PARTICLE PHYSICS and the COSMIC MICROWAVE BACKGROUND
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Baryogenesis in a CP Invariant Theory That Utilizes the Stochastic Movement of Light fields During Inflation
Baryogenesis in a CP invariant theory Anson Hook School of Natural Sciences Institute for Advanced Study Princeton, NJ 08540 June 12, 2018 Abstract We consider baryogenesis in a model which has a CP invariant Lagrangian, CP invariant initial conditions and does not spontaneously break CP at any of the minima. We utilize the fact that tunneling processes between CP invariant minima can break CP to implement baryogenesis. CP invariance requires the presence of two tunneling processes with opposite CP breaking phases and equal probability of occurring. In order for the entire visible universe to see the same CP violating phase, we consider a model where the field doing the tunneling is the inflaton. arXiv:1508.05094v1 [hep-ph] 20 Aug 2015 1 1 Introduction The visible universe contains more matter than anti-matter [1]. The guiding principles for gener- ating this asymmetry have been Sakharov’s three conditions [2]. These three conditions are C/CP violation • Baryon number violation • Out of thermal equilibrium • Over the years, counter examples have been found for Sakharov’s conditions. One can avoid the need for number violating interactions in theories where the negative B L number is stored − in a sector decoupled from the standard model, e.g. in right handed neutrinos as in Dirac lep- togenesis [3, 4] or in dark matter [5]. The out of equilibrium condition can be avoided if one uses spontaneous baryogenesis [6], where a chemical potential is used to create a non-zero baryon number in thermal equilibrium. However, these models still require a C/CP violating phase or coupling in the Lagrangian. -
Abstract Observation Overview Nustar HXR Imaging Microflare
Imaging and Spectroscopy of Six NuSTAR MicroFlares SH11D-2898 Contact: J. Duncan1, L. Glesener1, I. Hannah2, D. Smith3, B. Grefenstette4 (1Univ, of Minnesota; 2Univ. of Glasgow; 3UC Santa Cruz; 4California Institute of Technology) [email protected] Abstract MicroFlare Time Evolution Hard X-ray (HXR) emission in solar flares originates from regions of high temperature plasma, as well as from non-thermal particle populations [1]. Both of these sources of HXR radiation make solar observation in this band important for study of • NuSTAR observed 6 MicroFlares during this observation. Time evolution is shown in both raw and normalized NuSTAR flare energetics. NuSTAR is the first HXR telescope with direct focusing optics, giving it a dramatic increase in sensitivity countsLivetime acrosscorrection several applied energy ranges for each flare. Counts are livetime-corrected (NuSTAR livetime ranged from 1-14%). Livetime correction applied over previous indirect imaging methods. Here we present NuSTAR observation of six microflares from one solar active Livetime correction applied 5 5 6 5×10 4×10 2.0 10 5 × 4×10 5 region during a period of several hours on May 29th, 2018. In conjunction with simultaneous data from SDO/AIA, data 3×10 5 2-4 keV 2-4 keV 6 3×10 1.5 10 Orbit1, Flare B 4-6 keV 2×105 4-6 keV × 5 counts 2 10 2-4 keV × Orbit1, Flare A 6-8 keV counts Orbit1, Flare C 6-8 keV from this observation has been used to create flare-time images showing the spatial extent of HXR emission. Additionally, 5 5 1 10 1×10 8-10 keV × 8-10 keV 6 4-6 keV 1.0×10 (Left) Estimated GOES A5 flare, with 0 0 1.2 1.2 16:07 16:08 16:09 16:10 16:11 16:46 16:48 16:50 16:52 16:54 NuSTAR lightcurves show time evolution in four different HXR energy ranges over the course of each flare. -
Build a Spacecraft Activity
UAMN Virtual Family Day: Amazing Earth Build a Spacecraft SMAP satellite. Image: NASA. Discover how scientists study Earth from above! Scientists use satellites and spacecraft to study the Earth from outer space. They take pictures of Earth's surface and measure cloud cover, sea levels, glacier movements, and more. Materials Needed: Paper, pencil, craft materials (small recycled boxes, cardboard pieces, paperclips, toothpicks, popsicle sticks, straws, cotton balls, yarn, etc. You can use whatever supplies you have!), fastening materials (glue, tape, rubber bands, string, etc.) Instructions: Step 1: Decide what you want your spacecraft to study. Will it take pictures of clouds? Track forest fires? Measure rainfall? Be creative! Step 2: Design your spacecraft. Draw a picture of what your spacecraft will look like. It will need these parts: Container: To hold everything together. Power Source: To create electricity; solar panels, batteries, etc. Scientific Instruments: This is the why you launched your satellite in the first place! Instruments could include cameras, particle collectors, or magnometers. Communication Device: To relay information back to Earth. Image: NASA SpacePlace. Orientation Finder: A sun or star tracker to show where the spacecraft is pointed. Step 3: Build your spacecraft! Use any craft materials you have available. Let your imagination go wild. Step 4: Your spacecraft will need to survive launching into orbit. Test your spacecraft by gently shaking or spinning it. How well did it hold together? Adjust your design and try again! Model spacecraft examples. Courtesy NASA SpacePlace. Activity adapted from NASA SpacePlace: spaceplace.nasa.gov/build-a-spacecraft/en/ UAMN Virtual Early Explorers: Amazing Earth Studying Earth From Above NASA is best known for exploring outer space, but it also conducts many missions to investigate Earth from above. -
A Study of John Leslie's Infinite Minds, a Philosophical Cosmology
Document généré le 1 oct. 2021 09:18 Laval théologique et philosophique Infinite Minds, Determinism & Evil A Study of John Leslie’s Infinite Minds, A Philosophical Cosmology Leslie Armour La question de Dieu Volume 58, numéro 3, octobre 2002 URI : https://id.erudit.org/iderudit/000634ar DOI : https://doi.org/10.7202/000634ar Aller au sommaire du numéro Éditeur(s) Faculté de philosophie, Université Laval Faculté de théologie et de sciences religieuses, Université Laval ISSN 0023-9054 (imprimé) 1703-8804 (numérique) Découvrir la revue Citer cette note Armour, L. (2002). Infinite Minds, Determinism & Evil: A Study of John Leslie’s Infinite Minds, A Philosophical Cosmology. Laval théologique et philosophique, 58(3), 597–603. https://doi.org/10.7202/000634ar Tous droits réservés © Laval théologique et philosophique, Université Laval, Ce document est protégé par la loi sur le droit d’auteur. L’utilisation des 2002 services d’Érudit (y compris la reproduction) est assujettie à sa politique d’utilisation que vous pouvez consulter en ligne. https://apropos.erudit.org/fr/usagers/politique-dutilisation/ Cet article est diffusé et préservé par Érudit. Érudit est un consortium interuniversitaire sans but lucratif composé de l’Université de Montréal, l’Université Laval et l’Université du Québec à Montréal. Il a pour mission la promotion et la valorisation de la recherche. https://www.erudit.org/fr/ Laval théologique et philosophique, 58, 3 (octobre 2002) : 597-603 ◆ note critique INFINITE MINDS, DETERMINISM & EVIL A STUDY OF JOHN LESLIE’S INFINITE MINDS, A PHILOSOPHICAL COSMOLOGY * Leslie Armour The Dominican College of Philosophy and Theology Ottawa ohn Leslie’s Infinite Minds is a refreshingly daring book. -
Science and Religion in the Face of the Environmental Crisis
Roger S. Gottlieb, ed., The Oxford Handbook of Religion and Ecology. New York and Oxford: Oxford University Press, 2006. Pages 376-397. CHAPTER 17 .................................................................................................. SCIENCE AND RELIGION IN THE FACE OF THE ENVIRONMENTAL CRISIS ..................................................................................................... HOLMES ROLSTON III BOTH science and religion are challenged by the environmental crisis, both to reevaluate the natural world and to reevaluate their dialogue with each other. Both are thrown into researching fundamental theory and practice in the face of an upheaval unprecedented in human history, indeed in planetary history. Life on Earth is in jeopardy owing to the behavior of one species, the only species that is either scientific or religious, the only species claiming privilege as the "wise spe- cies," Homo sapiens. Nature and the human relation to nature must be evaluated within cultures, classically by their religions, currently also by the sciences so eminent in Western culture. Ample numbers of theologians and ethicists have become persuaded that religion needs to pay more attention to ecology, and many ecologists recognize religious dimensions to caring for nature and to addressing the ecological crisis. Somewhat ironically, just when humans, with their increasing industry and technology, seemed further and further from nature, having more knowledge about natural processes and more power to manage them, just when humans were more and more rebuilding their environments, thinking perhaps to escape nature, the natural world has emerged as a focus of concern. Nature remains the milieu of 376 SCIENCE AND RELIGION 377 culture—so both science and religion have discovered. In a currently popular vocabulary, humans need to get themselves "naturalized." Using another meta- phor, nature is the "womb" of culture, but a womb that humans never entirely leave. -
Inflationary Cosmology: from Theory to Observations
Inflationary Cosmology: From Theory to Observations J. Alberto V´azquez1, 2, Luis, E. Padilla2, and Tonatiuh Matos2 1Instituto de Ciencias F´ısicas,Universidad Nacional Aut´onomade Mexico, Apdo. Postal 48-3, 62251 Cuernavaca, Morelos, M´exico. 2Departamento de F´ısica,Centro de Investigaci´ony de Estudios Avanzados del IPN, M´exico. February 10, 2020 Abstract The main aim of this paper is to provide a qualitative introduction to the cosmological inflation theory and its relationship with current cosmological observations. The inflationary model solves many of the fundamental problems that challenge the Standard Big Bang cosmology, such as the Flatness, Horizon, and the magnetic Monopole problems. Additionally, it provides an explanation for the initial conditions observed throughout the Large-Scale Structure of the Universe, such as galaxies. In this review, we describe general solutions to the problems in the Big Bang cosmology carry out by a single scalar field. Then, with the use of current surveys, we show the constraints imposed on the inflationary parameters (ns; r), which allow us to make the connection between theoretical and observational cosmology. In this way, with the latest results, it is possible to select, or at least to constrain, the right inflationary model, parameterized by a single scalar field potential V (φ). Abstract El objetivo principal de este art´ıculoes ofrecer una introducci´oncualitativa a la teor´ıade la inflaci´onc´osmica y su relaci´oncon observaciones actuales. El modelo inflacionario resuelve algunos problemas fundamentales que desaf´ıanal modelo est´andarcosmol´ogico,denominado modelo del Big Bang caliente, como el problema de la Planicidad, el Horizonte y la inexistencia de Monopolos magn´eticos.Adicionalmente, provee una explicaci´onal origen de la estructura a gran escala del Universo, como son las galaxias. -
Physical Cosmology Physics 6010, Fall 2017 Lam Hui
Physical Cosmology Physics 6010, Fall 2017 Lam Hui My coordinates. Pupin 902. Phone: 854-7241. Email: [email protected]. URL: http://www.astro.columbia.edu/∼lhui. Teaching assistant. Xinyu Li. Email: [email protected] Office hours. Wednesday 2:30 { 3:30 pm, or by appointment. Class Meeting Time/Place. Wednesday, Friday 1 - 2:30 pm (Rabi Room), Mon- day 1 - 2 pm for the first 4 weeks (TBC). Prerequisites. No permission is required if you are an Astronomy or Physics graduate student { however, it will be assumed you have a background in sta- tistical mechanics, quantum mechanics and electromagnetism at the undergrad- uate level. Knowledge of general relativity is not required. If you are an undergraduate student, you must obtain explicit permission from me. Requirements. Problem sets. The last problem set will serve as a take-home final. Topics covered. Basics of hot big bang standard model. Newtonian cosmology. Geometry and general relativity. Thermal history of the universe. Primordial nucleosynthesis. Recombination. Microwave background. Dark matter and dark energy. Spatial statistics. Inflation and structure formation. Perturba- tion theory. Large scale structure. Non-linear clustering. Galaxy formation. Intergalactic medium. Gravitational lensing. Texts. The main text is Modern Cosmology, by Scott Dodelson, Academic Press, available at Book Culture on W. 112th Street. The website is http://www.bookculture.com. Other recommended references include: • Cosmology, S. Weinberg, Oxford University Press. • http://pancake.uchicago.edu/∼carroll/notes/grtiny.ps or http://pancake.uchicago.edu/∼carroll/notes/grtinypdf.pdf is a nice quick introduction to general relativity by Sean Carroll. • A First Course in General Relativity, B. -
Nustar and XMM-Newton Observations of the Hard X-Ray Spectrum of Centaurus A
Downloaded from orbit.dtu.dk on: Sep 27, 2021 NuSTAR and XMM-Newton Observations of the Hard X-Ray Spectrum of Centaurus A Fürst, F.; Müller, C.; Madsen, K. K.; Lanz, L.; Rivers, E.; Brightman, M.; Arevalo, P.; Balokovi, M.; Beuchert, T.; Boggs, S. E. Total number of authors: 31 Published in: The Astrophysical Journal Link to article, DOI: 10.3847/0004-637X/819/2/150 Publication date: 2016 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Fürst, F., Müller, C., Madsen, K. K., Lanz, L., Rivers, E., Brightman, M., Arevalo, P., Balokovi, M., Beuchert, T., Boggs, S. E., Christensen, F. E., Craig, W. W., Dauser, T., Farrah, D., Graefe, C., Hailey, C. J., Harrison, F. A., Kadler, M., King, A., ... Zhang, W. W. (2016). NuSTAR and XMM-Newton Observations of the Hard X-Ray Spectrum of Centaurus A. The Astrophysical Journal, 819(2), [150]. https://doi.org/10.3847/0004- 637X/819/2/150 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. -
Captive Breeding Genetics and Reintroduction Success
Biological Conservation 142 (2009) 2915–2922 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Captive breeding genetics and reintroduction success Alexandre Robert * UMR 7204 MNHN-CNRS-UPMC, Conservation des Espèces, Restauration et Suivi des Populations, Muséum National d’Histoire Naturelle, CRBPO, 55, Rue Buffon, 75005 Paris, France article info abstract Article history: Since threatened species are generally incapable of surviving in their current, altered natural environ- Received 6 May 2009 ments, many conservation programs require to preserve them through ex situ conservation techniques Received in revised form 8 July 2009 prior to their reintroduction into the wild. Captive breeding provides species with a benign and stable Accepted 23 July 2009 environment but has the side effect to induce significant evolutionary changes in ways that compromise Available online 26 August 2009 fitness in natural environments. I developed a model integrating both demographic and genetic processes to simulate a captive-wild population system. The model was used to examine the effect of the relaxation Keywords: of selection in captivity on the viability of the reintroduced population, in interaction with the reintro- Reintroduction duction method and various species characteristics. Results indicate that the duration of the reintroduc- Selection relaxation Population viability analysis tion project (i.e., time from the foundation of the captive population to the last release event) is the most Mutational meltdown important determinant of reintroduction success. Success is generally maximized for intermediate project duration allowing to release a sufficient number of individuals, while maintaining the number of generations of relaxed selection to an acceptable level. -
Phy306 Introduction to Cosmology Homework 3 Notes
PHY306 INTRODUCTION TO COSMOLOGY HOMEWORK 3 NOTES 1. Show that, for a universe which is not flat, 1 − Ω 1 − Ω = , where Ω = Ω r + Ω m + Ω Λ and the subscript 0 refers to the present time. [2] This was generally quite well done, although rather lacking in explanation. You should really define the Ωs, and you need to explain that you divide the expression for t by that for t0. 2. Suppose that inflation takes place around 10 −35 s after the Big Bang. Assume the following simplified properties of the universe: ● it is matter dominated from the end of inflation to the present day; ● at the present day 0.9 ≤ Ω ≤ 1.1; ● the universe is currently 10 10 years old; ● inflation is driven by a cosmological constant. Using these assumptions, calculate the minimum amount of inflation needed to resolve the flatness problem, and hence determine the value of the cosmological constant required if the inflation period ends at t = 10 −34 s. [4] This was not well done at all, although it is not really a complicated calculation. I think the principal problem was that people simply did not think it through—not only do you not explain what you’re doing to the marker, you frequently don’t explain it to yourself! Some people therefore got hopelessly confused between the two time periods involved—the matter-dominated epoch from 10 −34 s to 10 10 years, and the inflationary period from 10 −35 to 10 −34 s. The most common error—in fact, considerably more common than the right answer—was simply assuming that during the post-inflationary epoch 1 − . -
Origin and Evolution of the Universe Baryogenesis
Physics 224 Spring 2008 Origin and Evolution of the Universe Baryogenesis Lecture 18 - Monday Mar 17 Joel Primack University of California, Santa Cruz Post-Inflation Baryogenesis: generation of excess of baryon (and lepton) number compared to anti-baryon (and anti-lepton) number. in order to create the observed baryon number today it is only necessary to create an excess of about 1 quark and lepton for every ~109 quarks+antiquarks and leptons +antileptons. Other things that might happen Post-Inflation: Breaking of Pecci-Quinn symmetry so that the observable universe is composed of many PQ domains. Formation of cosmic topological defects if their amplitude is small enough not to violate cosmological bounds. There is good evidence that there are no large regions of antimatter (Cohen, De Rujula, and Glashow, 1998). It was Andrei Sakharov (1967) who first suggested that the baryon density might not represent some sort of initial condition, but might be understandable in terms of microphysical laws. He listed three ingredients to such an understanding: 1. Baryon number violation must occur in the fundamental laws. At very early times, if baryon number violating interactions were in equilibrium, then the universe can be said to have “started” with zero baryon number. Starting with zero baryon number, baryon number violating interactions are obviously necessary if the universe is to end up with a non-zero asymmetry. As we will see, apart from the philosophical appeal of these ideas, the success of inflationary theory suggests that, shortly after the big bang, the baryon number was essentially zero. 2. CP-violation: If CP (the product of charge conjugation and parity) is conserved, every reaction which produces a particle will be accompanied by a reaction which produces its antiparticle at precisely the same rate, so no baryon number can be generated. -
The Ups and Downs of Baryon Oscillations
The Ups and Downs of Baryon Oscillations Eric V. Linder Physics Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720 ABSTRACT Baryon acoustic oscillations, measured through the patterned distribution of galaxies or other baryon tracing objects on very large (∼> 100 Mpc) scales, offer a possible geometric probe of cosmological distances. Pluses and minuses in this approach’s leverage for understanding dark energy are discussed, as are systematic uncertainties requiring further investigation. Conclusions are that 1) BAO offer promise of a new avenue to distance measurements and further study is warranted, 2) the measurements will need to attain ∼ 1% accuracy (requiring a 10000 square degree spectroscopic survey) for their dark energy leverage to match that from supernovae, but do give complementary information at 2% accuracy. Because of the ties to the matter dominated era, BAO is not a replacement probe of dark energy, but a valuable complement. 1. Introduction This paper provides a pedagogical introduction to baryon acoustic oscillations (BAO), accessible to readers not necessarily familiar with details of large scale structure in the universe. In addition, it summarizes some of the current issues – plus and minus – with the use of BAO as a cosmological probe of the nature of dark energy. For more quantitative, arXiv:astro-ph/0507308v2 17 Jan 2006 technical discussions of these issues, see White (2005). The same year as the detection of the cosmic microwave background, the photon bath remnant from the hot, early universe, Sakharov (1965) predicted the presence of acoustic oscillations in a coupled baryonic matter distribution. In his case, baryons were coupled to cold electrons rather than hot photons; Peebles & Yu (1970) and Sunyaev & Zel’dovich (1970) pioneered the correct, hot case.