Making Matters of Fraud: Sociomaterial Technology in the Case of Hwang
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Case Studies in Research Misconduct and Human Subjects
Rules of the Road for those Conducting Federally Funded or Regulated Research: Case Studies in Research Misconduct and Human Subjects April 2, 2019 University of Maryland School of Medicine Baltimore, MD Robert P. Charrow General Counsel United States Department of Health and Human Services Introduction The materials that follow address three areas-misconduct in science, human subjects and privacy, and financial conflicts of interest. To help illustrate the application of the rules that pertain in each area, a number of hypothetical case studies are presented. You should read and be prepared to discuss each case study during the April 2 lecture. The government regulates research under two authorities. First, it regulates research that it funds. How much does the federal government spend annually on research? See Table 2. Second, a federal agency can regulate research on products that fall within its jurisdiction. Thus, by way of example, the Food and Drug Administration asserts jurisdiction over clinical drug trials even though those trials are privately funded. 1. Misconduct A. What is Research Misconduct? The Public Health Service ("PHS"), which includes NIH, defines "research misconduct" as follows: Research misconduct means fabrication, falsification, or plagiarism in proposing, performing, or reviewing research, or in reporting research results. (a) Fabrication is making up data or results and recording or reporting them. (b) Falsification is manipulating research materials, equipment, or processes, or changing or omitting data or results such that the research is not accurately represented in the research record. (c) Plagiarism is the appropriation of another person's ideas, processes, results, or words without giving appropriate credit. -
Integrating the History of Science Into Broader Discussions of Research Integrity and Fraud
HOS0010.1177/0073275320952268History of ScienceRoberts et al. 952268research-article2020 Introduction HOS History of Science 2020, Vol. 58(4) 354 –368 Integrating the history © The Author(s) 2020 of science into broader https://doi.org/10.1177/0073275320952268Article reuse guidelines: sagepub.com/journals-permissions discussions of research DOI: 10.1177/0073275320952268 integrity and fraud journals.sagepub.com/home/hos Lissa L. Roberts University of Twente, Netherlands H. Otto Sibum Uppsala University, Sweden Cyrus C. M. Mody Maastricht University, Netherlands Abstract This introductory article frames our special issue in terms of how historicizing research integrity and fraud can benefit current discussions of scientific conduct and the need to improve public trust in science. Keywords Research integrity, fraud, scientific conduct, scientific values, public trust Writing about research integrity and fraud in the midst of the Covid-19 crisis carries an extra sense of urgency. Voices of reason tell us to trust the experts, echoing both the (idealized) scientific method and Ronald Reagan’s response to Soviet promises regard- ing nuclear disarmament: “trust, but verify.” Great advice, but how easy is it really to identify trustworthy experts? Is the boundary between healthy skepticism and manufac- tured doubt a simple matter of distinguishing between valid laboratory and publishing protocols on one side and political, economic, or personal interests on the other? Should we follow those who rely on the Mertonian distinction between norm-bound -
Achieving a High Level of Protection from Pesticides in Europe: Problems with the Current Risk Assessment Procedure and Solutions
https://doi.org/10.1017/err.2020.18 . Achieving a High Level of Protection from Pesticides in Europe: Problems with the Current Risk Assessment Procedure and Solutions Claire ROBINSON* , Christopher J. PORTIER**, Aleksandra ČAVOŠKI***, Robin MESNAGE****, Apolline ROGER*****, Peter CLAUSING******, Paul WHALEY*******, Hans MUILERMAN******** and https://www.cambridge.org/core/terms Angeliki LYSSIMACHOU********* The regulation of pesticides in the European Union (EU) relies on a network of hard law (legislation and implementing acts) and soft law (non-legally binding guidance documents and administrative and scientific practices). Both hard and soft laws govern how risk assessments are conducted, but a significant role is left to the latter. Europe’s pesticide regulation is one of the most stringent in the world. Its stated objectives are to ensure an independent, objective and transparent assessment of pesticides and achieve a high level of protection for health and environment. However, a growing body of evidence shows that pesticides that have passed through this process and are authorised for use may harm , subject to the Cambridge Core terms of use, available at humans, animals and the environment. The authors of the current paper – experts in toxicology, law and policy – identified shortcomings in the authorisation process, focusing on the EU assessment of the pesticide active substance glyphosate. The shortcomings mostly consist of failures to implement the hard or soft laws. But in some instances the law itself is responsible, as some provisions can only fail to achieve its objectives. Ways to improve the system are proposed, requiring changes in hard and soft laws as well as in administrative 30 Sep 2021 at 13:44:58 and scientific practices. -
Centrosome Detection in Sea Urchin Eggs with a Monoclonal
Proc. Nati. Acad. Sci. USA Vol. 84, pp. 8488-8492, December 1987 Cell Biology Centrosome detection in sea urchin eggs with a monoclonal antibody against Drosophila intermediate filament proteins: Characterization of stages of the division cycle of centrosomes (cytoskeleton/fertilization/microtubules/mitosis) HEIDE SCHATTEN*, MARIKA WALTERt, DANIEL MAZIAt, HARALD BIESSMANNt, NEIDHARD PAWELETZ§, GE2RARD COFFE*, AND GERALD SCHATTEN* *Integrated Microscopy Resource for Biomedical Research, University of Wisconsin, 1117 West Johnson Street, Madison, WI 53706; tCenter for Developmental Biology, University of California, Irvine, CA 92717; tHopkins Marine Station, Department of Biological Sciences, Stanford University, Pacific Grove, CA 93950; and 1lnstitute for Cell and Tumor Biology, German Cancer Research Center, D-6900 Heidelberg, Federal Republic of Germany Contributed by Daniel Mazia, August 27, 1987 ABSTRACT A mouse monoclonal antibody generated Most all of the previous immunocytochemical work on against DrosophUa intermediate filament proteins (designated centrosomes has used an autoimmune serum from a patient Ah6/5/9 and referred to herein as Ah6) is found to cross-react suffering from CREST (calcinosis, Raynaud phenomenon, specifically with centrosomes in sea urchin eggs and with a esophageal dysmotility, sclerodactyly, telangiectasia) scle- 68-kDa antigen in eggs and isolated mitotic apparatus. When roderma (6-10). However, the inability to use this serum for preparations stained with Ah6 are counterstained with a immunoblotting precluded -
Bioelectric Responses at Fertilization: Separation of the Events Associated
Gamete Research 5:363-377 (1982) Bioelectric Responses at Fertilization: Separation of the Events Associated With Insemination From Those Due to the Cortical Reaction in Sea Urchin, Lytechinus variegatus Dieter Hulser and Gerald Schatten Department of Biological Science, The Florida State University, Tallahassee The bioelectric responses at fertilization of the sea urchin Lytechinus variegatus are a com- plex series of membrane potential and resistance changes that occur concomitant with ga- mete fusion, ionic fluxes, and the cortical granule discharge. This work attempts to separate the electrical effects of sperm-egg interactions from those of the cortical reactions. Two ap- proaches were taken to discern the electrical events associated with insemination, distinct from cortical granule discharge: 1) fertilization of eggs treated with 3% urethane, 10 mM procaine, or 10 mM nicotine, to prevent the cortical reaction and 2) refertilization of fertil- ized eggs (denuded with 1 mM aminotriazole containing 1 mg/ml soybean trypsin inhibitor). Cortical granule discharge in the absence of sperm incorporation was investigated by artifi- cial activation with 5 pM A23187 or by fertilization in the presence of 10 pM cytochalasin D, which prevents incorporation. These results are consistent with a model in which the sperm-egg interaction triggers both a rapid (50-400 msec), but minor (= 10 mV), electrical transient that leads to an action potential and then both the Na+-dependent fast block to polyspermy and the late block re- sulting from the secretion of the cortical granules. Key words: fertilization, sea urchin, bioelectric response, secretion, motility INTRODUCTION At fertilization the sea urchin egg undergoes a complex series of electrical changes in membrane potential and resistance. -
Fraudulent Human Embryonic Stem Cell Research in South Korea: Lessons Learned
Accountability in Research, 13:101–109, 2006 Copyright © Taylor & Francis Group, LLC ISSN: 0898-9621 print DOI: 10.1080/08989620600634193 GACR0898-96211545-5815Accountability in Research:Research Policies and Quality Assurance, Vol. 13, No. 01, February 2006: pp. 0–0 Commentary FRAUDULENT HUMAN EMBRYONIC STEM CELL RESEARCH IN SOUTH KOREA: LESSONS LEARNED Commentary:D. B. Resnik et Korean al. Stem Cell Fraud DAVID B. RESNIK , JD, PHD National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA ADIL E. SHAMOO, PHD Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA SHELDON KRIMSKY, PHD Department of Urban & Environmental Policy & Planning, Tufts University, Boston, Massachusetts, USA Now that most of the smoke has cleared from the South Korean human embryonic stem cell fraud, it is time to reflect on some lessons that one can learn from this scandal. First, a brief review of events will help to set the stage. In June 2005, Seoul University investigator Woo Suk Hwang and 24 co-authors published what appeared to be a ground- breaking paper in Science in which they claimed to have estab- lished eleven embryonic stem cell lines containing nuclear DNA from somatic cells of research subjects (Hwang et al., 2005). In March 2004, Hwang’s research team had published another apparently important paper in which they claimed to have estab- lished one cell line with the nuclear DNA from a research subject (Hwang et al 2004). If these two papers had been valid, they would have represented a significant step forward in human embryonic stem cell research, since they would have demon- strated the feasibility of a technique known as therapeutic Editor’s note: Although this piece is not related to the topic of this issue, we felt it was important to comment on the recent events in South Korea. -
Strategies for Improving Animal Models for Regenerative Medicine
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Cell Stem Cell Forum Strategies for Improving Animal Models for Regenerative Medicine Jose Cibelli,1 Marina E. Emborg,2 Darwin J. Prockop,3 Michael Roberts,4 Gerald Schatten,5 Mahendra Rao,6 John Harding,7 and Oleg Mirochnitchenko7,* 1Michigan State University, Cellular Reprogramming Laboratory, Department of Animal Science, B270 Anthony Hall, East Lansing, MI 48824, USA 2University of Wisconsin-Madison, Department of Medical Physics and Wisconsin National Primate Research Center, 1223 Capitol Court, Madison, WI 53715, USA 3Texas A&M Health Science Center, College of Medicine Institute for Regenerative Medicine at Scott and White, Department of Medicine, 5701 Airport Road, Module C, Temple, TX 76502, USA 4University of Missouri, 240b C.S. Bond Life Sciences Center, 1201 East Rollins Street, Columbia, MO 65211-7310, USA 5University of Pittsburgh, Department of Cell Biology and Physiology, S362 Biomedical Science Towers, 3500 Terrace Street, Pittsburgh, PA 15261, USA 6Center for Regenerative Medicine, National Institutes of Health, 50 South Drive, Suite 1140, Bethesda, MD 20892, USA 7Division of Comparative Medicine/ORIP/DPCPSI/OD, National Institutes of Health, 6701 Democracy Boulevard, Suite 943/950, Bethesda, MD 20892, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.stem.2013.01.004 The field of regenerative medicine is moving toward translation to clinical practice. However, there are still knowledge gaps and safety concerns regarding stem cell-based therapies. Improving large animal models and methods for transplantation, engraftment, and imaging should help address these issues, facilitating eventual use of stem cells in the clinic. -
1 Are We Ready for Genome Editing in Human Embryos for CLINICAL
Are we ready for genome editing in human embryos FOR CLINICAL PURPOSES? Joyce C Harper and Gerald Schatten Joyce C Harper, Professor of Reproductive Science, Institute for Women’s Health, University College Londona Gerald Schatten, Professor of Ob-Gyn-Repro Sci, Cell Biology and Bioengineering, University of Pittsburgh School of Medicineb aInstitute for Women’s Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK, 0044 7880 795791, [email protected] (Corresponding author) b204 Craft Avenue Pittsburgh, PA 15213 412/641-2403 [phone] 412/641-6342 [fax] [email protected] [email protected] Abstract Perhaps the two most significant pioneering biomedical discoveries with immediate clinical implications during the past forty years have been the advent of assisted reproductive technologies (ART) and the genetics revolution. ART, including in vitro fertilization (IVF), intracytoplasmic sperm injection and preimplantation genetic testing, has resulted in the birth of more than 8 million children, and the pioneer of IVF, Professor Bob Edwards, was awarded the 2010 Nobel Prize. The genetics revolution has resulted in our genomes being sequenced and many of the molecular mechanisms understood, and technologies for genomic editing have been developed. With the combination of nearly routine ART protocols for healthy conceptions together with almost error- free, inexpensive and simple methods for genetic modification, the question “Are we ready for genome editing in human embryos FOR CLINICAL PURPOSES?” was debated at the 5th Congress on Controversies in Preconception, Preimplantation and Prenatal Genetic Diagnosis, in collaboration with the Ovarian Club Meeting, in November 2018 in Paris. The co-authors each presented scientific, medical and bioethical backgrounds, and the debate was chaired by Professor Alan Handyside. -
IVF) Versus Intracytoplasmic Sperm Injection (ICSI) Calvin R
www.nature.com/scientificreports OPEN Fertilization and Cleavage Axes Difer In Primates Conceived By Conventional (IVF) Versus Intracytoplasmic Sperm Injection (ICSI) Calvin R. Simerly1, Diana Takahashi2, Ethan Jacoby3, Carlos Castro1, Carrie Hartnett1, Laura Hewitson4, Christopher Navara5 & Gerald Schatten 1* With nearly ten million babies conceived globally, using assisted reproductive technologies, fundamental questions remain; e.g., How do the sperm and egg DNA unite? Does ICSI have consequences that IVF does not? Here, pronuclear and mitotic events in nonhuman primate zygotes leading to the establishment of polarity are investigated by multidimensional time-lapse video microscopy and immunocytochemistry. Multiplane videos after ICSI show atypical sperm head displacement beneath the oocyte cortex and eccentric para-tangential pronuclear alignment compared to IVF zygotes. Neither fertilization procedure generates incorporation cones. At frst interphase, apposed pronuclei align obliquely to the animal-vegetal axis after ICSI, with asymmetric furrows assembling from the male pronucleus. Furrows form within 30° of the animal pole, but typically, not through the ICSI injection site. Membrane fow drives polar bodies and the ICSI site into the furrow. Mitotic spindle imaging suggests para-tangential pronuclear orientation, which initiates random spindle axes and minimal spindle:cortex interactions. Parthenogenetic pronuclei drift centripetally and assemble astral spindles lacking cortical interactions, leading to random furrows through the animal pole. Conversely, androgenotes display cortex-only pronuclear interactions mimicking ICSI. First cleavage axis determination in primates involves dynamic cortex-microtubule interactions among male pronuclei, centrosomal microtubules, and the animal pole, but not the ICSI site. With perhaps ten million ART babies now, fundamental problems regarding the mechanisms of fertilization and the onset of early development remain. -
Managing Allegations of Scientific Misconduct: A
MANAGING ALLEGATIONS OF SCIENTIFIC MISCONDUCT: A Guidance Document for Editors January 2000 Office of Research Integrity Office of Public Health and Science U.S. Department of Health and Human Services http://ori.dhhs.gov 1 TABLE OF CONTENTS I. Role of Editors in Responding to Scientific Misconduct .............. 1 II. Purpose of Guidelines ................................................................... 2 III. Definitions ..................................................................................... 2 IV. Procedure for Handling Suspect Manuscripts .............................. 3 V. Responding to ORI Requests for Assistance ............................... 4 VI. Correcting the Literature ............................................................... 5 VII. Helpful Editorial Policies ............................................................... 5 VIII. Conclusion .................................................................................... 8 References ................................................................................................. 9 Appendix A: ORI Case Examples of Suspect Manuscripts ..................... 11 ORI Information and Technical Assistance . Inside Back Cover 2 MANAGING ALLEGATIONS OF SCIENTIFIC MISCONDUCT: A Guidance Document for Editors* I. Role of Editors in Responding to Scientific Misconduct The role editors should play in responding to scientific misconduct has been articulated by their colleagues, asserted by two national reports, and demonstrated by the scientific misconduct allegations -
How Scientific Misconduct Harms Prior Collaborators
A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Hussinger, Katrin; Pellens, Maikel Working Paper Guilt by association: How scientific misconduct harms prior collaborators ZEW Discussion Papers, No. 17-051 Provided in Cooperation with: ZEW - Leibniz Centre for European Economic Research Suggested Citation: Hussinger, Katrin; Pellens, Maikel (2017) : Guilt by association: How scientific misconduct harms prior collaborators, ZEW Discussion Papers, No. 17-051, Zentrum für Europäische Wirtschaftsforschung (ZEW), Mannheim, http://nbn-resolving.de/urn:nbn:de:bsz:180-madoc-436888 This Version is available at: http://hdl.handle.net/10419/171327 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Dis cus si on Paper No. 17-051 Guilt by Association: How Scientific Misconduct Harms Prior Collaborators Katrin Hussinger and Maikel Pellens Dis cus si on Paper No. -
Embryogenesis and Blastocyst Development After Somatic Cell Nuclear Transfer in Nonhuman Primates: Overcoming Defects Caused by Meiotic Spindle Extraction$
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Developmental Biology 276 (2004) 237–252 www.elsevier.com/locate/ydbio Embryogenesis and blastocyst development after somatic cell nuclear transfer in nonhuman primates: overcoming defects caused by meiotic spindle extraction$ Calvin Simerlya,b,1, Christopher Navaraa,b,1, Sang Hwan Hyuna,b,1, Byeong Chun Leec, Sung Keun Kangc, Saverio Capuanoa,b, Gabriella Gosmana,b, Tanja Dominko2, Kowit-Yu Chonga,b, Duane Comptond, Woo Suk Hwangc, Gerald Schattena,b,* aDepartment of Obstetrics-Gynecology-Reproductive Sciences, Pittsburgh Development Center, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15213, USA bDepartment of Cell Biology-Physiology, Pittsburgh Development Center, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15213, USA cDepartment of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea dDepartment of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA Received for publication 13 August 2004, revised 28 September 2004, accepted 12 October 2004 Abstract Therapeutic cloning or nuclear transfer for stem cells (NTSC) seeks to overcome immune rejection through the development of embryonic stem cells (ES cells) derived from cloned blastocysts. The successful derivation of a human embryonic stem cell (hESC) line from blastocysts generated by somatic cell nuclear transfer (SCNT) provides proof-of-principle for btherapeutic cloning,Q though immune matching of the differentiated NT-hES remains to be established. Here, in nonhuman primates (NHPs; rhesus and cynomologus macaques), the strategies used with human SCNT improve NHP-SCNT development significantly.