Cosmic Microwave Background Radiometers
Total Page:16
File Type:pdf, Size:1020Kb
Low noise millimeter wave receivers for Cosmic Microwave Background radiometers Eduardo Artal, Beatriz Aja, Luisa de la Fuente, Juan Luis Cano, Enrique Villa, Jaime Cagigas (1) Enrique Martínez-González, Francisco Casas, David Ortiz (2) (1) Departamento de Ingeniería de Comunicaciones, Universidad de Cantabria. Santander. (2) Instituto de Física de Cantabria. Santander. Jornadas de Instrumentación Espacial Astro Madrid 29-30 June 2011 1 Astromadrid 30-June-2011 Summary Introduction Cosmic Microwave Background. Spatial missions NASA missions European Space Agency and Planck mission Planck satellite receivers Microwave polarimeters in “El Teide” Polar modulators, orthomode transducers Low noise receivers 2 Astromadrid 30-June-2011 “Big Bang” and Cosmic Microwave Background Time line of the Universe First stars 200 millions years CMB last interaction 380,000 years Inflation At present 13,700 millions years 0.00 ..(42)..001 seconds 3 Astromadrid 30-June-2011 Cosmic Microwave Background “The earliest image of the Universe” (thousands of millions of years) Cosmic Microwave Image obtained by COBE satellite (NASA) (Celestial sphere deployed) Today: Cosmic Microwave Background (CMB) radiation temperature ≈ - 270 ºC CMB: the relic radiation from the Big Bang, the earliest print of the origin of the Universe (a lot of information about the early state) 4 Astromadrid 30-June-2011 Discovery of Cosmic Microwave Background 1964 Isotropic radio noise from the sky The Horn Antenna, at Bell Telephone Laboratories in Holmdel, New Jersey (constructed in 1959) 5 Astromadrid 30-June-2011 NASA missions: COBE satellite • Satellite launched by NASA in 1989 to test CMB radiation and CMB Far-InfraRed spectrum. • First evidence of CMB anisotropies (1 part in 100,000) 6 Astromadrid 30-June-2011 COBE satellite Artist’s view of COBE satellite in orbit Instruments . DMR= Differential Microwave Radiometer . FIRAS = Far-InfraRed Absolute Spectrophotometer . DIRBE = Diffuse InfraRed Background Experiment 7 Astromadrid 30-June-2011 NASA missions: WMAP (2001) WMAP (Wilkinson Microwave Anisotropy Probe) WMAP (Wilkinson Microwave Anisotropy Probe) better sensitivity and resolution than COBE a complete map of the sky now it is still providing science data 8 Astromadrid 30-June-2011 NASA missions: WMAP (2001) Temperature fluctuations map (CMB) after 5 years tests with WMAP satellite (variations of 0.0002 degrees) 9 Astromadrid 30-June-2011 ESA Planck mission • Telescope of ESA Planck mission: dedicated to study the microwave background radiation • Planck satellite will give answers about the origin and evolution of the universe by mapping the sky temperature: Cosmic background anisotropies 10 Astromadrid 30-June-2011 Missions comparison Cosmic Microwave Background anisotropies CMB anisotropies simulation at the Planck mission expected level PLANCK versus WMAP: Sensitivity 10x Frequency coverage 10x Angular resolution 2x 11 Astromadrid 30-June-2011 Planck and Herschel missions Launched together on Ariane V on 14-May-2009 Separated before reaching their orbit (Lagrangian 2 point, Lissajous orbit) Herschel Planck 12 Astromadrid 30-June-2011 Planck payload Planck mission instruments: HFI - High Frequency Instrument bolometer receivers 100-850 GHz (6 bands) cooled to 0.1 K LFI - Low Frequency Instrument radiometric receivers at 30, 44 and 70 GHz cooled to 20 K with a reference load cooled to 4K 13 Astromadrid 30-June-2011 Planck receivers (LFI+HFI) 14 Astromadrid 30-June-2011 Planck-LFI radiometers 4 K load reference Fe ed-horn Radiometer Channel 4 20K WG 300K Feed-horn Channel 3 FEM BEM OMT to DAEto Channel 2 20K WG 300K Channel 1 Radiometer 4 K load reference Feed-horn Back End Module: BEM LNA LNA BPF DET DC Amp LNA LNA BPF DET DC Amp 15 Astromadrid 30-June-2011 One branch of the 30 GHz BEM EBB L ≈ 50 mm LNA Filter Detector (MMIC) Detector output DC amplifier 16 Astromadrid 30-June-2011 One branch of the 44 GHz BEM EBB LNA Attenuator Filter Detector (MMIC) Detector output DC amplifier 17 Astromadrid 30-June-2011 MMIC amplifiers (LNA) at 44 GHz Two LNA (Low Noise Amplifier): same topology LNA (HEMT-Depletion) PHEMT OMMIC ED02AH Gate Width : 90 m (6x15m) Gate Length : 0.18 m Size: 3x1 mm2 LNA (HEMT-Enhancement) 18 Astromadrid 30-June-2011 30 GHz BEM. Qualification Model (QM) RF channels 19 Astromadrid 30-June-2011 30 GHz BEM. Flight Model (FM) Size: 60 x 65 x 39 mm3 DC amplifiers 20 Astromadrid 30-June-2011 44 GHz BEM. Flight Model (FM) RF channels 21 Astromadrid 30-June-2011 Low frequency instrument (LFI) integration 3 Back End Modules at 44 GHz 2 Back End Modules at 30 GHz 22 Astromadrid 30-June-2011 Planck satellite: first results 17 September 2009, (News from ESA): “Preliminary results from ESA’s Planck mission to study the early Universe indicate that the data quality is excellent” 23 Astromadrid 30-June-2011 QUIJOTE CMB experiment overview • Q-U-I JOint TEnerife (Stokes parameters Q, U and I) • Cosmic Microwave Background (CMB) polarization receivers • To obtain five polarization maps in the frequency range 11- 30 GHz • Angular resolution: ~1 degree Astromadrid 30-June-2011 QUIJOTE experiment consortium Instituto de Astrofísica de Canarias (IAC), Tenerife (Spain): Coordinator Instituto de Física de Cantabria (IFCA), Santander (Spain) Universidad de Cantabria (UC), Santander (Spain) University of Cambridge, (UK) University of Manchester, Jodrell Bank Centre for Astrophysics (UK) IDOM, Bilbao (Spain) Astromadrid 30-June-2011 Observatorio del Teide (Tenerife, Canary Islands) QUIJOTE Instruments 1 and 2 and enclosure Izaña site, 2.390 m Astromadrid 30-June-2011 QUIJOTE experiment. Basic features Instrument 1 Instrument 2 Frequency (GHz) 11.0 13.0 17.0 19.0 30.0 30.0 Bandwidth (GHz) 2.0 2.0 2.0 2.0 8.0 8.0 Number of channels 8 8 8 8 2 32 Beam FWHM (deg) (*) 0.92 0.92 0.60 0.60 0.37 0.37 Tsys (K) 20.0 20.0 20.0 20.0 30.0 20.0 Sensitivity (mK s1/2) 0.22 0.22 0.22 0.22 0.34 0.05 Sensitivity per beam (Jy s1/2) 0.24 0.34 0.24 0.30 0.43 0.07 (*) Pixel = a square with each side is FWHM (Full Width at Half Maximum) of the beam. Astromadrid 30-June-2011 Radiometer scheme for QUIJOTE 1 Simultaneous Q and U detection Astromadrid 30-June-2011 QUIJOTE 1: Corrugated feed-horns (Sept. 2010) 14-20 GHz 10-14 GHz 26-36 GHz Astromadrid 30-June-2011 QUIJOTE 1: Receivers integration LNA 26-36 GHz OMT 26-36 GHz Astromadrid 30-June-2011 Polar Modulator • Key component of the polarimeter • Rotating polar modulator (40 Hz): switch out 1/f noise • Incoming signal modulated at 4 x (modulator frequency) • Cryogenically cooled: low losses, low impact on noise • Waveguide component: turnstile 4-way junction Units: 10-14 GHz 14-20 GHz 26-36 GHz Astromadrid 30-June-2011 Orthomode Transducer (OMT) Units: 10-14 GHz 14-22 GHz 26-36 GHz Astromadrid 30-June-2011 Cryo-LNA. Gain and Noise Temperature 30 GHz Channel (26-36 GHz) LNA#40A39, Vd = 0.8V, Vg1 = 0.3V, Vg2 = 0.3V, Id = 23mA, Tp = 11.5K 100 40 90 36 80 32 70 28 60 24 (dB)Gi 50 20 Te (K) Te (K) Te 40 16 Gain (dB) 30 12 20 8 10 4 0 0 22 24 26 28 30 32 34 36 38 40 Frequency (GHz) Gain and noise temperature of Caltech LNA at 12 K Astromadrid 30-June-2011 30 GHz BEM (QUIJOTE 1) RF circuits DC circuits BEM branch (top cover removed) Astromadrid 30-June-2011 30 GHz BEM (QUIJOTE 1) RF sample output (K Waveguide connector) input Astromadrid 30-June-2011 Test results (30 GHz BEM) BEM_QUIJOTE_01 30 ) 20 10*log(Vo(mV) 10 0 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Frequency, GHz UNIT#1 UNIT#2 Gain vs. frequency for two units (detector included) Astromadrid 30-June-2011 Facilities at Universidad de Cantabria Test equipment from DC to 50 GHz: Gain, Noise temperature, Signal analysis, Spectrum analysis, 1/f noise, … at Room temperature (300 K) and at cryogenic temperature (20 K) Cryostats general view Two LNA units installed inside Astromadrid 30-June-2011 QUIJOTE 2 – 30 GHz Instrument FOCAL PLANE Connectors for 26-36GHz Receivers Displacer Pressure Sensor Hermetic Feedthroughs for Vacuum Valve 26-36 GHz Motor encoders signals Feedhorn mount Connector for FRONT VIEW Telescope Mounting Temperature sensors Interface Flange and heaters Astromadrid 30-June-2011 Telescope QUIJOTE 1 IAC (La Laguna, Tenerife) May 2009 Astromadrid 30-June-2011 Acknowledgments Spanish participation in Planck mission and QUIJOTE experiment is funded by the Ministry of Science and Innovation. Grants: AYA2007-68058-C03 AYA2010-21766-C03 40 Astromadrid 30-June-2011 End Astromadrid 30-June-2011.