Probabilities, Random Variables and Distributions A

Total Page:16

File Type:pdf, Size:1020Kb

Probabilities, Random Variables and Distributions A Probabilities, Random Variables and Distributions A Contents A.1 EventsandProbabilities................................ 318 A.1.1 Conditional Probabilities and Independence . ............. 318 A.1.2 Bayes’Theorem............................... 319 A.2 Random Variables . ................................. 319 A.2.1 Discrete Random Variables ......................... 319 A.2.2 Continuous Random Variables ....................... 320 A.2.3 TheChangeofVariablesFormula...................... 321 A.2.4 MultivariateNormalDistributions..................... 323 A.3 Expectation,VarianceandCovariance........................ 324 A.3.1 Expectation................................. 324 A.3.2 Variance................................... 325 A.3.3 Moments................................... 325 A.3.4 Conditional Expectation and Variance ................... 325 A.3.5 Covariance.................................. 326 A.3.6 Correlation.................................. 327 A.3.7 Jensen’sInequality............................. 328 A.3.8 Kullback–LeiblerDiscrepancyandInformationInequality......... 329 A.4 Convergence of Random Variables . 329 A.4.1 Modes of Convergence . 329 A.4.2 Continuous Mapping and Slutsky’s Theorem . 330 A.4.3 LawofLargeNumbers........................... 330 A.4.4 CentralLimitTheorem........................... 331 A.4.5 DeltaMethod................................ 331 A.5 ProbabilityDistributions............................... 332 A.5.1 UnivariateDiscreteDistributions...................... 333 A.5.2 Univariate Continuous Distributions . 335 A.5.3 MultivariateDistributions.......................... 339 This appendix gives important definitions and results from probability theory in a compact and sometimes slightly simplifying way. The reader is referred to Grimmett and Stirzaker (2001) for a comprehensive and more rigorous introduc- tion to probability theory. We start with the notion of probability and then move on to random variables and expectations. Important limit theorems are described in Appendix A.4. L. Held, D. Sabanés Bové, Applied Statistical Inference, 317 DOI 10.1007/978-3-642-37887-4, © Springer-Verlag Berlin Heidelberg 2014 318 A Probabilities, Random Variables and Distributions A.1 Events and Probabilities Any experiment involving randomness can be modeled with probabilities. Probabil- ities Pr(A) between zero and one are assigned to events A such as “It will be raining tomorrow” or “I will suffer a heart attack in the next year”. The certain event has probability one, while the impossible event has probability zero. Any event A has a disjoint, complementary event Ac such that Pr(A) + Pr(Ac) = 1. For example, if A is the event that “It will be raining tomorrow”, then Ac is the event that “It will not be raining tomorrow”. More generally, a series of events A1,A2,...,An is called a partition if the events are pairwise disjoint and if Pr(A1) +···+Pr(An) = 1. A.1.1 Conditional Probabilities and Independence Conditional probabilities Pr(A | B) are calculated to update the probability Pr(A) of a particular event under the additional information that a second event B has occurred. They can be calculated via Pr(A, B) Pr(A | B) = , (A.1) Pr(B) where Pr(A, B) is the probability that both A and B occur. This definition is only sensible if the occurrence of B is possible, i.e. if Pr(B) > 0. Rearranging this equa- tion gives Pr(A, B) = Pr(A | B)Pr(B),butPr(A, B) = Pr(B | A) Pr(A) must obvi- ously also hold. Equating and rearranging these two formulas gives Bayes’ theorem: Pr(B | A) Pr(A) Pr(A | B) = , (A.2) Pr(B) which will be discussed in more detail in Appendix A.1.2. Two events A and B are called independent if the occurrence of B does not change the probability of A occurring: Pr(A | B) = Pr(A). From (A.1) it follows that under independence Pr(A, B) = Pr(A) · Pr(B) and Pr(B | A) = Pr(B). Conditional probabilities behave like ordinary probabilities if the conditional event is fixed, so Pr(A | B)+ Pr(Ac | B) = 1, for example. It then follows that Pr(B) = Pr(B | A) Pr(A) + Pr B | Ac Pr Ac (A.3) A.2 Random Variables 319 and more generally Pr(B) = Pr(B | A1) Pr(A1) + Pr(B | A2) Pr(A2) +···+Pr(B | An) Pr(An) (A.4) if A1,A2,...,An is a partition. This is called the law of total probability. A.1.2 Bayes’ Theorem Let A and B denote two events A,B with 0 < Pr(A) < 1 and Pr(B) > 0. Then Pr(B | A) · Pr(A) Pr(A | B) = Pr(B) Pr(B | A) · Pr(A) = . (A.5) Pr(B | A) · Pr(A) + Pr(B | Ac) · Pr(Ac) For a general partition A1,A2,...,An with Pr(Ai)>0 for all i = 1,...,n,wehave that Pr(B | Aj ) · Pr(Aj ) Pr(A | B) = j n | · (A.6) i=1 Pr(B Ai) Pr(Ai) for each j = 1,...,n. For only n = 2 events Pr(A) and Pr(Ac) in the denominator of (A.6), i.e. Eq. (A.5), a formulation using odds ω = π/(1 − π) rather than probabilities π pro- vides a simpler version without the uncomfortable sum in the denominator of (A.5): Pr(A | B) Pr(A) Pr(B | A) = · . c | c | c Pr(A B) Pr(A ) Pr(BA ) Posterior Odds Prior Odds Likelihood Ratio Odds ω can be easily transformed back to probabilities π = ω/(1 + ω). A.2 Random Variables A.2.1 Discrete Random Variables We now consider possible real-valued realisations x of a discrete random vari- able X.Theprobability mass function of a discrete random variable X, f(x)= Pr(X = x), describes the distribution of X by assigning probabilities for the events {X = x}. The set of all realisations x with truly positive probabilities f(x)>0 is called the support of X. 320 A Probabilities, Random Variables and Distributions A multivariate discrete random variable X = (X1,...,Xp) has realisations x = p (x1,...,xp) in R and the probability mass function f(x) = Pr(X = x) = Pr(X1 = x1,...,Xp = xp). Of particular interest is often the joint bivariate distribution of two discrete random variables X and Y with probability mass function f(x,y).Theconditional proba- bility mass function f(x| y) is then defined via (A.1): f(x,y) f(x| y) = . (A.7) f(y) Bayes’ theorem (A.2) now translates to f(y| x)f(x) f(x| y) = . (A.8) f(y) Similarly, the law of total probability (A.4) now reads f(y)= f(y| x)f(x), (A.9) x where the sum is over the support of X. Combining (A.7) and (A.9) shows that the argument x can be removed from the joint density f(x,y) via summation to obtain the marginal probability mass function f(y)of Y : f(y)= f(x,y), x again the sum over the support of X. Two random variables X and Y are called independent if the events {X = x} and {Y = y} are independent for all x and y. Under independence, we can therefore factorise the joint distribution into the product of the marginal distributions: f(x,y) = f(x)· f(y). If X and Y are independent and g and h are arbitrary real-valued functions, then g(X) and h(Y ) are also independent. A.2.2 Continuous Random Variables A continuous random variable X is usually defined with its density function f(x), a non-negative real-valued function. The density function is the derivative of the x distribution function F(x) = Pr(X ≤ x), and therefore −∞ f(u)du= F(x) and +∞ −∞ f(x)dx= 1. In the following we assume that this derivative exists. We then A.2 Random Variables 321 have b Pr(a ≤ X ≤ b) = f(x)dx a for any real numbers a and b, which determines the distribution of X. Under suitable regularity conditions, the results derived in Appendix A.2.1 for probability mass functions also hold for density functions with replacement of sum- mation by integrals. Suppose that f(x,y) is the joint density function of two random variables X and Y ,i.e. y x Pr(X ≤ x,Y ≤ y) = f(u,v)dudv. −∞ −∞ The marginal density function f(y)of Y is f(y)= f(x,y)dx, and the law of total probability now reads f(y)= f(y| x)f(x)dx. Bayes’ theorem (A.8) still reads f(y| x)f(x) f(x| y) = . (A.10) f(y) If X and Y are independent continuous random variables with density functions f(x)and f(y), then f(x,y) = f(x)· f(y) for all x and y. A.2.3 The Change-of-Variables Formula When the transformation g(·) is one-to-one and differentiable, there is a formula for the probability density function fY (y) of Y = g(X) directly in terms of the proba- bility density function fX(x) of a continuous random variable X. This is known as the change-of-variables formula: −1 −1 dg (y) fY (y) = fX g (y) · dy −1 dg(x) = fX(x) · , (A.11) dx 322 A Probabilities, Random Variables and Distributions where x = g−1(y). As an example, we will derive the density function of a log- normal random variable Y = exp(X), where X ∼ N(μ, σ 2).Fromy = g(x) = exp(x) we find that the inverse transformation is x = g−1(y) = log(y), which has the derivative dg−1(y)/dy = 1/y. Using the formula (A.11), we get the density function −1 −1 dg (y) fY (y) = fX g (y) · dy 2 1 1 (log(y) − μ) 1 = √ exp − 2πσ2 2 σ 2 y 1 1 log(y) − μ = ϕ , σ y σ where ϕ(x) is the standard normal density function. Consider a multivariate continuous random variable X that takes values in Rp and a one-to-one and differentiable transformation g : Rp → Rp, which yields Y = g(X).
Recommended publications
  • Effective Program Reasoning Using Bayesian Inference
    EFFECTIVE PROGRAM REASONING USING BAYESIAN INFERENCE Sulekha Kulkarni A DISSERTATION in Computer and Information Science Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 2020 Supervisor of Dissertation Mayur Naik, Professor, Computer and Information Science Graduate Group Chairperson Mayur Naik, Professor, Computer and Information Science Dissertation Committee: Rajeev Alur, Zisman Family Professor of Computer and Information Science Val Tannen, Professor of Computer and Information Science Osbert Bastani, Research Assistant Professor of Computer and Information Science Suman Nath, Partner Research Manager, Microsoft Research, Redmond To my father, who set me on this path, to my mother, who leads by example, and to my husband, who is an infinite source of courage. ii Acknowledgments I want to thank my advisor Prof. Mayur Naik for giving me the invaluable opportunity to learn and experiment with different ideas at my own pace. He supported me through the ups and downs of research, and helped me make the Ph.D. a reality. I also want to thank Prof. Rajeev Alur, Prof. Val Tannen, Prof. Osbert Bastani, and Dr. Suman Nath for serving on my dissertation committee and for providing valuable feedback. I am deeply grateful to Prof. Alur and Prof. Tannen for their sound advice and support, and for going out of their way to help me through challenging times. I am also very grateful for Dr. Nath's able and inspiring mentorship during my internship at Microsoft Research, and during the collaboration that followed. Dr. Aditya Nori helped me start my Ph.D.
    [Show full text]
  • 1 Dependent and Independent Events 2 Complementary Events 3 Mutually Exclusive Events 4 Probability of Intersection of Events
    1 Dependent and Independent Events Let A and B be events. We say that A is independent of B if P (AjB) = P (A). That is, the marginal probability of A is the same as the conditional probability of A, given B. This means that the probability of A occurring is not affected by B occurring. It turns out that, in this case, B is independent of A as well. So, we just say that A and B are independent. We say that A depends on B if P (AjB) 6= P (A). That is, the marginal probability of A is not the same as the conditional probability of A, given B. This means that the probability of A occurring is affected by B occurring. It turns out that, in this case, B depends on A as well. So, we just say that A and B are dependent. Consider these events from the card draw: A = drawing a king, B = drawing a spade, C = drawing a face card. Events A and B are independent. If you know that you have drawn a spade, this does not change the likelihood that you have actually drawn a king. Formally, the marginal probability of drawing a king is P (A) = 4=52. The conditional probability that your card is a king, given that it a spade, is P (AjB) = 1=13, which is the same as 4=52. Events A and C are dependent. If you know that you have drawn a face card, it is much more likely that you have actually drawn a king than it would be ordinarily.
    [Show full text]
  • Laws of Total Expectation and Total Variance
    Laws of Total Expectation and Total Variance Definition of conditional density. Assume and arbitrary random variable X with density fX . Take an event A with P (A) > 0. Then the conditional density fXjA is defined as follows: 8 < f(x) 2 P (A) x A fXjA(x) = : 0 x2 = A Note that the support of fXjA is supported only in A. Definition of conditional expectation conditioned on an event. Z Z 1 E(h(X)jA) = h(x) fXjA(x) dx = h(x) fX (x) dx A P (A) A Example. For the random variable X with density function 8 < 1 3 64 x 0 < x < 4 f(x) = : 0 otherwise calculate E(X2 j X ≥ 1). Solution. Step 1. Z h i 4 1 1 1 x=4 255 P (X ≥ 1) = x3 dx = x4 = 1 64 256 4 x=1 256 Step 2. Z Z ( ) 1 256 4 1 E(X2 j X ≥ 1) = x2 f(x) dx = x2 x3 dx P (X ≥ 1) fx≥1g 255 1 64 Z ( ) ( )( ) h i 256 4 1 256 1 1 x=4 8192 = x5 dx = x6 = 255 1 64 255 64 6 x=1 765 Definition of conditional variance conditioned on an event. Var(XjA) = E(X2jA) − E(XjA)2 1 Example. For the previous example , calculate the conditional variance Var(XjX ≥ 1) Solution. We already calculated E(X2 j X ≥ 1). We only need to calculate E(X j X ≥ 1). Z Z Z ( ) 1 256 4 1 E(X j X ≥ 1) = x f(x) dx = x x3 dx P (X ≥ 1) fx≥1g 255 1 64 Z ( ) ( )( ) h i 256 4 1 256 1 1 x=4 4096 = x4 dx = x5 = 255 1 64 255 64 5 x=1 1275 Finally: ( ) 8192 4096 2 630784 Var(XjX ≥ 1) = E(X2jX ≥ 1) − E(XjX ≥ 1)2 = − = 765 1275 1625625 Definition of conditional expectation conditioned on a random variable.
    [Show full text]
  • The Open Handbook of Formal Epistemology
    THEOPENHANDBOOKOFFORMALEPISTEMOLOGY Richard Pettigrew &Jonathan Weisberg,Eds. THEOPENHANDBOOKOFFORMAL EPISTEMOLOGY Richard Pettigrew &Jonathan Weisberg,Eds. Published open access by PhilPapers, 2019 All entries copyright © their respective authors and licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. LISTOFCONTRIBUTORS R. A. Briggs Stanford University Michael Caie University of Toronto Kenny Easwaran Texas A&M University Konstantin Genin University of Toronto Franz Huber University of Toronto Jason Konek University of Bristol Hanti Lin University of California, Davis Anna Mahtani London School of Economics Johanna Thoma London School of Economics Michael G. Titelbaum University of Wisconsin, Madison Sylvia Wenmackers Katholieke Universiteit Leuven iii For our teachers Overall, and ultimately, mathematical methods are necessary for philosophical progress. — Hannes Leitgeb There is no mathematical substitute for philosophy. — Saul Kripke PREFACE In formal epistemology, we use mathematical methods to explore the questions of epistemology and rational choice. What can we know? What should we believe and how strongly? How should we act based on our beliefs and values? We begin by modelling phenomena like knowledge, belief, and desire using mathematical machinery, just as a biologist might model the fluc- tuations of a pair of competing populations, or a physicist might model the turbulence of a fluid passing through a small aperture. Then, we ex- plore, discover, and justify the laws governing those phenomena, using the precision that mathematical machinery affords. For example, we might represent a person by the strengths of their beliefs, and we might measure these using real numbers, which we call credences. Having done this, we might ask what the norms are that govern that person when we represent them in that way.
    [Show full text]
  • Lecture 2: Modeling Random Experiments
    Department of Mathematics Ma 3/103 KC Border Introduction to Probability and Statistics Winter 2021 Lecture 2: Modeling Random Experiments Relevant textbook passages: Pitman [5]: Sections 1.3–1.4., pp. 26–46. Larsen–Marx [4]: Sections 2.2–2.5, pp. 18–66. 2.1 Axioms for probability measures Recall from last time that a random experiment is an experiment that may be conducted under seemingly identical conditions, yet give different results. Coin tossing is everyone’s go-to example of a random experiment. The way we model random experiments is through the use of probabilities. We start with the sample space Ω, the set of possible outcomes of the experiment, and consider events, which are subsets E of the sample space. (We let F denote the collection of events.) 2.1.1 Definition A probability measure P or probability distribution attaches to each event E a number between 0 and 1 (inclusive) so as to obey the following axioms of probability: Normalization: P (?) = 0; and P (Ω) = 1. Nonnegativity: For each event E, we have P (E) > 0. Additivity: If EF = ?, then P (∪ F ) = P (E) + P (F ). Note that while the domain of P is technically F, the set of events, that is P : F → [0, 1], we may also refer to P as a probability (measure) on Ω, the set of realizations. 2.1.2 Remark To reduce the visual clutter created by layers of delimiters in our notation, we may omit some of them simply write something like P (f(ω) = 1) orP {ω ∈ Ω: f(ω) = 1} instead of P {ω ∈ Ω: f(ω) = 1} and we may write P (ω) instead of P {ω} .
    [Show full text]
  • Probability Cheatsheet V2.0 Thinking Conditionally Law of Total Probability (LOTP)
    Probability Cheatsheet v2.0 Thinking Conditionally Law of Total Probability (LOTP) Let B1;B2;B3; :::Bn be a partition of the sample space (i.e., they are Compiled by William Chen (http://wzchen.com) and Joe Blitzstein, Independence disjoint and their union is the entire sample space). with contributions from Sebastian Chiu, Yuan Jiang, Yuqi Hou, and Independent Events A and B are independent if knowing whether P (A) = P (AjB )P (B ) + P (AjB )P (B ) + ··· + P (AjB )P (B ) Jessy Hwang. Material based on Joe Blitzstein's (@stat110) lectures 1 1 2 2 n n A occurred gives no information about whether B occurred. More (http://stat110.net) and Blitzstein/Hwang's Introduction to P (A) = P (A \ B1) + P (A \ B2) + ··· + P (A \ Bn) formally, A and B (which have nonzero probability) are independent if Probability textbook (http://bit.ly/introprobability). Licensed and only if one of the following equivalent statements holds: For LOTP with extra conditioning, just add in another event C! under CC BY-NC-SA 4.0. Please share comments, suggestions, and errors at http://github.com/wzchen/probability_cheatsheet. P (A \ B) = P (A)P (B) P (AjC) = P (AjB1;C)P (B1jC) + ··· + P (AjBn;C)P (BnjC) P (AjB) = P (A) P (AjC) = P (A \ B1jC) + P (A \ B2jC) + ··· + P (A \ BnjC) P (BjA) = P (B) Last Updated September 4, 2015 Special case of LOTP with B and Bc as partition: Conditional Independence A and B are conditionally independent P (A) = P (AjB)P (B) + P (AjBc)P (Bc) given C if P (A \ BjC) = P (AjC)P (BjC).
    [Show full text]
  • Probability and Counting Rules
    blu03683_ch04.qxd 09/12/2005 12:45 PM Page 171 C HAPTER 44 Probability and Counting Rules Objectives Outline After completing this chapter, you should be able to 4–1 Introduction 1 Determine sample spaces and find the probability of an event, using classical 4–2 Sample Spaces and Probability probability or empirical probability. 4–3 The Addition Rules for Probability 2 Find the probability of compound events, using the addition rules. 4–4 The Multiplication Rules and Conditional 3 Find the probability of compound events, Probability using the multiplication rules. 4–5 Counting Rules 4 Find the conditional probability of an event. 5 Find the total number of outcomes in a 4–6 Probability and Counting Rules sequence of events, using the fundamental counting rule. 4–7 Summary 6 Find the number of ways that r objects can be selected from n objects, using the permutation rule. 7 Find the number of ways that r objects can be selected from n objects without regard to order, using the combination rule. 8 Find the probability of an event, using the counting rules. 4–1 blu03683_ch04.qxd 09/12/2005 12:45 PM Page 172 172 Chapter 4 Probability and Counting Rules Statistics Would You Bet Your Life? Today Humans not only bet money when they gamble, but also bet their lives by engaging in unhealthy activities such as smoking, drinking, using drugs, and exceeding the speed limit when driving. Many people don’t care about the risks involved in these activities since they do not understand the concepts of probability.
    [Show full text]
  • Probability Cheatsheet
    Probability Cheatsheet v1.1.1 Simpson's Paradox Expected Value, Linearity, and Symmetry P (A j B; C) < P (A j Bc;C) and P (A j B; Cc) < P (A j Bc;Cc) Expected Value (aka mean, expectation, or average) can be thought Compiled by William Chen (http://wzchen.com) with contributions yet still, P (A j B) > P (A j Bc) of as the \weighted average" of the possible outcomes of our random from Sebastian Chiu, Yuan Jiang, Yuqi Hou, and Jessy Hwang. variable. Mathematically, if x1; x2; x3;::: are all of the possible values Material based off of Joe Blitzstein's (@stat110) lectures Bayes' Rule and Law of Total Probability that X can take, the expected value of X can be calculated as follows: P (http://stat110.net) and Blitzstein/Hwang's Intro to Probability E(X) = xiP (X = xi) textbook (http://bit.ly/introprobability). Licensed under CC i Law of Total Probability with partitioning set B1; B2; B3; :::Bn and BY-NC-SA 4.0. Please share comments, suggestions, and errors at with extra conditioning (just add C!) Note that for any X and Y , a and b scaling coefficients and c is our http://github.com/wzchen/probability_cheatsheet. constant, the following property of Linearity of Expectation holds: P (A) = P (AjB1)P (B1) + P (AjB2)P (B2) + :::P (AjBn)P (Bn) Last Updated March 20, 2015 P (A) = P (A \ B1) + P (A \ B2) + :::P (A \ Bn) E(aX + bY + c) = aE(X) + bE(Y ) + c P (AjC) = P (AjB1; C)P (B1jC) + :::P (AjBn; C)P (BnjC) If two Random Variables have the same distribution, even when they are dependent by the property of Symmetry their expected values P (AjC) = P (A \ B jC) + P (A \ B jC) + :::P (A \ B jC) Counting 1 2 n are equal.
    [Show full text]
  • Conditional Expectation and Prediction Conditional Frequency Functions and Pdfs Have Properties of Ordinary Frequency and Density Functions
    Conditional expectation and prediction Conditional frequency functions and pdfs have properties of ordinary frequency and density functions. Hence, associated with a conditional distribution is a conditional mean. Y and X are discrete random variables, the conditional frequency function of Y given x is pY|X(y|x). Conditional expectation of Y given X=x is Continuous case: Conditional expectation of a function: Consider a Poisson process on [0, 1] with mean λ, and let N be the # of points in [0, 1]. For p < 1, let X be the number of points in [0, p]. Find the conditional distribution and conditional mean of X given N = n. Make a guess! Consider a Poisson process on [0, 1] with mean λ, and let N be the # of points in [0, 1]. For p < 1, let X be the number of points in [0, p]. Find the conditional distribution and conditional mean of X given N = n. We first find the joint distribution: P(X = x, N = n), which is the probability of x events in [0, p] and n−x events in [p, 1]. From the assumption of a Poisson process, the counts in the two intervals are independent Poisson random variables with parameters pλ and (1−p)λ (why?), so N has Poisson marginal distribution, so the conditional frequency function of X is Binomial distribution, Conditional expectation is np. Conditional expectation of Y given X=x is a function of X, and hence also a random variable, E(Y|X). In the last example, E(X|N=n)=np, and E(X|N)=Np is a function of N, a random variable that generally has an expectation Taken w.r.t.
    [Show full text]
  • Chapter 3: Expectation and Variance
    44 Chapter 3: Expectation and Variance In the previous chapter we looked at probability, with three major themes: 1. Conditional probability: P(A | B). 2. First-step analysis for calculating eventual probabilities in a stochastic process. 3. Calculating probabilities for continuous and discrete random variables. In this chapter, we look at the same themes for expectation and variance. The expectation of a random variable is the long-term average of the ran- dom variable. Imagine observing many thousands of independent random values from the random variable of interest. Take the average of these random values. The expectation is the value of this average as the sample size tends to infinity. We will repeat the three themes of the previous chapter, but in a different order. 1. Calculating expectations for continuous and discrete random variables. 2. Conditional expectation: the expectation of a random variable X, condi- tional on the value taken by another random variable Y . If the value of Y affects the value of X (i.e. X and Y are dependent), the conditional expectation of X given the value of Y will be different from the overall expectation of X. 3. First-step analysis for calculating the expected amount of time needed to reach a particular state in a process (e.g. the expected number of shots before we win a game of tennis). We will also study similar themes for variance. 45 3.1 Expectation The mean, expected value, or expectation of a random variable X is writ- ten as E(X) or µX . If we observe N random values of X, then the mean of the N values will be approximately equal to E(X) for large N.
    [Show full text]
  • Lecture Notes 4 Expectation • Definition and Properties
    Lecture Notes 4 Expectation • Definition and Properties • Covariance and Correlation • Linear MSE Estimation • Sum of RVs • Conditional Expectation • Iterated Expectation • Nonlinear MSE Estimation • Sum of Random Number of RVs Corresponding pages from B&T: 81-92, 94-98, 104-115, 160-163, 171-174, 179, 225-233, 236-247. EE 178/278A: Expectation Page 4–1 Definition • We already introduced the notion of expectation (mean) of a r.v. • We generalize this definition and discuss it in more depth • Let X ∈X be a discrete r.v. with pmf pX(x) and g(x) be a function of x. The expectation or expected value of g(X) is defined as E(g(X)) = g(x)pX(x) x∈X • For a continuous r.v. X ∼ fX(x), the expected value of g(X) is defined as ∞ E(g(X)) = g(x)fX(x) dx −∞ • Examples: ◦ g(X)= c, a constant, then E(g(X)) = c ◦ g(X)= X, E(X)= x xpX(x) is the mean of X k k ◦ g(X)= X , E(X ) is the kth moment of X ◦ g(X)=(X − E(X))2, E (X − E(X))2 is the variance of X EE 178/278A: Expectation Page 4–2 • Expectation is linear, i.e., for any constants a and b E[ag1(X)+ bg2(X)] = a E(g1(X)) + b E(g2(X)) Examples: ◦ E(aX + b)= a E(X)+ b ◦ Var(aX + b)= a2Var(X) Proof: From the definition Var(aX + b) = E ((aX + b) − E(aX + b))2 = E (aX + b − a E(X) − b)2 = E a2(X − E(X))2 = a2E (X − E(X))2 = a2Var( X) EE 178/278A: Expectation Page 4–3 Fundamental Theorem of Expectation • Theorem: Let X ∼ pX(x) and Y = g(X) ∼ pY (y), then E(Y )= ypY (y)= g(x)pX(x)=E(g(X)) y∈Y x∈X • The same formula holds for fY (y) using integrals instead of sums • Conclusion: E(Y ) can be found using either fX(x) or fY (y).
    [Show full text]
  • 1 — a Single Random Variable
    1 | A SINGLE RANDOM VARIABLE Questions involving probability abound in Computer Science: What is the probability of the PWF world falling over next week? • What is the probability of one packet colliding with another in a network? • What is the probability of an undergraduate not turning up for a lecture? • When addressing such questions there are often added complications: the question may be ill posed or the answer may vary with time. Which undergraduate? What lecture? Is the probability of turning up different on Saturdays? Let's start with something which appears easy to reason about: : : Introduction | Throwing a die Consider an experiment or trial which consists of throwing a mathematically ideal die. Such a die is often called a fair die or an unbiased die. Common sense suggests that: The outcome of a single throw cannot be predicted. • The outcome will necessarily be a random integer in the range 1 to 6. • The six possible outcomes are equiprobable, each having a probability of 1 . • 6 Without further qualification, serious probabilists would regard this collection of assertions, especially the second, as almost meaningless. Just what is a random integer? Giving proper mathematical rigour to the foundations of probability theory is quite a taxing task. To illustrate the difficulty, consider probability in a frequency sense. Thus a probability 1 of 6 means that, over a long run, one expects to throw a 5 (say) on one-sixth of the occasions that the die is thrown. If the actual proportion of 5s after n throws is p5(n) it would be nice to say: 1 lim p5(n) = n !1 6 Unfortunately this is utterly bogus mathematics! This is simply not a proper use of the idea of a limit.
    [Show full text]