On the Method of Moments for Estimation in Latent Variable Models Anastasia Podosinnikova

Total Page:16

File Type:pdf, Size:1020Kb

On the Method of Moments for Estimation in Latent Variable Models Anastasia Podosinnikova On the Method of Moments for Estimation in Latent Variable Models Anastasia Podosinnikova To cite this version: Anastasia Podosinnikova. On the Method of Moments for Estimation in Latent Variable Models. Machine Learning [cs.LG]. Ecole Normale Superieure de Paris - ENS Paris, 2016. English. tel- 01489260v1 HAL Id: tel-01489260 https://tel.archives-ouvertes.fr/tel-01489260v1 Submitted on 14 Mar 2017 (v1), last revised 5 Apr 2018 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT de l’Université de recherche Paris Sciences Lettres – PSL Research University préparée à l’École normale supérieure Sur la méthode des mo- École doctorale n°386 ments pour d’estimation Spécialité: Informatique des modèles à variable latentes Soutenue le 01.12.2016 On the method of moments for es- timation in latent variable models par Anastasia Podosinnikova Composition du Jury : Mme Animashree ANANDKUMAR University of California Irvine Rapporteur M Samuel KASKI Aalto University Rapporteur M Francis BACH École normale supérieure Directeur de thèse M Simon LACOSTE-JULIEN École normale supérieure Directeur de thèse M Alexandre D’ASPREMONT École normale supérieure Membre du Jury M Pierre COMON CNRS Membre du Jury M Rémi GRIBONVAL INRIA Membre du Jury Abstract Latent variable models are powerful probabilistic tools for extracting useful latent structure from otherwise unstructured data and have proved useful in numerous ap- plications such as natural language processing and computer vision. A special case of latent variable models are latent linear models, where observations originate from a linear transformation of latent variables. Despite their modeling simplicity, latent linear models are useful and widely used instruments for data analysis in practice and include, among others, such notable examples as probabilistic principal component analysis and correlation component analysis, independent component analysis, as well as probabilistic semantic indexing and latent Dirichlet allocation. That being said, it is well known that estimation and inference are often intractable for many latent linear models and one has to make use of approximate methods often with no recovery guarantees. One approach to address this problem, which has been popular lately, are methods based on the method of moments. These methods often have guarantees of exact re- covery in the idealized setting of an infinite data sample and well specified models, but they also often come with theoretical guarantees in cases where this is not exactly satisfied. This is opposed to more standard and widely used methods based on varia- tional inference and sampling and, therefore, makes moment matching based methods especially interesting. In this thesis, we focus on moment matching based estimation methods for different latent linear models. In particular, by making more apparent connections between independent component analysis (ICA) and latent Dirichlet allocation (LDA), we introduce a topic model which we call discrete ICA. Through the close connection to ICA, which is a well understood latent linear model from the signal processing literature, we develop new estimation algorithms for the discrete ICA model with some theoretical guarantees and, in particular, with the improved sample complexity compared to the previous methods. Importantly, the discrete ICA model is semipara- metric and the proposed estimation methods do not require any assumption on the prior distributions of the latent variables in the model. Moreover, through the close connection between ICA and canonical correlation analy- sis (CCA), we propose several novel semiparametric multi-view models, closely related to both ICA and CCA, which are adapted to work with count or continuous data or with the mixture of the two. We prove the identifiability of these models, which isa necessary property to ensure their interpretability. It appears that some linear models which are widely used for interpretability are unidentifiable and more meaningful ana- logues are of interest. We also develop moment matching based estimation algorithms for the introduced semiparametric multi-view models, which again does not require any assumptions on the prior distributions of the latent variables. For all mentioned models, we perform extensive experimental comparison of the pro- posed algorithms on both synthetic and real datasets and demonstrate their promising practical performance. Acknowledgements First and foremost, I would like to deeply thank my advisors Francis Bach and Si- mon Lacoste-Julien for their tremendous support, enthusiasm, motivation, and all the knowledge that they shared with me over the past three years. Francis and Simon shaped the way I think in a fundamental way, taught me to see important details and to address challenging problems in a clear and systematic way. Simon, Francis, thank you so much for this unique opportunity to work under your guidance and for the motivating environment. I am grateful to Animashree Anandkumar and Samuel Kaski for accepting to review my thesis and to Alexandre d’Aspremont, Pierre Comon, and Rémi Gribonval for accepting to be the jury members of my thesis. I would like to express my sincere gratitude to all the jury committee members for reading the preliminary manuscript of my thesis, for their corrections, valuable feedback and challenging questions which improved this thesis. I would like to thank Matthias Hein, with whom I worked prior to starting my PhD, for introducing me to the exciting field of machine learning and all the members of his group for their support. I would especially like to thank Martin Slawski for encouraging me to apply for a PhD position at the SIERRA project-team. I am also thankful to Guy Bresler, Philippe Rigollet, David Sontag, Caroline Uhler from MIT for accepting me for a postdoc position. I am very grateful to all the members (current and former) of the SIERRA and WILLOW project-teams, who are both great researches and friends, for all the support they provided over these three years. This work was supported in part by the Microsoft Research—Inria Joint Centre and I would like to thank Laurent Massoulie for his continuous help. Last but not least, I would like to thank my parents, my brother, all my relatives and friends for their tremendous support over these years. iii Introduction The goal of the estimation task in latent linear models is the estimation of latent pa- rameters of a model, in particular, the estimation of a linear transformation matrix. One approach to this task is based on the method of moments, which has been more and more popular recently due to its theoretical guarantees. This thesis brings several contributions in the field of moment matching-based estimation for latent linear mo- dels in machine learning. The main part of this thesis consists of four chapters, where the first two chapters are introductory and bring together several concepts which are further used in the last two chapters for constructing new models and developing new estimation algorithms. Below we summarize main contributions of each chapter. Chapter1: We start with an overview of some important latent linear models for different types of data : continuous vs. count data and single-view vs. multi-view, which we present in a unified framework with an emphasis on their identifiability properties. Chapter2: Despite the simplicity of these models, the estimation and inference are of- ten intractable. In this thesis, we focus on moment matching-based estimation methods, which often have some theoretical guarantees as opposed to widely used methods based on variational inference or sampling. In Chapter2, we (a) review the main ideas of tensors and their decompositions, (b) connect higher- order statistics of latent linear models with the so-called canonical polyadic (CP) decomposition of tensors, and (c) briefly review the estimation and infe- rence methods with the emphasis on the moment matching-based techniques with theoretical guarantees. Chapter3: As the first contribution of this thesis, we present anovel semiparametric to- pic model—called discrete ICA—which is closely related to independent com- ponent analysis and such linear topic models as probabilistic latent semantic indexing and latent Dirichlet allocation, but has a higher expressive power since it does not make any assumptions on the distribution of latent variables. We prove that the higher-order cumulant-based tensors of discrete ICA, in the po- pulation case, are tensors in the form of the symmetric CP decomposition. This result is closely related to the previous result for higher-order moment-based tensors of LDA. However, the derivations in the discrete ICA case are somew- hat more straightforward due to the properties of cumulants and the estimators have the improved sample complexity. The estimation methods are then based on the approximation of this symmetric CP decomposition from sample esti- mates using different (orthogonal) diagonalization algorithms, which include the eigendecomposition-based
Recommended publications
  • Laws of Total Expectation and Total Variance
    Laws of Total Expectation and Total Variance Definition of conditional density. Assume and arbitrary random variable X with density fX . Take an event A with P (A) > 0. Then the conditional density fXjA is defined as follows: 8 < f(x) 2 P (A) x A fXjA(x) = : 0 x2 = A Note that the support of fXjA is supported only in A. Definition of conditional expectation conditioned on an event. Z Z 1 E(h(X)jA) = h(x) fXjA(x) dx = h(x) fX (x) dx A P (A) A Example. For the random variable X with density function 8 < 1 3 64 x 0 < x < 4 f(x) = : 0 otherwise calculate E(X2 j X ≥ 1). Solution. Step 1. Z h i 4 1 1 1 x=4 255 P (X ≥ 1) = x3 dx = x4 = 1 64 256 4 x=1 256 Step 2. Z Z ( ) 1 256 4 1 E(X2 j X ≥ 1) = x2 f(x) dx = x2 x3 dx P (X ≥ 1) fx≥1g 255 1 64 Z ( ) ( )( ) h i 256 4 1 256 1 1 x=4 8192 = x5 dx = x6 = 255 1 64 255 64 6 x=1 765 Definition of conditional variance conditioned on an event. Var(XjA) = E(X2jA) − E(XjA)2 1 Example. For the previous example , calculate the conditional variance Var(XjX ≥ 1) Solution. We already calculated E(X2 j X ≥ 1). We only need to calculate E(X j X ≥ 1). Z Z Z ( ) 1 256 4 1 E(X j X ≥ 1) = x f(x) dx = x x3 dx P (X ≥ 1) fx≥1g 255 1 64 Z ( ) ( )( ) h i 256 4 1 256 1 1 x=4 4096 = x4 dx = x5 = 255 1 64 255 64 5 x=1 1275 Finally: ( ) 8192 4096 2 630784 Var(XjX ≥ 1) = E(X2jX ≥ 1) − E(XjX ≥ 1)2 = − = 765 1275 1625625 Definition of conditional expectation conditioned on a random variable.
    [Show full text]
  • Probability Cheatsheet V2.0 Thinking Conditionally Law of Total Probability (LOTP)
    Probability Cheatsheet v2.0 Thinking Conditionally Law of Total Probability (LOTP) Let B1;B2;B3; :::Bn be a partition of the sample space (i.e., they are Compiled by William Chen (http://wzchen.com) and Joe Blitzstein, Independence disjoint and their union is the entire sample space). with contributions from Sebastian Chiu, Yuan Jiang, Yuqi Hou, and Independent Events A and B are independent if knowing whether P (A) = P (AjB )P (B ) + P (AjB )P (B ) + ··· + P (AjB )P (B ) Jessy Hwang. Material based on Joe Blitzstein's (@stat110) lectures 1 1 2 2 n n A occurred gives no information about whether B occurred. More (http://stat110.net) and Blitzstein/Hwang's Introduction to P (A) = P (A \ B1) + P (A \ B2) + ··· + P (A \ Bn) formally, A and B (which have nonzero probability) are independent if Probability textbook (http://bit.ly/introprobability). Licensed and only if one of the following equivalent statements holds: For LOTP with extra conditioning, just add in another event C! under CC BY-NC-SA 4.0. Please share comments, suggestions, and errors at http://github.com/wzchen/probability_cheatsheet. P (A \ B) = P (A)P (B) P (AjC) = P (AjB1;C)P (B1jC) + ··· + P (AjBn;C)P (BnjC) P (AjB) = P (A) P (AjC) = P (A \ B1jC) + P (A \ B2jC) + ··· + P (A \ BnjC) P (BjA) = P (B) Last Updated September 4, 2015 Special case of LOTP with B and Bc as partition: Conditional Independence A and B are conditionally independent P (A) = P (AjB)P (B) + P (AjBc)P (Bc) given C if P (A \ BjC) = P (AjC)P (BjC).
    [Show full text]
  • Probability Cheatsheet
    Probability Cheatsheet v1.1.1 Simpson's Paradox Expected Value, Linearity, and Symmetry P (A j B; C) < P (A j Bc;C) and P (A j B; Cc) < P (A j Bc;Cc) Expected Value (aka mean, expectation, or average) can be thought Compiled by William Chen (http://wzchen.com) with contributions yet still, P (A j B) > P (A j Bc) of as the \weighted average" of the possible outcomes of our random from Sebastian Chiu, Yuan Jiang, Yuqi Hou, and Jessy Hwang. variable. Mathematically, if x1; x2; x3;::: are all of the possible values Material based off of Joe Blitzstein's (@stat110) lectures Bayes' Rule and Law of Total Probability that X can take, the expected value of X can be calculated as follows: P (http://stat110.net) and Blitzstein/Hwang's Intro to Probability E(X) = xiP (X = xi) textbook (http://bit.ly/introprobability). Licensed under CC i Law of Total Probability with partitioning set B1; B2; B3; :::Bn and BY-NC-SA 4.0. Please share comments, suggestions, and errors at with extra conditioning (just add C!) Note that for any X and Y , a and b scaling coefficients and c is our http://github.com/wzchen/probability_cheatsheet. constant, the following property of Linearity of Expectation holds: P (A) = P (AjB1)P (B1) + P (AjB2)P (B2) + :::P (AjBn)P (Bn) Last Updated March 20, 2015 P (A) = P (A \ B1) + P (A \ B2) + :::P (A \ Bn) E(aX + bY + c) = aE(X) + bE(Y ) + c P (AjC) = P (AjB1; C)P (B1jC) + :::P (AjBn; C)P (BnjC) If two Random Variables have the same distribution, even when they are dependent by the property of Symmetry their expected values P (AjC) = P (A \ B jC) + P (A \ B jC) + :::P (A \ B jC) Counting 1 2 n are equal.
    [Show full text]
  • Conditional Expectation and Prediction Conditional Frequency Functions and Pdfs Have Properties of Ordinary Frequency and Density Functions
    Conditional expectation and prediction Conditional frequency functions and pdfs have properties of ordinary frequency and density functions. Hence, associated with a conditional distribution is a conditional mean. Y and X are discrete random variables, the conditional frequency function of Y given x is pY|X(y|x). Conditional expectation of Y given X=x is Continuous case: Conditional expectation of a function: Consider a Poisson process on [0, 1] with mean λ, and let N be the # of points in [0, 1]. For p < 1, let X be the number of points in [0, p]. Find the conditional distribution and conditional mean of X given N = n. Make a guess! Consider a Poisson process on [0, 1] with mean λ, and let N be the # of points in [0, 1]. For p < 1, let X be the number of points in [0, p]. Find the conditional distribution and conditional mean of X given N = n. We first find the joint distribution: P(X = x, N = n), which is the probability of x events in [0, p] and n−x events in [p, 1]. From the assumption of a Poisson process, the counts in the two intervals are independent Poisson random variables with parameters pλ and (1−p)λ (why?), so N has Poisson marginal distribution, so the conditional frequency function of X is Binomial distribution, Conditional expectation is np. Conditional expectation of Y given X=x is a function of X, and hence also a random variable, E(Y|X). In the last example, E(X|N=n)=np, and E(X|N)=Np is a function of N, a random variable that generally has an expectation Taken w.r.t.
    [Show full text]
  • Chapter 3: Expectation and Variance
    44 Chapter 3: Expectation and Variance In the previous chapter we looked at probability, with three major themes: 1. Conditional probability: P(A | B). 2. First-step analysis for calculating eventual probabilities in a stochastic process. 3. Calculating probabilities for continuous and discrete random variables. In this chapter, we look at the same themes for expectation and variance. The expectation of a random variable is the long-term average of the ran- dom variable. Imagine observing many thousands of independent random values from the random variable of interest. Take the average of these random values. The expectation is the value of this average as the sample size tends to infinity. We will repeat the three themes of the previous chapter, but in a different order. 1. Calculating expectations for continuous and discrete random variables. 2. Conditional expectation: the expectation of a random variable X, condi- tional on the value taken by another random variable Y . If the value of Y affects the value of X (i.e. X and Y are dependent), the conditional expectation of X given the value of Y will be different from the overall expectation of X. 3. First-step analysis for calculating the expected amount of time needed to reach a particular state in a process (e.g. the expected number of shots before we win a game of tennis). We will also study similar themes for variance. 45 3.1 Expectation The mean, expected value, or expectation of a random variable X is writ- ten as E(X) or µX . If we observe N random values of X, then the mean of the N values will be approximately equal to E(X) for large N.
    [Show full text]
  • Lecture Notes 4 Expectation • Definition and Properties
    Lecture Notes 4 Expectation • Definition and Properties • Covariance and Correlation • Linear MSE Estimation • Sum of RVs • Conditional Expectation • Iterated Expectation • Nonlinear MSE Estimation • Sum of Random Number of RVs Corresponding pages from B&T: 81-92, 94-98, 104-115, 160-163, 171-174, 179, 225-233, 236-247. EE 178/278A: Expectation Page 4–1 Definition • We already introduced the notion of expectation (mean) of a r.v. • We generalize this definition and discuss it in more depth • Let X ∈X be a discrete r.v. with pmf pX(x) and g(x) be a function of x. The expectation or expected value of g(X) is defined as E(g(X)) = g(x)pX(x) x∈X • For a continuous r.v. X ∼ fX(x), the expected value of g(X) is defined as ∞ E(g(X)) = g(x)fX(x) dx −∞ • Examples: ◦ g(X)= c, a constant, then E(g(X)) = c ◦ g(X)= X, E(X)= x xpX(x) is the mean of X k k ◦ g(X)= X , E(X ) is the kth moment of X ◦ g(X)=(X − E(X))2, E (X − E(X))2 is the variance of X EE 178/278A: Expectation Page 4–2 • Expectation is linear, i.e., for any constants a and b E[ag1(X)+ bg2(X)] = a E(g1(X)) + b E(g2(X)) Examples: ◦ E(aX + b)= a E(X)+ b ◦ Var(aX + b)= a2Var(X) Proof: From the definition Var(aX + b) = E ((aX + b) − E(aX + b))2 = E (aX + b − a E(X) − b)2 = E a2(X − E(X))2 = a2E (X − E(X))2 = a2Var( X) EE 178/278A: Expectation Page 4–3 Fundamental Theorem of Expectation • Theorem: Let X ∼ pX(x) and Y = g(X) ∼ pY (y), then E(Y )= ypY (y)= g(x)pX(x)=E(g(X)) y∈Y x∈X • The same formula holds for fY (y) using integrals instead of sums • Conclusion: E(Y ) can be found using either fX(x) or fY (y).
    [Show full text]
  • Probabilities, Random Variables and Distributions A
    Probabilities, Random Variables and Distributions A Contents A.1 EventsandProbabilities................................ 318 A.1.1 Conditional Probabilities and Independence . ............. 318 A.1.2 Bayes’Theorem............................... 319 A.2 Random Variables . ................................. 319 A.2.1 Discrete Random Variables ......................... 319 A.2.2 Continuous Random Variables ....................... 320 A.2.3 TheChangeofVariablesFormula...................... 321 A.2.4 MultivariateNormalDistributions..................... 323 A.3 Expectation,VarianceandCovariance........................ 324 A.3.1 Expectation................................. 324 A.3.2 Variance................................... 325 A.3.3 Moments................................... 325 A.3.4 Conditional Expectation and Variance ................... 325 A.3.5 Covariance.................................. 326 A.3.6 Correlation.................................. 327 A.3.7 Jensen’sInequality............................. 328 A.3.8 Kullback–LeiblerDiscrepancyandInformationInequality......... 329 A.4 Convergence of Random Variables . 329 A.4.1 Modes of Convergence . 329 A.4.2 Continuous Mapping and Slutsky’s Theorem . 330 A.4.3 LawofLargeNumbers........................... 330 A.4.4 CentralLimitTheorem........................... 331 A.4.5 DeltaMethod................................ 331 A.5 ProbabilityDistributions............................... 332 A.5.1 UnivariateDiscreteDistributions...................... 333 A.5.2 Univariate Continuous Distributions . 335
    [Show full text]
  • (Introduction to Probability at an Advanced Level) - All Lecture Notes
    Fall 2018 Statistics 201A (Introduction to Probability at an advanced level) - All Lecture Notes Aditya Guntuboyina August 15, 2020 Contents 0.1 Sample spaces, Events, Probability.................................5 0.2 Conditional Probability and Independence.............................6 0.3 Random Variables..........................................7 1 Random Variables, Expectation and Variance8 1.1 Expectations of Random Variables.................................9 1.2 Variance................................................ 10 2 Independence of Random Variables 11 3 Common Distributions 11 3.1 Ber(p) Distribution......................................... 11 3.2 Bin(n; p) Distribution........................................ 11 3.3 Poisson Distribution......................................... 12 4 Covariance, Correlation and Regression 14 5 Correlation and Regression 16 6 Back to Common Distributions 16 6.1 Geometric Distribution........................................ 16 6.2 Negative Binomial Distribution................................... 17 7 Continuous Distributions 17 7.1 Normal or Gaussian Distribution.................................. 17 1 7.2 Uniform Distribution......................................... 18 7.3 The Exponential Density...................................... 18 7.4 The Gamma Density......................................... 18 8 Variable Transformations 19 9 Distribution Functions and the Quantile Transform 20 10 Joint Densities 22 11 Joint Densities under Transformations 23 11.1 Detour to Convolutions......................................
    [Show full text]
  • Lecture 15: Expected Running Time
    Lecture 15: Expected running time Plan/outline Last class, we saw algorithms that used randomization in order to achieve interesting speed-ups. Today, we consider algorithms in which the running time is a random variable, and study the notion of the "expected" running time. Las Vegas algorithms Most of the algorithms we saw in the last class had the following behavior: they run in time , where is the input size and is some parameter, and they have a failure probability (i.e., probability of returning an incorrect answer ) of . These algorithms are often called Monte Carlo algorithms (although we refrain from doing this, as it invokes di!erent meanings in applied domains). Another kind of algorithms, known as Las Vegas algorithms, have the following behavior: their output is always correct, but the running time is a random variable (and in principle, the run time can be unbounded). Sometimes, we can convert a Monte Carlo algorithm into a Las Vegas one. For instance, consider the toy problem we considered last time (where an array is promised to have indices for which and the goal was to "nd one such index). Now consider the following modi"cation of the algorithm: procedure find_Vegas(A): pick random index i in [0, ..., N-1] while (A[i] != 0): pick another random index i in [0, ..., N-1] end while return i Whenever the procedure terminates, we get an that satis"es . But in principle, the algorithm can go on for ever. Another example of a Las Vegas algorithm is quick sort, which is a simple procedure for sorting an array.
    [Show full text]
  • Missed Expectations? 1 Linearity of Expectation
    Massachusetts Institute of Technology Course Notes, Week 14 6.042J/18.062J, Fall ’05: Mathematics for Computer Science December 2 Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld revised December 8, 2005, 61 minutes Missed Expectations? In the previous notes, we saw that the average value of a random quantity is captured by the mathematical concept of the expectation of a random variable, and we calculated expectations for several kinds of random variables. Now we will see two things that make expectations so useful. First, they are often very easy to calculate due to the fact that they obey linearity. Second, once you know what the expectation is, you can also get some type of bound on the probability that you are far from the expectation —that is, you can show that really weird things are not that likely to happen. How good a bound you can get depends on what you know about your distribution, but don’t worry, even if you know next to nothing, you can still say something relatively interesting. 1 Linearity of Expectation 1.1 Expectation of a Sum Expected values obey a simple, very helpful rule called Linearity of Expectation. Its sim­ plest form says that the expected value of a sum of random variables is the sum of the expected values of the variables. Theorem 1.1. For any random variables R1and R2, E [R1+R2] =E [R1] +E [R2] . Proof. Let T::=R1+R2. The proof follows straightforwardly by rearranging terms from the definition of E [T ]. E [R1+R2] ::=E [T ] � ::= T (s) · Pr {s} s∈S � = (R1(s) +R2(s))· Pr {s} (Def.
    [Show full text]
  • Advanced Probability
    Advanced Probability Alan Sola Department of Pure Mathematics and Mathematical Statistics University of Cambridge [email protected] Michaelmas 2014 Contents 1 Conditional expectation 4 1.1 Basic objects: probability measures, σ-algebras, and random variables . .4 1.2 Conditional expectation . .8 1.3 Integration with respect to product measures and Fubini's theorem . 12 2 Martingales in discrete time 15 2.1 Basic definitions . 15 2.2 Stopping times and the optional stopping theorem . 16 2.3 The martingale convergence theorem . 20 2.4 Doob's inequalities . 22 2.5 Lp-convergence for martingales . 24 2.6 Some applications of martingale techniques . 26 3 Stochastic processes in continuous time 31 3.1 Basic definitions . 31 3.2 Canonical processes and sample paths . 36 3.3 Martingale regularization theorem . 38 3.4 Convergence and Doob's inequalities in continuous time . 40 3.5 Kolmogorov's continuity criterion . 42 3.6 The Poisson process . 44 1 4 Weak convergence 46 4.1 Basic definitions . 46 4.2 Characterizations of weak convergence . 49 4.3 Tightness . 51 4.4 Characteristic functions and L´evy'stheorem . 53 5 Brownian motion 56 5.1 Basic definitions . 56 5.2 Construction of Brownian motion . 59 5.3 Regularity and roughness of Brownian paths . 61 5.4 Blumenthal's 01-law and martingales for Brownian motion . 62 5.5 Strong Markov property and reflection principle . 67 5.6 Recurrence, transience, and connections with partial differential equations . 70 5.7 Donsker's invariance principle . 76 6 Poisson random measures and L´evyprocesses 81 6.1 Basic definitions .
    [Show full text]
  • Identifying Sources of Variation and the Flow of Information in Biochemical
    Identifying sources of variation and the flow PNAS PLUS of information in biochemical networks Clive G. Bowshera,1 and Peter S. Swainb,1 aSchool of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom; and bSynthSys—Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3JD, United Kingdom Edited by Ken A. Dill, Stony Brook University, Stony Brook, NY, and approved March 6, 2012 (received for review November 24, 2011) To understand how cells control and exploit biochemical fluctua- Each Y could be, for example, the number of molecules of another tions, we must identify the sources of stochasticity, quantify their biochemical species, a property of the intra- or extracellular envir- effects, and distinguish informative variation from confounding onment, a characteristic of cell morphology (8), a reaction rate “noise.” We present an analysis that allows fluctuations of bio- that depends on the concentration of a cellular component such chemical networks to be decomposed into multiple components, as ATP, or even the number of times a particular type of reaction Y gives conditions for the design of experimental reporters to mea- has occurred. We emphasize that the variables are the stochastic sure all components, and provides a technique to predict the mag- variables whose effects are of interest: They are not all possible sources of stochasticity. nitude of these components from models. Further, we identify a Y Y Y particular component of variation that can be used to quantify the We wish to determine how fluctuations in 1, 2, and 3 af- fect fluctuations in Z, the output of the network.
    [Show full text]