16.2 News 768-769 MH
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neptune's Wandering Hot Pole
Geophysical Research Abstracts Vol. 12, EGU2010-2553, 2010 EGU General Assembly 2010 © Author(s) 2010 Neptune’s Wandering Hot Pole Glenn Orton (1), Leigh Fletcher (2), Padma Yanamandra-Fisher (3), Tom Geballe (4), Heidi Hammel (5), Takuya Fujiyoshi (6), Therese Encrenaz (7), Mark Hofstadter (3), Olivier Mousis (8), and Tetsuharu Fuse (6) (1) Jet Propulsion Laboratory, Caltech, Pasadena, California, USA ([email protected], 001 818 3934619), (2) Oxford University, Oxford, United Kingdom, (3) Jet Propulsion Laboratory, Caltech, Pasadena, California, USA, (4) Gemini Observatory, Hilo, Hawaii, USA, (5) Space Science Institute, Ridgefield, Connecticut, USA, (6) Subaru Telescope, Nat’l. Optical Obs. of Japan, Hilo, Hawaii, USA, (7) Observatoire de Paris, Meudon, France, (8) Observatorie de Besancon, Besancon, France Images of stratospheric emission from Neptune obtained in 2006 at ESO’s Very Large Telescope (Orton et al., 2007, A&A 473, L5) revealed a near-polar hot spot near 70 deg. S latitude that was detectable in different filters sampling both methane (∼7-micron) and ethane (∼12-micron) emission from Neptune’s stratosphere. Such a feature was not present in 2003 Keck and 2005 Gemini North observations: these showed only a general warming trend towards Neptune’s pole that was longitudinally homogeneous. Because of the paucity of longitudinal sampling in the 2003, 2005 and 2006 images, it was not clear whether the failure to see this phenomenon in 2003 and 2005 was simply the result of insufficient longitudinal sampling or whether the phenomenon was truly variable in time. To unravel these two possibilities, we proposed for time on large telescopes that were capable of resolving Neptune at these wavelengths. -
Centrosome Detection in Sea Urchin Eggs with a Monoclonal
Proc. Nati. Acad. Sci. USA Vol. 84, pp. 8488-8492, December 1987 Cell Biology Centrosome detection in sea urchin eggs with a monoclonal antibody against Drosophila intermediate filament proteins: Characterization of stages of the division cycle of centrosomes (cytoskeleton/fertilization/microtubules/mitosis) HEIDE SCHATTEN*, MARIKA WALTERt, DANIEL MAZIAt, HARALD BIESSMANNt, NEIDHARD PAWELETZ§, GE2RARD COFFE*, AND GERALD SCHATTEN* *Integrated Microscopy Resource for Biomedical Research, University of Wisconsin, 1117 West Johnson Street, Madison, WI 53706; tCenter for Developmental Biology, University of California, Irvine, CA 92717; tHopkins Marine Station, Department of Biological Sciences, Stanford University, Pacific Grove, CA 93950; and 1lnstitute for Cell and Tumor Biology, German Cancer Research Center, D-6900 Heidelberg, Federal Republic of Germany Contributed by Daniel Mazia, August 27, 1987 ABSTRACT A mouse monoclonal antibody generated Most all of the previous immunocytochemical work on against DrosophUa intermediate filament proteins (designated centrosomes has used an autoimmune serum from a patient Ah6/5/9 and referred to herein as Ah6) is found to cross-react suffering from CREST (calcinosis, Raynaud phenomenon, specifically with centrosomes in sea urchin eggs and with a esophageal dysmotility, sclerodactyly, telangiectasia) scle- 68-kDa antigen in eggs and isolated mitotic apparatus. When roderma (6-10). However, the inability to use this serum for preparations stained with Ah6 are counterstained with a immunoblotting precluded -
Bioelectric Responses at Fertilization: Separation of the Events Associated
Gamete Research 5:363-377 (1982) Bioelectric Responses at Fertilization: Separation of the Events Associated With Insemination From Those Due to the Cortical Reaction in Sea Urchin, Lytechinus variegatus Dieter Hulser and Gerald Schatten Department of Biological Science, The Florida State University, Tallahassee The bioelectric responses at fertilization of the sea urchin Lytechinus variegatus are a com- plex series of membrane potential and resistance changes that occur concomitant with ga- mete fusion, ionic fluxes, and the cortical granule discharge. This work attempts to separate the electrical effects of sperm-egg interactions from those of the cortical reactions. Two ap- proaches were taken to discern the electrical events associated with insemination, distinct from cortical granule discharge: 1) fertilization of eggs treated with 3% urethane, 10 mM procaine, or 10 mM nicotine, to prevent the cortical reaction and 2) refertilization of fertil- ized eggs (denuded with 1 mM aminotriazole containing 1 mg/ml soybean trypsin inhibitor). Cortical granule discharge in the absence of sperm incorporation was investigated by artifi- cial activation with 5 pM A23187 or by fertilization in the presence of 10 pM cytochalasin D, which prevents incorporation. These results are consistent with a model in which the sperm-egg interaction triggers both a rapid (50-400 msec), but minor (= 10 mV), electrical transient that leads to an action potential and then both the Na+-dependent fast block to polyspermy and the late block re- sulting from the secretion of the cortical granules. Key words: fertilization, sea urchin, bioelectric response, secretion, motility INTRODUCTION At fertilization the sea urchin egg undergoes a complex series of electrical changes in membrane potential and resistance. -
Fraudulent Human Embryonic Stem Cell Research in South Korea: Lessons Learned
Accountability in Research, 13:101–109, 2006 Copyright © Taylor & Francis Group, LLC ISSN: 0898-9621 print DOI: 10.1080/08989620600634193 GACR0898-96211545-5815Accountability in Research:Research Policies and Quality Assurance, Vol. 13, No. 01, February 2006: pp. 0–0 Commentary FRAUDULENT HUMAN EMBRYONIC STEM CELL RESEARCH IN SOUTH KOREA: LESSONS LEARNED Commentary:D. B. Resnik et Korean al. Stem Cell Fraud DAVID B. RESNIK , JD, PHD National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA ADIL E. SHAMOO, PHD Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA SHELDON KRIMSKY, PHD Department of Urban & Environmental Policy & Planning, Tufts University, Boston, Massachusetts, USA Now that most of the smoke has cleared from the South Korean human embryonic stem cell fraud, it is time to reflect on some lessons that one can learn from this scandal. First, a brief review of events will help to set the stage. In June 2005, Seoul University investigator Woo Suk Hwang and 24 co-authors published what appeared to be a ground- breaking paper in Science in which they claimed to have estab- lished eleven embryonic stem cell lines containing nuclear DNA from somatic cells of research subjects (Hwang et al., 2005). In March 2004, Hwang’s research team had published another apparently important paper in which they claimed to have estab- lished one cell line with the nuclear DNA from a research subject (Hwang et al 2004). If these two papers had been valid, they would have represented a significant step forward in human embryonic stem cell research, since they would have demon- strated the feasibility of a technique known as therapeutic Editor’s note: Although this piece is not related to the topic of this issue, we felt it was important to comment on the recent events in South Korea. -
A New Universe to Discover: a Guide to Careers in Astronomy
A New Universe to Discover A Guide to Careers in Astronomy Published by The American Astronomical Society What are Astronomy and Astrophysics? Ever since Galileo first turned his new-fangled one-inch “spyglass” on the moon in 1609, the popular image of the astronomer has been someone who peers through a telescope at the night sky. But astronomers virtually never put eye to lens these days. The main source of astronomical data is still photons (particles of light) from space, but the tools used to gather and analyze them are now so sophisticated that it’s no longer necessary (or even possible, in most cases) for a human eye to look through them. But for all the high-tech gadgetry, the 21st-Century astronomer is still trying to answer the same fundamental questions that puzzled Galileo: How does the universe work, and where did it come from? Webster’s dictionary defines “astronomy” as “the science that deals with the material universe beyond the earth’s atmosphere.” This definition is broad enough to include great theoretical physicists like Isaac Newton, Albert Einstein, and Stephen Hawking as well as astronomers like Copernicus, Johanes Kepler, Fred Hoyle, Edwin Hubble, Carl Sagan, Vera Rubin, and Margaret Burbidge. In fact, the words “astronomy” and “astrophysics” are pretty much interchangeable these days. Whatever you call them, astronomers seek the answers to many fascinating and fundamental questions. Among them: *Is there life beyond earth? *How did the sun and the planets form? *How old are the stars? *What exactly are dark matter and dark energy? *How did the Universe begin, and how will it end? Astronomy is a physical (non-biological) science, like physics and chemistry. -
Strategies for Improving Animal Models for Regenerative Medicine
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Cell Stem Cell Forum Strategies for Improving Animal Models for Regenerative Medicine Jose Cibelli,1 Marina E. Emborg,2 Darwin J. Prockop,3 Michael Roberts,4 Gerald Schatten,5 Mahendra Rao,6 John Harding,7 and Oleg Mirochnitchenko7,* 1Michigan State University, Cellular Reprogramming Laboratory, Department of Animal Science, B270 Anthony Hall, East Lansing, MI 48824, USA 2University of Wisconsin-Madison, Department of Medical Physics and Wisconsin National Primate Research Center, 1223 Capitol Court, Madison, WI 53715, USA 3Texas A&M Health Science Center, College of Medicine Institute for Regenerative Medicine at Scott and White, Department of Medicine, 5701 Airport Road, Module C, Temple, TX 76502, USA 4University of Missouri, 240b C.S. Bond Life Sciences Center, 1201 East Rollins Street, Columbia, MO 65211-7310, USA 5University of Pittsburgh, Department of Cell Biology and Physiology, S362 Biomedical Science Towers, 3500 Terrace Street, Pittsburgh, PA 15261, USA 6Center for Regenerative Medicine, National Institutes of Health, 50 South Drive, Suite 1140, Bethesda, MD 20892, USA 7Division of Comparative Medicine/ORIP/DPCPSI/OD, National Institutes of Health, 6701 Democracy Boulevard, Suite 943/950, Bethesda, MD 20892, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.stem.2013.01.004 The field of regenerative medicine is moving toward translation to clinical practice. However, there are still knowledge gaps and safety concerns regarding stem cell-based therapies. Improving large animal models and methods for transplantation, engraftment, and imaging should help address these issues, facilitating eventual use of stem cells in the clinic. -
1 Are We Ready for Genome Editing in Human Embryos for CLINICAL
Are we ready for genome editing in human embryos FOR CLINICAL PURPOSES? Joyce C Harper and Gerald Schatten Joyce C Harper, Professor of Reproductive Science, Institute for Women’s Health, University College Londona Gerald Schatten, Professor of Ob-Gyn-Repro Sci, Cell Biology and Bioengineering, University of Pittsburgh School of Medicineb aInstitute for Women’s Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK, 0044 7880 795791, [email protected] (Corresponding author) b204 Craft Avenue Pittsburgh, PA 15213 412/641-2403 [phone] 412/641-6342 [fax] [email protected] [email protected] Abstract Perhaps the two most significant pioneering biomedical discoveries with immediate clinical implications during the past forty years have been the advent of assisted reproductive technologies (ART) and the genetics revolution. ART, including in vitro fertilization (IVF), intracytoplasmic sperm injection and preimplantation genetic testing, has resulted in the birth of more than 8 million children, and the pioneer of IVF, Professor Bob Edwards, was awarded the 2010 Nobel Prize. The genetics revolution has resulted in our genomes being sequenced and many of the molecular mechanisms understood, and technologies for genomic editing have been developed. With the combination of nearly routine ART protocols for healthy conceptions together with almost error- free, inexpensive and simple methods for genetic modification, the question “Are we ready for genome editing in human embryos FOR CLINICAL PURPOSES?” was debated at the 5th Congress on Controversies in Preconception, Preimplantation and Prenatal Genetic Diagnosis, in collaboration with the Ovarian Club Meeting, in November 2018 in Paris. The co-authors each presented scientific, medical and bioethical backgrounds, and the debate was chaired by Professor Alan Handyside. -
IVF) Versus Intracytoplasmic Sperm Injection (ICSI) Calvin R
www.nature.com/scientificreports OPEN Fertilization and Cleavage Axes Difer In Primates Conceived By Conventional (IVF) Versus Intracytoplasmic Sperm Injection (ICSI) Calvin R. Simerly1, Diana Takahashi2, Ethan Jacoby3, Carlos Castro1, Carrie Hartnett1, Laura Hewitson4, Christopher Navara5 & Gerald Schatten 1* With nearly ten million babies conceived globally, using assisted reproductive technologies, fundamental questions remain; e.g., How do the sperm and egg DNA unite? Does ICSI have consequences that IVF does not? Here, pronuclear and mitotic events in nonhuman primate zygotes leading to the establishment of polarity are investigated by multidimensional time-lapse video microscopy and immunocytochemistry. Multiplane videos after ICSI show atypical sperm head displacement beneath the oocyte cortex and eccentric para-tangential pronuclear alignment compared to IVF zygotes. Neither fertilization procedure generates incorporation cones. At frst interphase, apposed pronuclei align obliquely to the animal-vegetal axis after ICSI, with asymmetric furrows assembling from the male pronucleus. Furrows form within 30° of the animal pole, but typically, not through the ICSI injection site. Membrane fow drives polar bodies and the ICSI site into the furrow. Mitotic spindle imaging suggests para-tangential pronuclear orientation, which initiates random spindle axes and minimal spindle:cortex interactions. Parthenogenetic pronuclei drift centripetally and assemble astral spindles lacking cortical interactions, leading to random furrows through the animal pole. Conversely, androgenotes display cortex-only pronuclear interactions mimicking ICSI. First cleavage axis determination in primates involves dynamic cortex-microtubule interactions among male pronuclei, centrosomal microtubules, and the animal pole, but not the ICSI site. With perhaps ten million ART babies now, fundamental problems regarding the mechanisms of fertilization and the onset of early development remain. -
Women in Astronomy: an Introductory Resource Guide
Women in Astronomy: An Introductory Resource Guide by Andrew Fraknoi (Fromm Institute, University of San Francisco) [April 2019] © copyright 2019 by Andrew Fraknoi. All rights reserved. For permission to use, or to suggest additional materials, please contact the author at e-mail: fraknoi {at} fhda {dot} edu This guide to non-technical English-language materials is not meant to be a comprehensive or scholarly introduction to the complex topic of the role of women in astronomy. It is simply a resource for educators and students who wish to begin exploring the challenges and triumphs of women of the past and present. It’s also an opportunity to get to know the lives and work of some of the key women who have overcome prejudice and exclusion to make significant contributions to our field. We only include a representative selection of living women astronomers about whom non-technical material at the level of beginning astronomy students is easily available. Lack of inclusion in this introductory list is not meant to suggest any less importance. We also don’t include Wikipedia articles, although those are sometimes a good place for students to begin. Suggestions for additional non-technical listings are most welcome. Vera Rubin Annie Cannon & Henrietta Leavitt Maria Mitchell Cecilia Payne ______________________________________________________________________________ Table of Contents: 1. Written Resources on the History of Women in Astronomy 2. Written Resources on Issues Women Face 3. Web Resources on the History of Women in Astronomy 4. Web Resources on Issues Women Face 5. Material on Some Specific Women Astronomers of the Past: Annie Cannon Margaret Huggins Nancy Roman Agnes Clerke Henrietta Leavitt Vera Rubin Williamina Fleming Antonia Maury Charlotte Moore Sitterly Caroline Herschel Maria Mitchell Mary Somerville Dorrit Hoffleit Cecilia Payne-Gaposchkin Beatrice Tinsley Helen Sawyer Hogg Dorothea Klumpke Roberts 6. -
The Value of the Keck Observatory to NASA and Its Scientific Community
The Value of the Keck Observatory to NASA and Its Scientific Community Rachel Akeson1 and Tom Greene2, NASA representatives to the Keck Science Steering Committee Endorsed by: Geoffrey Bryden Geoff Marcy Bruce Carney Aki Roberge Heidi Hammel Travis Barman Mark Marley Antonin Bouchez Rosemary Killen Jason Wright Nick Siegler Chris Gelino Bruce Macintosh Rafael Millan-Gabet Ian McLean John Johnson Laurence Trafton Jim Lyke Joan Najita Dawn Gelino Peter Plavchan Josh Eisner Joshua Winn Chad Bender Kevin Covey Mark Swain William Herbst Franck Marchis Kathy Rages Andrew Howard Al Conrad Steve Vogt William Grundy Richard Barry 1 NASA Exoplanet Science Institute, California Institute of Technology, Pasadean, CA [email protected], phone: 626-398-9227 2 NASA Ames Research Center, Moffett Field, CA The Value of the Keck Observatory to NASA and Its Scientific Community 1 Executive Summary Over the last 13 years, NASA and its astrophysics and planetary science communities have greatly benefited from access to the Keck Observatory, the world’s largest optical/infrared telescopes. Studies using NASA Keck time have ranged from observations of the closest solar system bodies to discoveries of many of the known extrasolar planets. Observations at Keck have supported spaceflight missions to Mercury and the technology development of the James Webb Space Telescope. Access to Keck for the NASA community is an extremely cost effective method for NASA to meet its strategic goals and we encourage NASA to continue its long-term partnership with the Keck Observatory. 2 The Keck Observatory The two 10-meter telescopes of the Keck Observatory are the world’s largest optical and infrared telescopes and are located on Mauna Kea, one of the world’s premier sites for astronomy. -
Embryogenesis and Blastocyst Development After Somatic Cell Nuclear Transfer in Nonhuman Primates: Overcoming Defects Caused by Meiotic Spindle Extraction$
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Developmental Biology 276 (2004) 237–252 www.elsevier.com/locate/ydbio Embryogenesis and blastocyst development after somatic cell nuclear transfer in nonhuman primates: overcoming defects caused by meiotic spindle extraction$ Calvin Simerlya,b,1, Christopher Navaraa,b,1, Sang Hwan Hyuna,b,1, Byeong Chun Leec, Sung Keun Kangc, Saverio Capuanoa,b, Gabriella Gosmana,b, Tanja Dominko2, Kowit-Yu Chonga,b, Duane Comptond, Woo Suk Hwangc, Gerald Schattena,b,* aDepartment of Obstetrics-Gynecology-Reproductive Sciences, Pittsburgh Development Center, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15213, USA bDepartment of Cell Biology-Physiology, Pittsburgh Development Center, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15213, USA cDepartment of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea dDepartment of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA Received for publication 13 August 2004, revised 28 September 2004, accepted 12 October 2004 Abstract Therapeutic cloning or nuclear transfer for stem cells (NTSC) seeks to overcome immune rejection through the development of embryonic stem cells (ES cells) derived from cloned blastocysts. The successful derivation of a human embryonic stem cell (hESC) line from blastocysts generated by somatic cell nuclear transfer (SCNT) provides proof-of-principle for btherapeutic cloning,Q though immune matching of the differentiated NT-hES remains to be established. Here, in nonhuman primates (NHPs; rhesus and cynomologus macaques), the strategies used with human SCNT improve NHP-SCNT development significantly. -
Status of the Implementation of the Federal Stem Cell Research Policy
S. HRG. 107–874 STATUS OF THE IMPLEMENTATION OF THE FEDERAL STEM CELL RESEARCH POLICY HEARING BEFORE A SUBCOMMITTEE OF THE COMMITTEE ON APPROPRIATIONS UNITED STATES SENATE ONE HUNDRED SEVENTH CONGRESS SECOND SESSION SPECIAL HEARING SEPTEMBER 25, 2002—WASHINGTON, DC Printed for the use of the Committee on Appropriations ( Available via the World Wide Web: http://www.access.gpo.gov/congress/senate U.S. GOVERNMENT PRINTING OFFICE 85–408 PDF WASHINGTON : 2003 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2250 Mail: Stop SSOP, Washington, DC 20402–0001 COMMITTEE ON APPROPRIATIONS ROBERT C. BYRD, West Virginia, Chairman DANIEL K. INOUYE, Hawaii TED STEVENS, Alaska ERNEST F. HOLLINGS, South Carolina THAD COCHRAN, Mississippi PATRICK J. LEAHY, Vermont ARLEN SPECTER, Pennsylvania TOM HARKIN, Iowa PETE V. DOMENICI, New Mexico BARBARA A. MIKULSKI, Maryland CHRISTOPHER S. BOND, Missouri HARRY REID, Nevada MITCH MCCONNELL, Kentucky HERB KOHL, Wisconsin CONRAD BURNS, Montana PATTY MURRAY, Washington RICHARD C. SHELBY, Alabama BYRON L. DORGAN, North Dakota JUDD GREGG, New Hampshire DIANNE FEINSTEIN, California ROBERT F. BENNETT, Utah RICHARD J. DURBIN, Illinois BEN NIGHTHORSE CAMPBELL, Colorado TIM JOHNSON, South Dakota LARRY CRAIG, Idaho MARY L. LANDRIEU, Louisiana KAY BAILEY HUTCHISON, Texas JACK REED, Rhode Island MIKE DEWINE, Ohio TERRENCE E. SAUVAIN, Staff Director CHARLES KIEFFER, Deputy Staff Director STEVEN J. CORTESE, Minority Staff Director LISA SUTHERLAND, Minority Deputy Staff Director SUBCOMMITTEE ON DEPARTMENTS OF LABOR, HEALTH AND HUMAN SERVICES, AND EDUCATION, AND RELATED AGENCIES TOM HARKIN, Iowa, Chairman ERNEST F.