Age-Specific Life Tables of Aonidiella Aurantii (Maskell) (Hemiptera: Diaspididae) and Its Parasitoid Aphytis Melinus Debach (

Total Page:16

File Type:pdf, Size:1020Kb

Age-Specific Life Tables of Aonidiella Aurantii (Maskell) (Hemiptera: Diaspididae) and Its Parasitoid Aphytis Melinus Debach ( Turkish Journal of Agriculture and Forestry Turk J Agric For (2020) 44: 180-188 http://journals.tubitak.gov.tr/agriculture/ © TÜBİTAK Research Article doi:10.3906/tar-1905-36 Age-specific life tables of Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae) and its parasitoid Aphytis melinus DeBach (Hymenoptera: Aphelinidae) 1,2 3, 1 1 1 Khalid MOHAMMED , İsmail KARACA *, Manjree AGARWAL , James NEWMAN , YongLin REN 1 School of Veterinary and Life Sciences, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia 2 Department of Plant Protection, College of Agriculture and Forestry, University of Mosul, Mosul, Nineveh, Iraq 3 Department of Plant Protection, Faculty of Agricultural, Isparta University of Applied Sciences, İsparta, Turkey Received: 11.05.2019 Accepted/Published Online: 30.10.2019 Final Version: 01.04.2020 Abstract: Biological parameters of the California red scale (Aonidiella aurantii [Maskell] [Hemiptera: Diaspididae]) were determined under laboratory conditions at 3 different temperatures (20, 23, and 27 °C) on butternut squash (Cucurbita moschata Duchesne ex Lamarck) (Cucurbitaceae), while the biological parameters of its parasitoid Aphytis melinus DeBach (Hymenoptera: Aphelinidae) were conducted at 27 °C. The survival ofA. aurantii ranged between 80.0% and 88.3%. The highest mortality was recorded during the adult stage, with mortalities ranging between 12% and 20%. On C. moschata, the total development time was 93.1 ± 9.73, 81.8 ± 7.13, and 65.7 ± 6.37 days, while the adult longevity was 54.65 ± 0.71, 47.05 ± 0.97, and 39.35 ± 1.07 days at 20, 23, and 27 °C, respectively. The oviposition period of A. aurantii was 44.3 ± 0.51, 40.65 ± 0.41, and 34.5 ± 0.45 days at 20, 23, and 27 °C, respectively. Average fecundity was 73.25 ± 1.827, 109.7 ± 3.569, and 129.35 ± 4.564 individuals at 20, 23, and 27 °C, respectively. For A. melinus, adult longevity was 19.24 ± 0.73 days, and average fecundity 62.7 ± 2.81 eggs at 27 °C. The preoviposition period was 0.82 ± 0.05 days, oviposition period was 15.7 ± 0.52 days, and postoviposition period was 2.21 ± 0.09 days. The intrinsic rate of increase (rm) of A. melinus (0.188 ♀/♀/day) was significantly greater than that of A. aurantii (0.080) at 27 °C. These laboratory results demonstrated that A. melinus is an effective parasitoid for decreasing A. aurantii populations. Fecundity of A. aurantii and A. melinus was determined with the Enkegaard equation. The best-fit parameters of fecundity were calculated as a = 0.410, b = 0.099; a = 0.624, b = 0.098; a = 0.661, b = 0.091; a = 1.190, b = 0.179 for A. aurantii at 20, 23, and 27 °C, and A. melinus at 27 °C, respectively. Key words: Aphytis melinus, biological control, California red scale, life table, population ecology 1. Introduction crops such as fruit trees and ornamental plants all over the Australia has an important role in citrus (Citrus spp., world, and cause heavy damage to the plants. Individual Rutaceae) production in the world, and this production has species infest leaves, fruits, branches, main stems, trunks, increased (FAO, 2017). Many pest species such as Ceratitis and roots. They are distributed throughout the world except capitata (Wiedemann) (Diptera: Tephritidae), Aonidiella in the cold extremes of the Arctic and Antarctic regions aurantii, Sasseita oleae (Gomez-Menor Ortega) (Hemiptera: (Miller, 2005). California red scale Aonidiella aurantii is one Coccidae), Toxoptera citricada (Kirkaldy) (Hemiptera: of the most important pests infesting citrus trees in different Aphididae), Phyllocnistis citrella Stainton (Lepidoptera: parts of the world (Garcerá et al., 2008; Badary and Abd- Gracillaridae), et al. were observed in WA (Western Rabou, 2010; Hill, 2008; Karaca and Uygun, 1992; Uygun Australia) citrus orchards (Sonia, 2006). Growers have et al., 1995). California red scale feeds on various parts of followed various methods to avoid damage caused by these host plants, such as twigs, leaves, and fruit (Beardsley and pests. Biological control is one of these methods (FAO, 2017; Gonzalez, 1975), harming them by inserting its mouthparts Pekas, 2011a; Uygun and Satar, 2008). There are 32 species deep into plant tissue and sucking sap from parenchyma in the genus Aonidiella Berlese & Leonardi, which is a genus cells and injecting toxic saliva into the plants during the of scale insects in the family of Diaspididae (Hemiptera), feeding process. Severe infestations of the scale cause leaf the armoured scale insects (Ben-Dov, 2006). California red drop, defoliation, and dieback of twigs and branches. Young scale Aonidiella aurantii (Maskell) occurs on numerous trees may die out in the absence of effective control (Hely et host plants throughout the world. They attack different al., 1982; Smith et al., 1997). * Correspondence: [email protected] 180 This work is licensed under a Creative Commons Attribution 4.0 International License. MOHAMMED et al. / Turk J Agric For The control of A. aurantii has encountered many insectary (Adelaide, Australia). Aphytis melinus adults difficulties, which has raised interest in alternative control used in the experiments were reared following the method methods (Vacas et al., 2010). Aonidiella aurantii has developed by Opp and Luck (1986) for rearing A. melinus numerous predators and parasitoids (Hely et al., 1982; in the climate chamber (26 °C, 40%–60% RH, L16 : D8 Forster et. al., 1995). Among the parasitoids that feed photoperiod). This method is commonly used to produce on A. aurantii, Aphytis melinus DeBach (Hymenoptera: these insects in commercial insectaries. The production Aphelinidae) is known to be relatively important (Erler method is based on rearing the pest A. aurantii on and Tunç, 2001). It was introduced into Australia in 1961 butternut squash. When the host reached the third instar, from the University of California, Riverside (Furness et al., which is the preferred age for the parasitoid to laid eggs 1983; Malipatil et al., 2000). It is now widely distributed in and maximise progeny production, the infested squash the citrus orchards of Victoria, South Australia, Western with third instar scales was exposed to releases of 2-day- Australia, and the inland New South Wales citrus districts, old adult parasitoids (male and female) in a ventilated cage and in Alice Springs in the Northern Territory (Smith (30 cm W × 30 cm H × cm D) with honey distributed on et al., 1997). Aphytis melinus is commercially reared for plastic trays. Adult parasitoids emerged 11–14 days later. release in citrus orchards to control A. aurantii (Grafton- Parasitoids thus produced participated in the experiments Cardwell et al., 2006). Regarding parasitoids, females are 1 day after emergence. more important to produce, because they are responsible 2.2. Survival, longevity, and fecundity of Aonidiella aurantii for parasitising the host (via oviposition and host-feeding) Uniform groups of A. aurantii were obtained by leaving and, thus, keep the pest’s population under an economic butternut squash undisturbed for 24 h in the A. aurantii threshold. A plethora of experiments have been conducted colony maintained in the insect culture room at Murdoch to determine the environmental conditions which best University. These squashes were then removed from the contribute to increases in the production of females (Ode colony, and each 10 randomly selected settled crawlers and Hardy, 2008). (those with the stylet inserted into the fruit and already For the success of crop protection programs, it is forming the waxy cover) were enclosed by a micro plastic essential to know some biological information about the cage (small plastic thimble, 3 cm diameter with fine pest. This information can be obtained by constructing holes on its top) affixed with the help of modelling clay a life table providing how different mortality factors act to the surface of the butternut squash. The squash fruit in sequence on the successive developmental stages. The and nymphs were marked to track them throughout the intrinsic rate of increase (rm) is of value as the mean of experiment. describing the potential growth of population under given An age-specific life table of A. aurantii was constructed climatic and food conditions; it is an important parameter at 3 different constant temperatures (20, 23, and 27 °C). in inductive strategic and management models of pest The infested fruits were kept in a ventilated polystyrene populations (Abou Hatab, 1999; Bayoumy et al., 2009). Few box (30 cm × 30 cm × 30 cm). Each treatment of 2 squash studies have been conducted on the biological parameters fruits (6 replicates) were kept on a plastic tray in identical of the California red scale and its parasitoid A. melinus climate cabinets (HWS Ningbu Southeast Equipment (Heimpel, 1997; Badary and Abd-Rabou, 2010). Therefore, Co. Ltd., China) in which the experiment was conducted the aims of the present work were to simultaneously under controlled climatic conditions (20, 23, and 27 °C, 65 study the life history and behaviour of A. aurantii and its ± 5% RH, and L16 : D8 photoperiod). The development parasitoid A. melinus at 3 constant temperatures (20, 23, of the individuals of A. aurantii was observed daily using and 27 °C) under laboratory conditions. a stereomicroscope (×20) until the death of the adult females, and the following observations were recorded. 2. Materials and methods 2.3. Survival, longevity, and fecundity of Aphytis melinus 2.1. Rearing of Aonidiella aurantii and Aphytis melinus Newly emerged adult parasitoids were shifted to an Agilent Specimens of A. aurantii were initially collected in the field glass vial (1.5 mL). The vial was then plugged with a cotton in 2016 from a population of A. aurantii in a citrus orchard bung. A drop of honey was supplied for each vial. After located in WA (32.30°S, 116.01°E; 69 m AMSL), Australia.
Recommended publications
  • New Records of Some Pests of the Coconut Inflorescence and Developing Fruit and Their Natural Enemies in Sri Lanka
    COCOS, (1987) 5, 39—42 Printed in Sri Lanka New Records of some Pests of the Coconut Inflorescence and Developing Fruit and Their Natural Enemies in Sri Lanka L. C. P. FERNANDO and P. KANAGARATNAM Coconut Research Institute, Lunuwila, Sri Lanka. ABSTRACT A survey was carried out at Bandirippuwa Estate, Kirimetiyana Estate and at Isolated Seed Garden, Rajakadaluwa for the pests of coconut inflorescence and developing fruits. The mite, Dolichotetranychus sp. (Tenuipalpidae) which lives beneath the perianth and feeds on the epicarp, causes considerable damage to the developing fruit. Bi-monthly observations on the intensity of infestation of nuts among different forms of coconut indicated a significant difference among forms in their susceptibility to mite damage. Pseudococcus cocotis (Maskell) (Pseudococcidae), Pseudococcus citriculus Green (Pseudococcidae) and Planococcus lilacinus (Cockereli) (Pseudococcidae), when feeding in large numbers on the peduncle, cause button nut shedding and drying up of the inflo­ rescence. The parasitoids and predators of these mealybugs recorded for the first time in Sri Lanka are Promuscidea unfasciativentris Girault (Aphelinidae) Platygaster sp. (Platygastridae), Anagyrus sp. nr. pseudococci (Girault) (Encyrtidae) Coccodiplosis sp. (Cecidomyiidae), Cryptogonus bryanti Kapur (Coccinellidae) and Pseudoscymnus sp. (Coccinellidae). Several species of scale insects namely, Coccus hesperidum (Linnaeus) (Coccidae) Aulacaspis sp. (Diaspididae), Pseudaulacaspis cockerelli (Cooley) (Diaspididae), Aoni- diella orientalis (Newstead) (Diaspididae), and Pinnaspis strachani (Cooley) (Diaspididae) are recorded as minor pests of the developing fruits of coconut. Coccophagus silvestrii Compere (Aphelinidae), Scymnus sp. (Coccinellidae), Pseudoscymnus sp. (Coccinellidae) Telsimia ceylonica (Weise) (Coccinellidae), Cryptogonus bryanti Kapur (Coccinellidae) and Cybocephalus sp. (Nitidulidae) are recorded as their parasitoids and predators. These natural enemies are probably responsible for the control of these pests in the field.
    [Show full text]
  • Morphology and Adaptation of Immature Stages of Hemipteran Insects
    © 2019 JETIR January 2019, Volume 6, Issue 1 www.jetir.org (ISSN-2349-5162) Morphology and Adaptation of Immature Stages of Hemipteran Insects Devina Seram and Yendrembam K Devi Assistant Professor, School of Agriculture, Lovely Professional University, Phagwara, Punjab Introduction Insect Adaptations An adaptation is an environmental change so an insect can better fit in and have a better chance of living. Insects are modified in many ways according to their environment. Insects can have adapted legs, mouthparts, body shapes, etc. which makes them easier to survive in the environment that they live in and these adaptations also help them get away from predators and other natural enemies. Here are some adaptations in the immature stages of important families of Hemiptera. Hemiptera are hemimetabolous exopterygotes with only egg and nymphal immature stages and are divided into two sub-orders, homoptera and heteroptera. The immature stages of homopteran families include Delphacidae, Fulgoridae, Cercopidae, Cicadidae, Membracidae, Cicadellidae, Psyllidae, Aleyrodidae, Aphididae, Phylloxeridae, Coccidae, Pseudococcidae, Diaspididae and heteropteran families Notonectidae, Corixidae, Belastomatidae, Nepidae, Hydrometridae, Gerridae, Veliidae, Cimicidae, Reduviidae, Pentatomidae, Lygaeidae, Coreidae, Tingitidae, Miridae will be discussed. Homopteran families 1. Delphacidae – Eg. plant hoppers They comprise the largest family of plant hoppers and are characterized by the presence of large, flattened spurs at the apex of their hind tibiae. Eggs are deposited inside plant tissues, elliptical in shape, colourless to whitish. Nymphs are similar in appearance to adults except for size, colour, under- developed wing pads and genitalia. 2. Fulgoridae – Eg. lantern bugs They can be recognized with their antennae inserted on the sides & beneath the eyes.
    [Show full text]
  • Insetos Do Brasil
    COSTA LIMA INSETOS DO BRASIL 2.º TOMO HEMÍPTEROS ESCOLA NACIONAL DE AGRONOMIA SÉRIE DIDÁTICA N.º 3 - 1940 INSETOS DO BRASIL 2.º TOMO HEMÍPTEROS A. DA COSTA LIMA Professor Catedrático de Entomologia Agrícola da Escola Nacional de Agronomia Ex-Chefe de Laboratório do Instituto Oswaldo Cruz INSETOS DO BRASIL 2.º TOMO CAPÍTULO XXII HEMÍPTEROS ESCOLA NACIONAL DE AGRONOMIA SÉRIE DIDÁTICA N.º 3 - 1940 CONTEUDO CAPÍTULO XXII PÁGINA Ordem HEMÍPTERA ................................................................................................................................................ 3 Superfamília SCUTELLEROIDEA ............................................................................................................ 42 Superfamília COREOIDEA ............................................................................................................................... 79 Super família LYGAEOIDEA ................................................................................................................................. 97 Superfamília THAUMASTOTHERIOIDEA ............................................................................................... 124 Superfamília ARADOIDEA ................................................................................................................................... 125 Superfamília TINGITOIDEA .................................................................................................................................... 132 Superfamília REDUVIOIDEA ...........................................................................................................................
    [Show full text]
  • Data Sheets on Quarantine Pests
    Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Aonidiella citrina IDENTITY Name: Aonidiella citrina (Coquillett) Synonyms: Aspidiotus citrinus Coquillett Chrysomphalus aurantii citrinus (Coquillett) Taxonomic position: Insecta: Hemiptera: Homoptera: Diaspididae Common names: Yellow scale (English) Cochenille jaune (French) Escama amarilla de los cítricos (Spanish) Notes on taxonomy and nomenclature: The original description by Coquillett is inadequate and simply refers to 'the yellow scale' on orange (Nel, 1933). A. citrina is morphologically very similar to the Californian red scale, Aonidiella aurantii (Maskell), and was considered to be a variety until Nel (1933) raised it to specific level based on a comparative study of their ecology, biology and morphology. Bayer computer code: AONDCI EU Annex designation: II/A1 HOSTS A. citrina is polyphagous attacking plant species belonging to more than 50 genera in 32 families. The main hosts of economic importance are Citrus spp., especially oranges (C. sinensis), but the insect is also recorded incidentally on a wide range of ornamentals and some fruit crops including Acacia, bananas (Musa paradisiaca), Camellia including tea (C. sinensis), Clematis, Cucurbitaceae, Eucalyptus, Euonymus, guavas (Psidium guajava), Hedera helix, Jasminum, Ficus, Ligustrum, Magnolia, mangoes (Mangifera indica), Myrica, olives (Olea europea), peaches (Prunus persica), poplars (Populus), Rosa, Schefflera actinophylla, Strelitzia reginae, Viburnum and Yucca. The main potential hosts in the EPPO region are Citrus spp. growing in the southern part of the region, around the Mediterranean. GEOGRAPHICAL DISTRIBUTION A. citrina originated in Asia and has spread to various tropical and subtropical regions throughout the world. The precise distribution of A.
    [Show full text]
  • San Jose Scale and Its Natural Enemies: Investigating Natural Or Augmented Controls
    California Tree Fruit Agreement Research Report 2002 SAN JOSE SCALE AND ITS NATURAL ENEMIES: INVESTIGATING NATURAL OR AUGMENTED CONTROLS Project Leaders: Kent M. Daane Cooperators: Glenn Y. Yokota, Walter J. Bentley, Karen Sime, and Brian Hogg ABSTRACT San Jose scale (SJS) and its natural enemies were studied from 1999 through 2002. Natural populations were followed in stone fruit and almond blocks, with orchard management practices divided into “conventional” and “sustainable” practices, based on dormant and in-season insecticide use. Results generally show higher fruit damage at harvest-time in sustainably managed fields, although, these results are not consistent among orchards and exceptions to this pattern were found. In conventionally managed blocks, later harvest dates resulted in higher SJS fruit damage, although this did not hold true in sustainably managed orchards. Results from SJS pheromone-baited traps show a predominant seasonal pattern of SJS densities progressively increasing and parasitoid (Encarsia perniciosi) densities progressively decreasing. These data are discussed with respect to SJS fruit damage and parasitoid establishment and efficiency. SJS and parasitoid sampling methodology and distribution were investigated. Comparing SJS pheromone trap data to numbers of crawlers on double-sided sticky tape and SJS infested fruit at harvest show a significant correlation between pheromone trap counts of SJS males and numbers of SJS crawlers. Results suggest that there is a small window in the season (April-May) when sticky tape provides important information on crawler abundance and damage. Results show a negative correlation between the early season abundance of Encarsia (as measured by pheromone traps) and SJS damage at harvest. These results suggest that early-season ratios of parasitoid : SJS can not be used to predict fruit damage or biological control (these data require more analysis).
    [Show full text]
  • Oystershell Scale Lepidosaphes Ulmi Order Hemiptera, Family Diaspididae; Armored Scales Native Pest
    Pests of Trees and Shrubs Oystershell scale Lepidosaphes ulmi Order Hemiptera, Family Diaspididae; armored scales Native pest Host plants: Ash, beech, birch, boxwood, cotoneaster, elm, fruit trees, lilac, maple, poplar, willow, and approxi- mately 20 other species Description: Adult female covers are approximately 3 mm long, convex, oystershell-shaped and gray to brown in color. Male covers, if present, are usually smaller. Eggs and crawlers are white. Gray form of oystershell scale on maple. (183) Life history: Crawlers hatch in late May to early June Photo: John Davidson and seek suitable feeding sites on branches and trunks. Nymphs mature in mid summer to mate. Eggs are depos- ited in late summer to early fall beneath the mother’s cover. There is one generation a year; two generations in the South. Overwintering: Eggs under the cover of the dead mother scale. Damage symptoms: Damage from scale feeding causes cracked bark and chlorotic, stunted foliage. Heavy infestations can kill branches or trees or weaken them to the point of being susceptible to secondary pests such as borers. Monitoring: In Wooster, Ohio, first generation eggs hatch when black locust and multiflora rose bloom in late May. Second generation eggs hatch in mid to late July. In Midland, Michigan, first generation eggs hatch when Vanhoutte spirea and black cherry bloom in mid May, Brown form of oystershell scale with female cover removed to and there is no second generation. Look for the character- show overwintering eggs. (185) istic oystershell-shaped brown to purplish-gray scale Photo: John Davidson covers on bark. Look for wilting foliage and imminent dieback.
    [Show full text]
  • Oystershell Scale
    Quick IPM Facts W289-R Oystershell Scale Lepidosaphes ulmi Host Plants Oystershell scale attacks 85 plant genera from 33 plant families including: • Birch Mother scale • Boxwood • Crabapple • Dogwood • Elm Dead crawlers • Hawthorn • Lilac Live crawlers • Linden Description • Magnolia • Maple Oystershell scale gets its name from the oystershell appearance • Ornamental cherry of its waxy coating. This armored scale insect has two forms: the • brown/apple form and the lilac form. It is an economically important pest Pear in nurseries, landscapes and orchards. The oystershell scale is mainly a • Redbud northern species and is commonly found in most states except those • Smoketree bordering Mexico and the Gulf of Mexico. • Viburnum • Willow Life Cycle Oystershell scale overwinter as white eggs protected beneath the waxy covering of the adult female scale. The crawlers hatch in the spring and then move a small distance from their mother before settling on the bark to feed (live and dead crawlers and adult scale are circled above). Crawlers form their own protective wax coating about a week later. Because of this narrow window, coordinating spray applications with crawler emergence is very important for achieving good control. Depending on the host and geographic location, oystershell scale may produce one to two generations per year. Monitoring Adult scale Look on the bark for the oystershell-shaped scale covers. Check beneath the scale covers for healthy, white eggs in the spring to estimate the effectiveness of previous control strategies. In late May, begin scouting for crawlers from the first-generation egg hatch, then again in late July when eggs from the second generation hatch.
    [Show full text]
  • BACKYARD BUDDIES Information Sheet Chilocorus Circumdatus for Scale
    BACKYARD BUDDIES Information Sheet Luke - adult & larvae Chilocorus circumdatus for Scale Red Chilocorus (Luke) is a helmet-shaped ladybird beetle, approximately 5 mm in length. Adults are a rich orange colour with a fine black margin around the base of their wing covers. Adult females lay cylindrical eggs, 1 mm in length, beneath the cover of scale insects. At 25˚C the eggs take about one week to hatch. Chilocorus larvae are voracious feeders and have pronounced spines that cover their body. After ten days or so larvae then migrate to a secluded position and pupate. The adult beetles emerge between seven and nine days later, to mate and lay their eggs. Egg laying starts approximately ten days after emergence. At an optimum temperature of 28˚C, their life cycle takes approximately one month. Chilocorus beetles live for between four and eight weeks. Target pests Armoured scale insects, including: Red scale Aonidiella aurantii Oriental scale Aonidiella orientalis Oleander scale Aspidiotus nerii White louse scale (citrus snow scale) Unaspis citri Scale-eating ladybirds prey on a range of armoured scale insects. Red Chilocorus beetles feed readily on white louse scale (citrus snow scale), oleander scale, oriental and red scale. Scale insects feed by sucking sap from plants. A heavy infestation may cause discolouration, leaf drop and shoot distortion, which can lead to twig dieback and even plant death. Chemical control of scale is difficult because they have hard, waxy protective covers and remain stationary for most of their live. The resistance of scale insects to pesticides is a problem in many regions.
    [Show full text]
  • HOST PLANTS of SOME STERNORRHYNCHA (Phytophthires) in NETHERLANDS NEW GUINEA (Homoptera)
    Pacific Insects 4 (1) : 119-120 January 31, 1962 HOST PLANTS OF SOME STERNORRHYNCHA (Phytophthires) IN NETHERLANDS NEW GUINEA (Homoptera) By R. T. Simon Thomas DEPARTMENT OF ECONOMIC AFFAIRS, HOLLANDIA In this paper, I list 15 hostplants of some Phytophthires of Netherlands New Guinea. Families, genera within the families and species within the genera are mentioned in alpha­ betical order. The genera and the specific names of the insects are printed in bold-face type, those of the plants are in italics. The locality, where the insects were found, is printed after the host plants. Then follows the date of collection and finally the name of the collector1 in parentheses. I want to acknowledge my great appreciation for the identification of the Aphididae to Mr. D. Hille Ris Lambers and of the Coccoidea to Dr. A. Reyne. Aphididae Cerataphis variabilis Hrl. Cocos nucifera Linn.: Koor, near Sorong, 26-VII-1961 (S. Th.). Longiunguis sacchari Zehntner. Andropogon sorghum Brot.: Kota Nica2 13-V-1959 (S. Th.). Toxoptera aurantii Fonsc. Citrus sp.: Kota Nica, 16-VI-1961 (S. Th.). Theobroma cacao Linn.: Kota Nica, 19-VIII-1959 (S. Th.), Amban-South, near Manokwari, 1-XII- 1960 (J. Schreurs). Toxoptera citricida Kirkaldy. Citrus sp.: Kota Nica, 16-VI-1961 (S. Th.). Schizaphis cyperi v. d. Goot, subsp, hollandiae Hille Ris Lambers (in litt.). Polytrias amaura O. K.: Hollandia, 22-V-1958 (van Leeuwen). COCCOIDEA Aleurodidae Aleurocanthus sp. Citrus sp.: Kota Nica, 16-VI-1961 (S. Th.). Asterolecaniidae Asterolecanium pustulans (Cockerell). Leucaena glauca Bth.: Kota Nica, 8-X-1960 (S. Th.). 1. My name, as collector, is mentioned thus: "S.
    [Show full text]
  • Biological Responses and Control of California Red Scale Aonidiella Aurantii (Maskell) (Hemiptera: Diaspididae)
    Biological responses and control of California red scale Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae) by Khalid Omairy Mohammed Submitted to Murdoch University in fulfilment of the requirements for the degree of Doctor of Philosophy College of Science, Health, Engineering and Education Murdoch University Perth, Western Australia March 2020 Declaration The work described in this thesis was undertaken while I was an enrolled student for the degree of Doctor of Philosophy at Murdoch University, Western Australia. I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution. To the best of my knowledge, all work performed by others, published or unpublished, has been duly acknowledged. Khalid O. Mohammed Date: March 10, 2020 I Acknowledgements بِ ْس ِمِِاللَّ ِـه َِّالر ْح َم ٰـ ِن َِّالر ِح ِيمِ ُ َويَ ْسأَلُ َونَك َِع ِن ُِّالروحِِِۖقُ ِل ُِّالر ُوح ِِم ْنِأَ ْم ِر َِر ِب َيِو َماِأ ِوتيتُ ْم ِِم َن ِْال ِع ْل ِمِإِ ََّّل َِق ِل ايًلِ﴿٨٥﴾ The research for this thesis was undertaken in the School of Veterinary and Life Science, Murdoch University. I would like to express my heartfelt gratitude to my supervisors Professor Yonglin Ren and Dr Manjree Agarwal “Postharvest Biosecurity and Food Safety Laboratory Murdoch” for their support with enthusiasm, constructive editing, and patience throughout the years of this wonderful project. I deeply appreciate their encouragement, assistance and for being so willing to take me on as a student. I would like to express my sincere gratitude to all those who helped me in completing this thesis.
    [Show full text]
  • Life Stages of California Red Scale and Its Parasitoids
    Life Stages of California Red Scale and Its Parasitoids Lisa D. Forster Robert F Luck and Elizabeth E. Grafton-Cardwe ll ALI F OR N IA RED SCALE, Aonidiella auranlii (Mask.) (fig. 1), is a major pest or citrus that C growers have traditionally controlled with insecticides. Populations or California reel scale devel­ oped resistance to organophosphate and carbamate insecticides in South Africa, Australia and lsrael in the 1970s and in California in the 1990s, and these broad Figure 1. Scale infes ted fruit spectrum insecticides are losing their effectiveness. An alternate appro ach Lo chemical control or California red suppress armored scale densities below economic injury scale is augmentative biological control as part or an levels. In years when biological control is less effective, integrated pest managemem-(IPM) approach. Growers can release the insectary-reared parasitoid wasp Aphy tis selective narrow _range petroleum oil sprays can be used to help reduce scal_e numbers.This leaflet gives some me/inus DeBach from February through November to background that will help growers evaluate the effective­ augment the native Aphy tis populations that attack and reduce armored scale populations. This approach can ness or natural enemies of California reel scale through knowledge or the scale life cycle, the stages of scale that are attacked by parasites and predators, and the signs of parasitism. California Red Scale­ General Phenology FEEDING AND DORMANT LIFE STAGES California red scale start out as mobile crawlers* (fig. 2). Crawlers remain mobile only long enough to find a suitable location on a !ear, fruit, or branch to seule on and begin reeding.
    [Show full text]
  • Ants, Pests and Natural Enemies in Mediterranean Citrus
    ANTS, PESTS AND NATURAL ENEMIES IN MEDITERRANEAN CITRUS Ecological interactions and practical implications for biological control DOCTORAL THESIS Presented by: Altea Calabuig Gomar Directed by: Ferran Garcia Marí and Apostolos Pekas València, May 2015 UNIVERSITAT POLITÈCNICA DE VALÈNCIA Escola Tècnica Superior d’Enginyeria Agronòmica i del Medi Natural UNIVERSITAT POLITÈCNICA DE VALÈNCIA Escola Tècnica Superior d’Enginyeria Agronòmica i del Medi Natural Departament d’Ecosistemes Agroforestals Ants, pests and natural enemies in Mediterranean citrus: ecological interactions and practical implications for biological control DOCTORAL THESIS Presented by: Altea Calabuig Gomar Directed by: Ferran Garcia Marí Apostolos Pekas València, 2015 A Dídac “Mucha gente pequeña en lugares pequeños, haciendo cosas pequeñas pueden cambiar el mundo” Eduardo Galeano Aknowledgments Després de 4 anys de feina em vénen al cap un munt de persones sense les quals, directament o indirectament, no hagués pogut acabar aquesta tesi i a les quals m’agradaria mostrar el meu agraïment. En primer lloc, vull agrair a Ferran Garcia Marí que em donara l’oportunitat de realitzar aquesta tesi amb ell. He gaudit del seu gran coneixement i de la seua ampla experiència en el camp de l’entomologia. Ha estat tot un privilegi. Gràcies per tota l’atenció i ensenyament que m’has donat. També li dec un agraïment especial a Apostolos Pekas per haver codirigit aquesta tesi i per haver-me permès d’aprofundir en la investigació que ell va encetar. Per haver confiat en mi des d’un principi sense gairebé conèixer-me. Tolis ha estat tot un exemple de rigor i professionalitat. Les discussions científiques i no científiques amb ell sempre han estat ben enriquidores.
    [Show full text]