Mtorc2 Suppresses GSK3-Dependent Snail Degradation to Positively Regulate Cancer Cell Invasion and Metastasis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Phase II Study of the Novel Proteasome Inhibitor Bortezomib In
Memorial Sloan-Kettering Cance r Center IRB Protocol IRB#: 05-103 A(14) A Phase II Study of the Novel Proteas ome Inhibitor Bortezomib in Combination with Rituximab, Cyclophosphamide and Prednisone in Patients with Relapsed/Refractory I Indolent B-cell Lymphoproliferative Disorders and Mantle Cell Lymphoma (MCL) MSKCC THERAPEUTIC/DIAGNOSTIC PROTOCOL Principal Investigator: John Gerecitano, M.D., Ph.D. Co-Principal Carol Portlock, M.D. Investigator(s): IFormerly: A Phase I/II Study of the Nove l Proteasome Inhibitor Bortezomib in Combinati on with Rituximab, Cyclophosphamide and Prednisone in Patients with Relapsed/Refractory Indolent B-cell Lymphoproliferative Disorders and Mantle Cell Lymphoma (MCL) Amended: 07/25/12 Memorial Sloan-Kettering Cance r Center IRB Protocol IRB#: 05-103 A(14) Investigator(s): Paul Hamlin, M.D. Commack, NY Steven B. Horwitz, M.D. Philip Schulman, M.D. Alison Moskowitz, M.D. Stuart Lichtman, M.D Craig H. Moskowitz, M.D. Stefan Berger, M.D. Ariela Noy, M.D. Julie Fasano, M.D. M. Lia Palomba, M.D., Ph.D. John Fiore, M.D. Jonathan Schatz, M.D. Steven Sugarman, M.D David Straus, M.D. Frank Y. Tsai, M.D. Andrew D. Zelenetz, M.D., Ph.D. Matthew Matasar, M.D Rockville Center, NY Mark L. Heaney, M.D., Ph.D. Pamela Drullinksy, M.D Nicole Lamanna, M.D. Arlyn Apollo, M.D. Zoe Goldberg, M.D. Radiology Kenneth Ng, M.D. Otilia Dumitrescu, M.D. Tiffany Troso-Sandoval, M.D. Andrei Holodny, M.D. Sleepy Hollow, NY Nuclear Medicine Philip Caron, M.D. Heiko Schoder, M.D. Michelle Boyar, M.D. -
Cardiac Events During Treatment with Proteasome Inhibitor Therapy for Multiple Myeloma John H
Chen et al. Cardio-Oncology (2017) 3:4 DOI 10.1186/s40959-017-0023-9 RESEARCH Open Access Cardiac events during treatment with proteasome inhibitor therapy for multiple myeloma John H. Chen1*, Daniel J. Lenihan2, Sharon E. Phillips3, Shelton L. Harrell1 and Robert F. Cornell1 Abstract Background: Proteasome inhibitors (PI) bortezomib and carfilzomib are cornerstone therapies for multiple myeloma. Higher incidence of cardiac adverse events (CAEs) has been reported in patients receiving carfilzomib. However, risk factors for cardiac toxicity remain unclear. Our objective was to evaluate the incidence of CAEs associated with PI and recognize risk factors for developing events. Methods: This was a descriptive analysis of 96 patients with multiple myeloma who received bortezomib (n = 44) or carfilzomib (n = 52). We compared the cumulative incidence of CAEs using a log rank test. Patient-related characteristics were assessed and multivariate analysis was used to identify risk factors for developing CAEs. Results: PI-related CAEs occurred in 21 (22%) patients. Bortezomib-associated CAEs occurred in 7 (16%) patients while carfilzomib-associated cardiac events occurred in 14 (27%) patients. The cumulative incidence of CAEs was not significantly different between agents. Events occurred after a median of 67.5 days on PI therapy. Heart failure was the most prevalent event type. More patients receiving carfilzomib were monitored by a cardiologist. By multivariate analysis, a history of prior cardiac events and longer duration of PI therapy were identified as independent risk factors for developing CAEs. Conclusions: AEs were common in patients receiving PIs. Choice of PI did not impact the cumulative incidence of CAEs. -
Enhances the Susceptibility to Viral Infection the Proteasome Inhibitor
The Proteasome Inhibitor Bortezomib Enhances the Susceptibility to Viral Infection Michael Basler, Christoph Lauer, Ulrike Beck and Marcus Groettrup This information is current as of September 27, 2021. J Immunol 2009; 183:6145-6150; Prepublished online 19 October 2009; doi: 10.4049/jimmunol.0901596 http://www.jimmunol.org/content/183/10/6145 Downloaded from References This article cites 50 articles, 23 of which you can access for free at: http://www.jimmunol.org/content/183/10/6145.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology The Proteasome Inhibitor Bortezomib Enhances the Susceptibility to Viral Infection1 Michael Basler,2*† Christoph Lauer,† Ulrike Beck,† and Marcus Groettrup*† The proteasome, a multicatalytic protease, is responsible for the generation of most MHC class I ligands. Bortezomib, a protea- some inhibitor, is clinically approved for treatment of multiple myeloma and mantle cell myeloma. -
A Novel Proteasome Inhibitor NPI-0052 As an Anticancer Therapy
British Journal of Cancer (2006) 95, 961 – 965 & 2006 Cancer Research UK All rights reserved 0007 – 0920/06 $30.00 www.bjcancer.com Minireview A novel proteasome inhibitor NPI-0052 as an anticancer therapy 1 1 ,1 D Chauhan , T Hideshima and KC Anderson* 1Department of Medical Oncology, Harvard Medical School, Dana Farber Cancer Institute, The Jerome Lipper Multiple Myeloma Center, Boston, MA 02115, USA Proteasome inhibitor Bortezomib/Velcade has emerged as an effective anticancer therapy for the treatment of relapsed and/or refractory multiple myeloma (MM), but prolonged treatment can be associated with toxicity and development of drug resistance. In this review, we discuss the recent discovery of a novel proteasome inhibitor, NPI-0052, that is distinct from Bortezomib in its chemical structure, mechanisms of action, and effects on proteasomal activities; most importantly, it overcomes resistance to conventional and Bortezomib therapies. In vivo studies using human MM xenografts shows that NPI-0052 is well tolerated, prolongs survival, and reduces tumour recurrence. These preclinical studies provided the basis for Phase-I clinical trial of NPI-0052 in relapsed/ refractory MM patients. British Journal of Cancer (2006) 95, 961–965. doi:10.1038/sj.bjc.6603406 www.bjcancer.com & 2006 Cancer Research UK Keywords: protein degradation; proteasomes; multiple myeloma; novel therapy; apoptosis; drug resistance The systemic regulation of protein synthesis and protein degrada- inducible immunoproteasomes b-5i, b-1i, b-2i with different tion is essential -
Cyclin-Dependent Kinases and Their Role in Inflammation, Endothelial Cell Migration
Cyclin-Dependent Kinases and their role in Inflammation, Endothelial Cell Migration and Autocrine Activity Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Shruthi Ratnakar Shetty Graduate Program in Pharmaceutical Sciences The Ohio State University 2020 Dissertation Committee Dale Hoyt, Advisor Liva Rakotondraibe Moray Campbell Keli Hu Copyrighted by Shruthi Ratnakar Shetty 2020 Abstract Inflammation is the body’s response to infection or injury. Endothelial cells are among the different players involved in an inflammatory cascade. In response to an inflammatory stimuli such as bacterial lipopolysaccharide (LPS), endothelial cells get activated which is characterized by the production of important mediators, such as inducible nitric oxide synthase (iNOS) which, catalyzes the production of nitric oxide (NO) and reactive nitrogen species and cyclooxygenase-2 (COX-2) that catalyzes the production of prostaglandins. Though the production of these mediators is required for an inflammatory response, it is important that their levels are regulated. Continued production of iNOS results in increased accumulation of reactive nitrogen species (RNS) that might lead to cytotoxicity, whereas lack of/suppression results in endothelial and vascular dysfunction. On the other hand, severe cardiovascular, intestinal and renal side effects are observed with significant suppression of COX-2. Thus, studying factors that could regulate the levels of iNOS and COX-2 could provide useful insights for developing novel therapeutic targets. Regulation of protein levels involves control of protein induction or turnover. Since protein induction requires transcription, in this dissertation we studied the role of a promoter of transcription “Cyclin- dependent kinase 7 (CDK7)” in iNOS and COX-2 protein induction. -
The Combined Effects of Proteasome Inhibitor Bortezomib with Topoisomerase I and II Inhibitors on Topoisomerase Enzymes
Turkish Journal of Medical Sciences Turk J Med Sci (2016) 46: 1882-1888 http://journals.tubitak.gov.tr/medical/ © TÜBİTAK Research Article doi:10.3906/sag-1511-184 The combined effects of proteasome inhibitor bortezomib with topoisomerase I and II inhibitors on topoisomerase enzymes Emine ÖKSÜZOĞLU*, Çiydem TIRINOĞLU, Barış KERİMOĞLU Molecular Biology Division, Department of Biology, Faculty of Science and Letters, Aksaray University, Aksaray, Turkey Received: 29.11.2015 Accepted/Published Online: 17.02.2016 Final Version: 20.12.2016 Background/aim: DNA topoisomerases are ubiquitous enzymes that regulate conformational changes in DNA topology during essential cellular processes, and, for this reason, have been characterized as the cellular targets of a number of anticancer drugs. Bortezomib is a powerful proteasome inhibitor used in the treatment of hematological malignancies. In this study, we investigated the inhibitory effects of bortezomib on human topoisomerase I and II enzymes both alone and in combination modes with camptothecin and etoposide. Materials and methods: The interactions of these drugs with topoisomerase enzymes were evaluated by relaxation assay in cell-free systems. IC50 values of the drugs on topoisomerase enzymes were calculated using the S probit analysis program. Results: Bortezomib showed a very weak inhibition effect on topoisomerase I (IC50 = 87.11 mM). On the other hand, it had a strong inhibitory effect on topoisomerase II (IC50 = 1.41 mM). Our results indicated that bortezomib is effective not only on proteasome but also on topoisomerase II. In addition, bortezomib possesses an increased synergistic effect when used in combination with camptothecin and etoposide than when used alone. Conclusion: The results of this study point out that these data may build a framework for combination studies with bortezomib, camptothecin, and etoposide in the treatment of cancer. -
Proteasome Inhibitor-Adapted Myeloma Cells Are Largely
Leukemia (2016) 30, 2198–2207 OPEN © 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 0887-6924/16 www.nature.com/leu ORIGINAL ARTICLE Proteasome inhibitor-adapted myeloma cells are largely independent from proteasome activity and show complex proteomic changes, in particular in redox and energy metabolism GP Soriano1,4, L Besse2,4,NLi1, M Kraus2, A Besse2, N Meeuwenoord1, J Bader2, B Everts3, H den Dulk1, HS Overkleeft1, BI Florea1 and C Driessen2 Adaptive resistance of myeloma to proteasome inhibition represents a clinical challenge, whose biology is poorly understood. Proteasome mutations were implicated as underlying mechanism, while an alternative hypothesis based on low activation status of the unfolded protein response was recently suggested (IRE1/XBP1-low model). We generated bortezomib- and carfilzomib-adapted, highly resistant multiple myeloma cell clones (AMO-BTZ, AMO-CFZ), which we analyzed in a combined quantitative and functional proteomic approach. We demonstrate that proteasome inhibitor-adapted myeloma cells tolerate subtotal proteasome inhibition, irrespective of a proteasome mutation, and uniformly show an 'IRE1/XBP1-low' signature. Adaptation of myeloma cells to proteasome inhibitors involved quantitative changes in 4600 protein species with similar patterns in AMO-BTZ and AMO-CFZ cells: proteins involved in metabolic regulation, redox homeostasis, and protein folding and destruction were upregulated, while apoptosis and transcription/translation were downregulated. The quantitatively most upregulated protein in AMO-CFZ cells was the multidrug resistance protein (MDR1) protein ABCB1, and carfilzomib resistance could be overcome by MDR1 inhibition. We propose a model where proteasome inhibitor-adapted myeloma cells tolerate subtotal proteasome inhibition owing to metabolic adaptations that favor the generation of reducing equivalents, such as NADPH, which is supported by oxidative glycolysis. -
The Proteasome Metabolizes Peptide-Mediated Nonviral Gene Delivery Systems
Gene Therapy (2005) 12, 1581–1590 & 2005 Nature Publishing Group All rights reserved 0969-7128/05 $30.00 www.nature.com/gt RESEARCH ARTICLE The proteasome metabolizes peptide-mediated nonviral gene delivery systems J Kim, C-P Chen and KG Rice Division of Medicinal and Natural Product Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA, USA The proteasome is a multisubunit cytosolic protein complex directly with proteasome inhibition, and was not the result of responsible for degrading cytosolic proteins. Several studies lysosomal enzyme inhibition. The enhanced transfection was have implicated its involvement in the processing of viral specific for peptide DNA condensates, whereas Lipofecta- particles used for gene delivery, thereby limiting the mine- and polyethylenimine-mediated gene transfer were efficiency of gene transfer. Peptide-based nonviral gene significantly blocked. A series of novel gene transfer peptides delivery systems are sufficiently similar to viral particles in containing intrinsic GA proteasome inhibitors (CWK18(GA)n, their size and surface properties and thereby could also be where n ¼ 4, 6, 8 and 10) were synthesized and found to recognized and metabolized by the proteasome. The present inhibit the proteasome. The gene transfer efficiency mediated study utilized proteasome inhibitors (MG 115 and MG 132) by these peptides in four different cell lines established that a to establish that peptide DNA condensates are metabolized GA repeat of four is sufficient to block the proteasome and by the proteasome, thereby limiting their gene transfer significantly enhance the gene transfer. Together, these efficiency. Transfection of HepG2 or cystic fibrosis/T1 (CF/T1) results implicate the proteasome as a previously undiscov- cells with CWK18 DNA condensates in the presence of ered route of metabolism of peptide-based nonviral gene MG 115 or MG 132 resulted in significantly enhanced gene delivery systems and provide a rationale for the use of expression. -
Newfound Coding Potential of Transcripts Unveils Missing Members Of
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.02.406710; this version posted December 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Newfound coding potential of transcripts unveils missing members of 2 human protein communities 3 4 Sebastien Leblanc1,2, Marie A Brunet1,2, Jean-François Jacques1,2, Amina M Lekehal1,2, Andréa 5 Duclos1, Alexia Tremblay1, Alexis Bruggeman-Gascon1, Sondos Samandi1,2, Mylène Brunelle1,2, 6 Alan A Cohen3, Michelle S Scott1, Xavier Roucou1,2,* 7 1Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, 8 Quebec, Canada. 9 2 PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering. 10 3Department of Family Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada. 11 12 *Corresponding author: Tel. (819) 821-8000x72240; E-Mail: [email protected] 13 14 15 Running title: Alternative proteins in communities 16 17 Keywords: alternative proteins, protein network, protein-protein interactions, pseudogenes, 18 affinity purification-mass spectrometry 19 20 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.02.406710; this version posted December 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 21 Abstract 22 23 Recent proteogenomic approaches have led to the discovery that regions of the transcriptome 24 previously annotated as non-coding regions (i.e. -
Cyclin-Dependent Kinases and CDK Inhibitors in Virus-Associated Cancers Shaian Tavakolian, Hossein Goudarzi and Ebrahim Faghihloo*
Tavakolian et al. Infectious Agents and Cancer (2020) 15:27 https://doi.org/10.1186/s13027-020-00295-7 REVIEW Open Access Cyclin-dependent kinases and CDK inhibitors in virus-associated cancers Shaian Tavakolian, Hossein Goudarzi and Ebrahim Faghihloo* Abstract The role of several risk factors, such as pollution, consumption of alcohol, age, sex and obesity in cancer progression is undeniable. Human malignancies are mainly characterized by deregulation of cyclin-dependent kinases (CDK) and cyclin inhibitor kinases (CIK) activities. Viruses express some onco-proteins which could interfere with CDK and CIKs function, and induce some signals to replicate their genome into host’scells.By reviewing some studies about the function of CDK and CIKs in cells infected with oncoviruses, such as HPV, HTLV, HERV, EBV, KSHV, HBV and HCV, we reviewed the mechanisms of different onco-proteins which could deregulate the cell cycle proteins. Keywords: CDK, CIKs, Cancer, Virus Introduction the key role of the phosphorylation in the entrance of Cell division is controlled by various elements [1–10], the cells to the S phase of the cell cycle [19]. especially serine/ threonine protein kinase complexes, CDK genes are classified in mammalian cells into differ- called cyclin-dependent kinases (CDKs), and cyclins, ent classes of CDKs, especially some important regulatory whose expression is prominently regulated by the bind- ones (The regulatory CDKs play important roles in medi- ing to CDK inhibitors [11, 12]. In all eukaryotic species, ating cell cycle). Each of these CDKs could interact with a these genes are classified into different families. It is specific cyclin and thereby regulating the expression of well-established that the complexes of cyclin and CDK different genes [20, 21]. -
Thesis Biochemistry By
Ain shams Universirty Faculty Of Science Evaluation of anticancer effects of a novel proteasome inhibitor (Velcade), interferon (alpha-interferon) and antimyeloma antibodies on the growth of myeloma cells. Thesis Submitted for the Requirement of the Ph.D degree in Biochemistry By Hanan Mohammed Mohammed El shershaby. (M.Sc in Biochemistry) Under Supervision of Prof.Dr / Ibrahim Hassan Borai Prof.Dr/ Mohamed Taha Hussein El- Kolaly Prof. of Biochemistry Professor of Radiopharmaceutics Faculty Of Science Atomic Energy Authority Ain shams Universirty Prof.Dr/Naser Mohammed El-lahloby Prof. Dr/ Kamel Abd El.hameed Moustafa Prof. of Medical Oncology Professor of Biochemistry Cancer Institute Center Atomic Energy Authority Cairo University Dr / Ahmed Abd El.aziz sayed Assistant professor of Biochemistry Faculty Of Science Ain shams Universirty (2013) CONTENTS Introduction and Aim of the work 1 Review Of Literature 4 ◙ Multiple Myeloma 4 ◙ Cell cycle 16 ◙ Apoptosis 19 ◙ Caspases 23 ◙ Chemotherapy 25 ◙ Proteasomes 36 Bortezomib (Velcade) 38 ◙ Interferons 43 ◙ Immunity and Immune system 46 Antibodies 49 Production of Antibodies 51 ◙ Immunotherapy 57 ◙ Radioimmunotherapy ( RIT ) 61 ◙ Gene therapy 62 Materials and Methods 64 Results 92 Discussion 133 Summary 144 References 148 Arabic Summary LIST OF FIGURES Figure (1): Overview of the cell cycle. 16 Figure (2): Apoptosis – the programmed death of a cell. 20 Figure (3): The intrinsic and extrinsic pathways leading to apoptosis. 22 Figure (4): Structure of the 26S proteasome. 37 Figure (5): Chemical Structure of Bortezomib 38 Figure (6): Mechanism of action of Bortezomib 40 Figure (7): The different ways that Bortezomib can affect multiple myeloma 41 Figure (8): Antitumor actions of interferons. -
Title Mtorc1 Upregulation Via ERK-Dependent Gene Expression Change Confers Intrinsic Resistance to MEK Inhibitors in Oncogenic Kras-Mutant Cancer Cells
mTORC1 upregulation via ERK-dependent gene expression Title change confers intrinsic resistance to MEK inhibitors in oncogenic KRas-mutant cancer cells. Komatsu, Naoki; Fujita, Yoshihisa; Matsuda, Michiyuki; Aoki, Author(s) Kazuhiro Citation Oncogene (2015), 34(45): 5607-5616 Issue Date 2015-11-05 URL http://hdl.handle.net/2433/207613 This is the accepted manuscrip of the article is available at http://dx.doi.org/10.1038/onc.2015.16.; The full-text file will be made open to the public on 5 May 2016 in accordance with Right publisher's 'Terms and Conditions for Self-Archiving'.; この論 文は出版社版でありません。引用の際には出版社版をご 確認ご利用ください。; This is not the published version. Please cite only the published version. Type Journal Article Textversion author Kyoto University 1 Title mTORC1 upregulation via ERK-dependent gene expression change confers intrinsic resistance to MEK inhibitors in oncogenic KRas-mutant cancer cells. Authors Naoki Komatsu1, Yoshihisa Fujita2, Michiyuki Matsuda1,2, and Kazuhiro Aoki3 Affiliations 1. Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Japan 2. Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Japan 3. Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University, Japan To whom correspondence should be addressed Kazuhiro Aoki, Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Tel.: 81-75-753-9450; Fax: 81-75-753-4698; E-mail: [email protected] Running title (less than 50 letters and spaces): Transcriptional control of mTORC1 activity by ERK 2 Abstract Cancer cells harboring oncogenic BRaf mutants, but not oncogenic KRas mutants, are sensitive to MEK inhibitors (MEKi).