Probability with Engineering Applications ECE 313 Course Notes Bruce Hajek Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign January 2017 c 2017 by Bruce Hajek All rights reserved. Permission is hereby given to freely print and circulate copies of these notes so long as the notes are left intact and not reproduced for commercial purposes. Email to
[email protected], pointing out errors or hard to understand passages or providing comments, is welcome. Contents 1 Foundations 3 1.1 Embracing uncertainty . .3 1.2 Axioms of probability . .6 1.3 Calculating the size of various sets . 10 1.4 Probability experiments with equally likely outcomes . 13 1.5 Sample spaces with infinite cardinality . 15 1.6 Short Answer Questions . 20 1.7 Problems . 21 2 Discrete-type random variables 25 2.1 Random variables and probability mass functions . 25 2.2 The mean and variance of a random variable . 27 2.3 Conditional probabilities . 32 2.4 Independence and the binomial distribution . 34 2.4.1 Mutually independent events . 34 2.4.2 Independent random variables (of discrete-type) . 36 2.4.3 Bernoulli distribution . 37 2.4.4 Binomial distribution . 38 2.5 Geometric distribution . 41 2.6 Bernoulli process and the negative binomial distribution . 43 2.7 The Poisson distribution{a limit of binomial distributions . 45 2.8 Maximum likelihood parameter estimation . 47 2.9 Markov and Chebychev inequalities and confidence intervals . 50 2.10 The law of total probability, and Bayes formula . 53 2.11 Binary hypothesis testing with discrete-type observations .