Medical Sciences Turk J Med Sci (2016) 46: 1882-1888 http://journals.tubitak.gov.tr/medical/ © TÜBİTAK Research Article doi:10.3906/sag-1511-184 The combined effects of proteasome inhibitor bortezomib with topoisomerase I and II inhibitors on topoisomerase enzymes Emine ÖKSÜZOĞLU*, Çiydem TIRINOĞLU, Barış KERİMOĞLU Molecular Biology Division, Department of Biology, Faculty of Science and Letters, Aksaray University, Aksaray, Turkey Received: 29.11.2015 Accepted/Published Online: 17.02.2016 Final Version: 20.12.2016 Background/aim: DNA topoisomerases are ubiquitous enzymes that regulate conformational changes in DNA topology during essential cellular processes, and, for this reason, have been characterized as the cellular targets of a number of anticancer drugs. Bortezomib is a powerful proteasome inhibitor used in the treatment of hematological malignancies. In this study, we investigated the inhibitory effects of bortezomib on human topoisomerase I and II enzymes both alone and in combination modes with camptothecin and etoposide. Materials and methods: The interactions of these drugs with topoisomerase enzymes were evaluated by relaxation assay in cell-free systems. IC50 values of the drugs on topoisomerase enzymes were calculated using the S probit analysis program. Results: Bortezomib showed a very weak inhibition effect on topoisomerase I (IC50 = 87.11 mM). On the other hand, it had a strong inhibitory effect on topoisomerase II (IC50 = 1.41 mM). Our results indicated that bortezomib is effective not only on proteasome but also on topoisomerase II. In addition, bortezomib possesses an increased synergistic effect when used in combination with camptothecin and etoposide than when used alone. Conclusion: The results of this study point out that these data may build a framework for combination studies with bortezomib, camptothecin, and etoposide in the treatment of cancer.
    [Show full text]
  • Proteasome Inhibitor-Adapted Myeloma Cells Are Largely
    Leukemia (2016) 30, 2198–2207 OPEN © 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 0887-6924/16 www.nature.com/leu ORIGINAL ARTICLE Proteasome inhibitor-adapted myeloma cells are largely independent from proteasome activity and show complex proteomic changes, in particular in redox and energy metabolism GP Soriano1,4, L Besse2,4,NLi1, M Kraus2, A Besse2, N Meeuwenoord1, J Bader2, B Everts3, H den Dulk1, HS Overkleeft1, BI Florea1 and C Driessen2 Adaptive resistance of myeloma to proteasome inhibition represents a clinical challenge, whose biology is poorly understood. Proteasome mutations were implicated as underlying mechanism, while an alternative hypothesis based on low activation status of the unfolded protein response was recently suggested (IRE1/XBP1-low model). We generated bortezomib- and carfilzomib-adapted, highly resistant multiple myeloma cell clones (AMO-BTZ, AMO-CFZ), which we analyzed in a combined quantitative and functional proteomic approach. We demonstrate that proteasome inhibitor-adapted myeloma cells tolerate subtotal proteasome inhibition, irrespective of a proteasome mutation, and uniformly show an 'IRE1/XBP1-low' signature. Adaptation of myeloma cells to proteasome inhibitors involved quantitative changes in 4600 protein species with similar patterns in AMO-BTZ and AMO-CFZ cells: proteins involved in metabolic regulation, redox homeostasis, and protein folding and destruction were upregulated, while apoptosis and transcription/translation were downregulated. The quantitatively most upregulated protein in AMO-CFZ cells was the multidrug resistance protein (MDR1) protein ABCB1, and carfilzomib resistance could be overcome by MDR1 inhibition. We propose a model where proteasome inhibitor-adapted myeloma cells tolerate subtotal proteasome inhibition owing to metabolic adaptations that favor the generation of reducing equivalents, such as NADPH, which is supported by oxidative glycolysis.
    [Show full text]
  • The Proteasome Metabolizes Peptide-Mediated Nonviral Gene Delivery Systems
    Gene Therapy (2005) 12, 1581–1590 & 2005 Nature Publishing Group All rights reserved 0969-7128/05 $30.00 www.nature.com/gt RESEARCH ARTICLE The proteasome metabolizes peptide-mediated nonviral gene delivery systems J Kim, C-P Chen and KG Rice Division of Medicinal and Natural Product Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA, USA The proteasome is a multisubunit cytosolic protein complex directly with proteasome inhibition, and was not the result of responsible for degrading cytosolic proteins. Several studies lysosomal enzyme inhibition. The enhanced transfection was have implicated its involvement in the processing of viral specific for peptide DNA condensates, whereas Lipofecta- particles used for gene delivery, thereby limiting the mine- and polyethylenimine-mediated gene transfer were efficiency of gene transfer. Peptide-based nonviral gene significantly blocked. A series of novel gene transfer peptides delivery systems are sufficiently similar to viral particles in containing intrinsic GA proteasome inhibitors (CWK18(GA)n, their size and surface properties and thereby could also be where n ¼ 4, 6, 8 and 10) were synthesized and found to recognized and metabolized by the proteasome. The present inhibit the proteasome. The gene transfer efficiency mediated study utilized proteasome inhibitors (MG 115 and MG 132) by these peptides in four different cell lines established that a to establish that peptide DNA condensates are metabolized GA repeat of four is sufficient to block the proteasome and by the proteasome, thereby limiting their gene transfer significantly enhance the gene transfer. Together, these efficiency. Transfection of HepG2 or cystic fibrosis/T1 (CF/T1) results implicate the proteasome as a previously undiscov- cells with CWK18 DNA condensates in the presence of ered route of metabolism of peptide-based nonviral gene MG 115 or MG 132 resulted in significantly enhanced gene delivery systems and provide a rationale for the use of expression.
    [Show full text]
  • Thesis Biochemistry By
    Ain shams Universirty Faculty Of Science Evaluation of anticancer effects of a novel proteasome inhibitor (Velcade), interferon (alpha-interferon) and antimyeloma antibodies on the growth of myeloma cells. Thesis Submitted for the Requirement of the Ph.D degree in Biochemistry By Hanan Mohammed Mohammed El shershaby. (M.Sc in Biochemistry) Under Supervision of Prof.Dr / Ibrahim Hassan Borai Prof.Dr/ Mohamed Taha Hussein El- Kolaly Prof. of Biochemistry Professor of Radiopharmaceutics Faculty Of Science Atomic Energy Authority Ain shams Universirty Prof.Dr/Naser Mohammed El-lahloby Prof. Dr/ Kamel Abd El.hameed Moustafa Prof. of Medical Oncology Professor of Biochemistry Cancer Institute Center Atomic Energy Authority Cairo University Dr / Ahmed Abd El.aziz sayed Assistant professor of Biochemistry Faculty Of Science Ain shams Universirty (2013) CONTENTS Introduction and Aim of the work 1 Review Of Literature 4 ◙ Multiple Myeloma 4 ◙ Cell cycle 16 ◙ Apoptosis 19 ◙ Caspases 23 ◙ Chemotherapy 25 ◙ Proteasomes 36 Bortezomib (Velcade) 38 ◙ Interferons 43 ◙ Immunity and Immune system 46 Antibodies 49 Production of Antibodies 51 ◙ Immunotherapy 57 ◙ Radioimmunotherapy ( RIT ) 61 ◙ Gene therapy 62 Materials and Methods 64 Results 92 Discussion 133 Summary 144 References 148 Arabic Summary LIST OF FIGURES Figure (1): Overview of the cell cycle. 16 Figure (2): Apoptosis – the programmed death of a cell. 20 Figure (3): The intrinsic and extrinsic pathways leading to apoptosis. 22 Figure (4): Structure of the 26S proteasome. 37 Figure (5): Chemical Structure of Bortezomib 38 Figure (6): Mechanism of action of Bortezomib 40 Figure (7): The different ways that Bortezomib can affect multiple myeloma 41 Figure (8): Antitumor actions of interferons.
    [Show full text]
  • Renal Toxicities of Novel Agents Used for Treatment of Multiple Myeloma
    Mini-Review Renal Toxicities of Novel Agents Used for Treatment of Multiple Myeloma | Rimda Wanchoo,* Ala Abudayyeh,† Mona Doshi,‡ Amaka Edeani,§ Ilya G. Glezerman, Divya Monga,¶ Mitchell Rosner,** and Kenar D. Jhaveri* Abstract Survival for patients with multiple myeloma has significantly improved in the last decade in large part due to the *Division of development of proteasome inhibitors and immunomodulatory drugs. These next generation agents with novel Nephrology, Hofstra mechanisms of action as well as targeted therapies are being used both in the preclinical and clinical settings for NorthwellSchoolof patients with myeloma. These agents include monoclonal antibodies, deacetylase inhibitors, kinase inhibitors, Medicine, Great Neck, agents affecting various signaling pathways, immune check point inhibitors, and other targeted therapies. In some New York; †Division of cases, off target effects of these therapies can lead to unanticipated effects on the kidney that can range from Internal Medicine, Section of Nephrology, electrolyte disorders to AKI. In this review, we discuss the nephrotoxicities of novel agents currently in practice as The University of Texas well as in development for the treatment of myeloma. MD Anderson Cancer Clin J Am Soc Nephrol 12: 176–189, 2017. doi: 10.2215/CJN.06100616 Center, Houston, Texas; ‡Division of Nephrology, Wayne State University School Introduction regimensuchassteroids,cyclophosphamide,etoposide, of Medicine, Detroit, § Treatment of multiple myeloma (MM) has significantly and cisplatin (DCEP) (6) with or without bortezomib Michigan; Kidney improved in recent decades. Whereas alkylating agents (V-DCEP) (5) or a combination such as bortezomib, Diseases Branch, National Institute of in combination with steroids were the standard of care thalidomide, steroids, cisplatin, doxorubicin, cyclo- Diabetes, Digestive and for several years, novel immunomodulatory agents phosphamide, and etoposide (VTD-PACE) (7) is a rea- Kidney Disease, (IMiD) and targeted therapies have changed the treat- sonable salvage regimen.
    [Show full text]
  • Mtorc2 Suppresses GSK3-Dependent Snail Degradation to Positively Regulate Cancer Cell Invasion and Metastasis
    Author Manuscript Published OnlineFirst on May 29, 2019; DOI: 10.1158/0008-5472.CAN-19-0180 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. mTORC2 suppresses GSK3-dependent Snail degradation to positively regulate cancer cell invasion and metastasis Shuo Zhang,1,3 Guoqing Qian,3 Qian-Qian Zhang,2 Yuying Yao,2, Dongsheng Wang,3 Zhuo G. Chen,3 Li-Jing Wang,2 Mingwei Chen,1 and Shi-Yong Sun3 1First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China; 2Vascular Biology Research Institute, School of Basic Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China; 3Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, USA Running title: mTORC2 stabilization of Snail Key words: mTOR, mTORC2, Snail, degradation, GSK3, -TrCP, invasion, metastasis Abbreviations: mTOR, mammalian target of rapamycin; mTORC2, mTOR complex 2; CHX, cycloheximide; siRNA, small-interfering RNA; shRNA, short-hairpin RNA. Grant Support: Emory University Winship pilot funds (to SYS) and National Natural Science Foundation of China (No. 31771578 to QQZ). Note: SYS is a Georgia Research Alliance Distinguished Cancer Scientist. Request for reprints: Shi-Yong Sun, Ph.D., Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, 1365-C Clifton Road, C3088, Atlanta, GA 30322. Phone: (404) 778-2170; Fax: (404) 778-5520; E-mail: [email protected] 1 Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on May 29, 2019; DOI: 10.1158/0008-5472.CAN-19-0180 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]
  • Mechanism of Replication-Coupled DNA-Protein Crosslink Proteolysis
    bioRxiv preprint doi: https://doi.org/10.1101/381889; this version posted August 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Mechanism of replication-coupled DNA-protein crosslink proteolysis by SPRTN and the proteasome Alan Gao1,2,6, Nicolai B. Larsen1,6, Justin L. Sparks2, Irene Gallina1, Matthias Mann1,3, Markus Räschle4, Johannes C. Walter2,5 and Julien P. Duxin1,* 1 The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark 2Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA 3Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany 4Department of Molecular Biotechnology and Systems Biology, Technical University of Kaiserslautern, 67653 Kaiserslautern, Germany 5Howard Hughes Medical Institute 6co-first author *Correspondence: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/381889; this version posted August 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Summary DNA-protein crosslinks (DPCs) are bulky DNA lesions that interfere with DNA metabolism and therefore threaten genomic integrity. Recent studies implicate the metalloprotease SPRTN in S- phase removal of DPCs, but how SPRTN activity is coupled to DNA replication is unknown. Using Xenopus egg extracts that recapitulate replication-coupled DPC proteolysis, we show that DPCs can be degraded by SPRTN or the proteasome, which act as independent DPC proteases.
    [Show full text]
  • Proposal for the Inclusion of Bortezomib, Lenalidomide Or
    Proposal for the Inclusion of Bortezomib, Lenalidomide and Thalidomide in the WHO Model List of Essential Medicines for the First-Line Treatment of Multiple Myeloma Report prepared by: Vanessa Piechotta, Marius Goldkuhle, Prof. Dr. med. Christof Scheid, PD Dr. med. Nicole Skoetz Involved actors: (1) Department I of Internal Medicine Director: Prof. Dr. med. Michael Hallek University Hospital of Cologne Kerpener Str. 62 50937 Cologne Germany (2) Cochrane Cancer CONTENT List of abbreviations ................................................................................................................................ 2 General Items .......................................................................................................................................... 5 1. Summary statement of the proposal for inclusion, change or deletion 5 2. Relevant WHO technical department and focal point 5 3. Name of organizations consulted and supporting the application 5 4. International Nonproprietary Name and Anatomical Therapeutic Chemical code of the medicine 5 5. Dose forms and strengths proposed for inclusion; including adult and age-appropriate paediatric dose forms/strengths 5 6. Whether listing is requested as an individual medicine or as representative of a pharmacological class 10 Treatment details, public health relevance and evidence appraisal and synthesis .............................. 11 7. Treatment details (requirements for diagnosis, treatment and monitoring) 11 Diagnosis ..................................................................................................................................
    [Show full text]