Note Set 1: Review of Basic Concepts in Probability

Total Page:16

File Type:pdf, Size:1020Kb

Note Set 1: Review of Basic Concepts in Probability Note Set 1: Review of Basic Concepts in Probability Padhraic Smyth, Department of Computer Science University of California, Irvine January 2021 This set of notes is intended as a brief refresher on probability. As a student reading these notes you will likely have seen (in other classes) most or all of the ideas discussed below. Nonetheless, even though these ideas are relatively straightforward, they are the key building blocks for more complex ideas in probabilistic learning. Thus, it is important to be familiar with these ideas in order to understand the material we will be discussing later in the course. 1 Discrete Random Variables and Distributions Consider a variable A that can take a finite set of values fa1; : : : ; amg. We can define a probability dis- tribution (also referred to as a probability mass function) for A by specifying a set of numbers fP (A = Pm a1);:::;P (A = am)g, where 0 ≤ P (A = ai) ≤ 1 and where i=1 P (A = ai) = 1. We can think of A = ai as an event that either is or is not true, and P (A = ai) is the probability of this particular event being true. We can also think of A = ai as a proposition or logical statement about the world that is either true or false. Probability expresses our uncertainty about whether the proposition A = ai is true or is false. Notational comment: for convenience, we follow a typical convention in probability notation and will often shorten P (A = ai) to just P (ai), and will also often use a (and P (a)) to indicate a generic value for A, i.e., one of the possible ai values. We call A a random variable as long as the set of values fa1; : : : ; amg are mutually exclusive and exhaustive. Mutually exclusive means that the random variable A can only take one value at a time— another way to state this is that the P (A = ai AND A = aj) = 0; 8 i; j; i 6= j, i.e., the probability of the event occurring where A takes two different values is 0 (i.e., it is deemed impossible)1. Exhaustive means 1the symbol 8 means “for all” 1 Note Set 1, Probability Review 2 that the variable A always takes one of the values in the set fa1; : : : ; amg, i.e., there are no other values it can take. EXAMPLE 1: In medical diagnosis we often want to be able to predict whether a patient has a particular disease or not, given other measurements—this is a particular type of prediction problem known as classi- fication that we will discuss later in more detail. Let C be a variable representing what disease a particular patient has. Consider for example C taking values in fc1; c2g, where c1 = has the flu and c2 = does not have the flu. In this case C is a random variable since c1 and c2 are clearly mutually exclusive and exhaustive, and we will be uncertain in general about the actual true value of C for any particular patient. Now consider another set of events: d1 = has the flu and d2 = has malaria and d3 = healthy. Could fd1; d2; d3g be used as the set of events to define a random variable? The answer is no since the set of events are not mutually exclusive: a person could have both the flu and malaria (this have a very small probability of happening, but this probability is not zero, i.e., it is possible). Nor are the events exhaustive: a person could be in none of these states since they could in general have some condition other than flu or malaria. EXAMPLE 2: Consider modeling the probability distribution of English words in a particular set of text documents. Let W be the word variable and let wi be a particular word. For example, we might want to know the probability that a particular word wi will be typed by a user in a text editor or will be spoken by a user. Such probabilities are used in practice in a variety of applications such as speech recognition, automated machine translation, and so forth. In order to treat W as a random variable we need to ensure that the words being spoken or written by a user are mutually exclusive and exhaustive by defining W appropriately. For example, for mutual exclusion, we could define W to be the next word in a sequence of words, which by definition means there will always be a single unique “next word”—and we would need to include in our vocabulary a special symbol for the end of a sequence. The requirement for exhaustivity is more difficult to satisfy. We could define the set of possible words fw1; : : : ; wmg as the set of all words in an English dictionary—but which dictionary should we use? and what about words not in the dictionary such as regional variations of words, slang words, newly-emerging words, proper nouns such as “California,” and so on? This is a problem commonly faced with text modeling, since it is impossible to know all future words that might occur in practice. One way to get around this is to limit the set of words being modeled to (say) the m = 20; 000 most frequent words in a particular set of text and then an additional symbol w20;001 is P defined to represent “all other words,” ensuring that i P (wi) = 1. An interesting problem in this context, that we will not discuss at this point, is how much probability mass we should assign to the event “all other words,” or equivalently, how likely are we to encounter previously unseen words in the future? Note Set 1, Probability Review 3 Before we finish with discrete random variables we note that not all discrete random variables necessarily take values from a finite set, but instead could take values from a countably infinite set. For example, we can define a random variable A taking values from the set of positive integers f1; 2; 3;:::g. The sum P1 i=1 P (A = i) must converge to 1 of course. For random variables taking values in a countably infinite set it is impossible to explicitly represent a probability distribution directly by a table of numbers—and even in the finite case it may be often incon- venient or inefficient. In such cases we use a parametric model for the distribution, i.e., a function that describes how P (i) varies as a function of i and as a function of one or more parameters of the model. EXAMPLE 3: An example of a probability distribution defined on the positive integers is the geometric distribution, P (A = i) = (1 − α)i−1α; i = 1; 2;::: where α is a parameter of the model and 0 < α < 1. This can be used for example to describe the distribution of the number of consecutive “tails” that we will see before we see the first “heads event” in a coin-tossing experiment, where α is the probability of a head occurring on each coin toss. 2 Continuous Random Variables and Density Functions The variables we discussed above such as A and C take values that can be put in one-to-one correspondence with sets of integers, and are often referred to as discrete random variables. It is also useful to be able to build and use probability models for real-valued or continuous random variables, e.g., a random variable X that can take values x anywhere on the real line. (Sidenote: as is often done elsewhere in the literature we will sometimes use the term “distribution” rather than “density” when referring to a probability density function—the terminology can sometimes be somewhat loose, but the key distinction to keep in mind is whether a random variable is discrete or contiuous.) Generally speaking, where we have sums for discrete random variables we usually will have integrals P R for continuous random variables. So, instead of the requirement that i P (xi) = 1 we have p(x)dx = 1. Here p(x) is the probability density function for the variable X, where p(x) ≥ 0; 8x. We can calculate the probability that the variable X lies between 2 values a and b by integrating p(x) between a and b, i.e., R b P (a ≤ X ≤ b) = a p(x)dx. 1 EXAMPLE 4: The uniform density is defined as p(x) = b−a for a ≤ x ≤ b and 0 otherwise. We Note Set 1, Probability Review 4 Figure 1: An example of two Gaussian density functions with different parameter values. sometimes use the notation X ∼ U(a; b) to denote that the random variable X has a particular type of density distribution (in this case the uniform density U). Here a and b are the parameters of the uniform density function. Note that while we had the option of describing a discrete probability distribution (for a finite set) with a list or table of probabilities, we can’t define a continuous density function this way—instead we must parametrize the function and describe it via its functional form and its parameters. Note also that although R p(x)dx = 1 this does not imply that p(x) itself needs to be less than 1. For 1 example, for the uniform density if a = 0 and b = 0:1, then p(x) = 0:1−0:0 = 10 for a ≤ x ≤ b. The key point is that the area under the density function, p(x), is constrained to be 1, but the height of the function can be any non-negative quantity.
Recommended publications
  • The Open Handbook of Formal Epistemology
    THEOPENHANDBOOKOFFORMALEPISTEMOLOGY Richard Pettigrew &Jonathan Weisberg,Eds. THEOPENHANDBOOKOFFORMAL EPISTEMOLOGY Richard Pettigrew &Jonathan Weisberg,Eds. Published open access by PhilPapers, 2019 All entries copyright © their respective authors and licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. LISTOFCONTRIBUTORS R. A. Briggs Stanford University Michael Caie University of Toronto Kenny Easwaran Texas A&M University Konstantin Genin University of Toronto Franz Huber University of Toronto Jason Konek University of Bristol Hanti Lin University of California, Davis Anna Mahtani London School of Economics Johanna Thoma London School of Economics Michael G. Titelbaum University of Wisconsin, Madison Sylvia Wenmackers Katholieke Universiteit Leuven iii For our teachers Overall, and ultimately, mathematical methods are necessary for philosophical progress. — Hannes Leitgeb There is no mathematical substitute for philosophy. — Saul Kripke PREFACE In formal epistemology, we use mathematical methods to explore the questions of epistemology and rational choice. What can we know? What should we believe and how strongly? How should we act based on our beliefs and values? We begin by modelling phenomena like knowledge, belief, and desire using mathematical machinery, just as a biologist might model the fluc- tuations of a pair of competing populations, or a physicist might model the turbulence of a fluid passing through a small aperture. Then, we ex- plore, discover, and justify the laws governing those phenomena, using the precision that mathematical machinery affords. For example, we might represent a person by the strengths of their beliefs, and we might measure these using real numbers, which we call credences. Having done this, we might ask what the norms are that govern that person when we represent them in that way.
    [Show full text]
  • Probabilities, Random Variables and Distributions A
    Probabilities, Random Variables and Distributions A Contents A.1 EventsandProbabilities................................ 318 A.1.1 Conditional Probabilities and Independence . ............. 318 A.1.2 Bayes’Theorem............................... 319 A.2 Random Variables . ................................. 319 A.2.1 Discrete Random Variables ......................... 319 A.2.2 Continuous Random Variables ....................... 320 A.2.3 TheChangeofVariablesFormula...................... 321 A.2.4 MultivariateNormalDistributions..................... 323 A.3 Expectation,VarianceandCovariance........................ 324 A.3.1 Expectation................................. 324 A.3.2 Variance................................... 325 A.3.3 Moments................................... 325 A.3.4 Conditional Expectation and Variance ................... 325 A.3.5 Covariance.................................. 326 A.3.6 Correlation.................................. 327 A.3.7 Jensen’sInequality............................. 328 A.3.8 Kullback–LeiblerDiscrepancyandInformationInequality......... 329 A.4 Convergence of Random Variables . 329 A.4.1 Modes of Convergence . 329 A.4.2 Continuous Mapping and Slutsky’s Theorem . 330 A.4.3 LawofLargeNumbers........................... 330 A.4.4 CentralLimitTheorem........................... 331 A.4.5 DeltaMethod................................ 331 A.5 ProbabilityDistributions............................... 332 A.5.1 UnivariateDiscreteDistributions...................... 333 A.5.2 Univariate Continuous Distributions . 335
    [Show full text]
  • (Introduction to Probability at an Advanced Level) - All Lecture Notes
    Fall 2018 Statistics 201A (Introduction to Probability at an advanced level) - All Lecture Notes Aditya Guntuboyina August 15, 2020 Contents 0.1 Sample spaces, Events, Probability.................................5 0.2 Conditional Probability and Independence.............................6 0.3 Random Variables..........................................7 1 Random Variables, Expectation and Variance8 1.1 Expectations of Random Variables.................................9 1.2 Variance................................................ 10 2 Independence of Random Variables 11 3 Common Distributions 11 3.1 Ber(p) Distribution......................................... 11 3.2 Bin(n; p) Distribution........................................ 11 3.3 Poisson Distribution......................................... 12 4 Covariance, Correlation and Regression 14 5 Correlation and Regression 16 6 Back to Common Distributions 16 6.1 Geometric Distribution........................................ 16 6.2 Negative Binomial Distribution................................... 17 7 Continuous Distributions 17 7.1 Normal or Gaussian Distribution.................................. 17 1 7.2 Uniform Distribution......................................... 18 7.3 The Exponential Density...................................... 18 7.4 The Gamma Density......................................... 18 8 Variable Transformations 19 9 Distribution Functions and the Quantile Transform 20 10 Joint Densities 22 11 Joint Densities under Transformations 23 11.1 Detour to Convolutions......................................
    [Show full text]
  • Probability with Engineering Applications ECE 313 Course Notes
    Probability with Engineering Applications ECE 313 Course Notes Bruce Hajek Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign January 2017 c 2017 by Bruce Hajek All rights reserved. Permission is hereby given to freely print and circulate copies of these notes so long as the notes are left intact and not reproduced for commercial purposes. Email to [email protected], pointing out errors or hard to understand passages or providing comments, is welcome. Contents 1 Foundations 3 1.1 Embracing uncertainty . .3 1.2 Axioms of probability . .6 1.3 Calculating the size of various sets . 10 1.4 Probability experiments with equally likely outcomes . 13 1.5 Sample spaces with infinite cardinality . 15 1.6 Short Answer Questions . 20 1.7 Problems . 21 2 Discrete-type random variables 25 2.1 Random variables and probability mass functions . 25 2.2 The mean and variance of a random variable . 27 2.3 Conditional probabilities . 32 2.4 Independence and the binomial distribution . 34 2.4.1 Mutually independent events . 34 2.4.2 Independent random variables (of discrete-type) . 36 2.4.3 Bernoulli distribution . 37 2.4.4 Binomial distribution . 38 2.5 Geometric distribution . 41 2.6 Bernoulli process and the negative binomial distribution . 43 2.7 The Poisson distribution{a limit of binomial distributions . 45 2.8 Maximum likelihood parameter estimation . 47 2.9 Markov and Chebychev inequalities and confidence intervals . 50 2.10 The law of total probability, and Bayes formula . 53 2.11 Binary hypothesis testing with discrete-type observations .
    [Show full text]
  • Chapter 2: Probability
    16 Chapter 2: Probability The aim of this chapter is to revise the basic rules of probability. By the end of this chapter, you should be comfortable with: • conditional probability, and what you can and can’t do with conditional expressions; • the Partition Theorem and Bayes’ Theorem; • First-Step Analysis for finding the probability that a process reaches some state, by conditioning on the outcome of the first step; • calculating probabilities for continuous and discrete random variables. 2.1 Sample spaces and events Definition: A sample space, Ω, is a set of possible outcomes of a random experiment. Definition: An event, A, is a subset of the sample space. This means that event A is simply a collection of outcomes. Example: Random experiment: Pick a person in this class at random. Sample space: Ω= {all people in class} Event A: A = {all males in class}. Definition: Event A occurs if the outcome of the random experiment is a member of the set A. In the example above, event A occurs if the person we pick is male. 17 2.2 Probability Reference List The following properties hold for all events A, B. • P(∅)=0. • 0 ≤ P(A) ≤ 1. • Complement: P(A)=1 − P(A). • Probability of a union: P(A ∪ B)= P(A)+ P(B) − P(A ∩ B). For three events A, B, C: P(A∪B∪C)= P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)+P(A∩B∩C) . If A and B are mutually exclusive, then P(A ∪ B)= P(A)+ P(B).
    [Show full text]
  • Probability (Graduate Class) Lecture Notes
    Probability (graduate class) Lecture Notes Tomasz Tkocz∗ These lecture notes were written for the graduate course 21-721 Probability that I taught at Carnegie Mellon University in Spring 2020. ∗Carnegie Mellon University; [email protected] 1 Contents 1 Probability space 6 1.1 Definitions . .6 1.2 Basic examples . .7 1.3 Conditioning . 11 1.4 Exercises . 13 2 Random variables 14 2.1 Definitions and basic properties . 14 2.2 π λ systems . 16 − 2.3 Properties of distribution functions . 16 2.4 Examples: discrete and continuous random variables . 18 2.5 Exercises . 21 3 Independence 22 3.1 Definitions . 22 3.2 Product measures and independent random variables . 24 3.3 Examples . 25 3.4 Borel-Cantelli lemmas . 28 3.5 Tail events and Kolmogorov's 0 1law .................. 29 − 3.6 Exercises . 31 4 Expectation 33 4.1 Definitions and basic properties . 33 4.2 Variance and covariance . 35 4.3 Independence again, via product measures . 36 4.4 Exercises . 39 5 More on random variables 41 5.1 Important distributions . 41 5.2 Gaussian vectors . 45 5.3 Sums of independent random variables . 46 5.4 Density . 47 5.5 Exercises . 49 6 Important inequalities and notions of convergence 52 6.1 Basic probabilistic inequalities . 52 6.2 Lp-spaces . 54 6.3 Notions of convergence . 59 6.4 Exercises . 63 2 7 Laws of large numbers 67 7.1 Weak law of large numbers . 67 7.2 Strong law of large numbers . 73 7.3 Exercises . 78 8 Weak convergence 81 8.1 Definition and equivalences .
    [Show full text]
  • Lecture 2. Conditional Probability
    Math 408 - Mathematical Statistics Lecture 2. Conditional Probability January 18, 2013 Konstantin Zuev (USC) Math 408, Lecture 2 January 18, 2013 1 / 9 Agenda Motivation and Definition Properties of Conditional Probabilities Law of Total Probability Bayes' Theorem Examples I False Positive Paradox I Monty Hall Problem Summary Konstantin Zuev (USC) Math 408, Lecture 2 January 18, 2013 2 / 9 Motivation and Definition Recall (see Lecture 1) that the sample space is the set of all possible outcomes of an experiment. Suppose we are interested only in part of the sample space, the part where we know some event { call it A { has happened, and we want to know how likely it is that various other events (B; C; D :::) have also happened. What we want is the conditional probability of B given A. Definition If P(A) > 0, then the conditional probability of B given A is P(AB) P(BjA) = P(A) Useful Interpretation: Think of P(BjA) as the fraction of times B occurs among those in which A occurs Konstantin Zuev (USC) Math 408, Lecture 2 January 18, 2013 3 / 9 Properties of Conditional Probabilities Here are some facts about conditional probabilities: 1 For any fixed A such that P(A) > 0, P(·|A) is a probability, i.e. it satisfies the rules of probability: I 0 ≤ P(BjA) ≤ 1 I P(ΩjA) = 1 I P(;jA) = 0 ¯ I P(BjA) + P(BjA) = 1 I P(B + CjA) = P(BjA) + P(CjA) − P(BCjA) 2 Important: The rules of probability apply to events on the left of the bar.
    [Show full text]
  • The Law of Total Probability, Bayes' Rule, and Random Variables
    The Law of Total Probability, Bayes’ Rule, and Random Variables (Oh My!) Administrivia o Homework 2 is posted and is due two Friday’s from now o If you didn’t start early last time, please do so this time. Good Milestones: § Finish Problems 1-3 this week. More math, some programming. § Finish Problems 4-5 next week. Less math, more programming. Administrivia Reminder of the course Collaboration Policy: o Inspiration is Free: you may discuss homework assignments with anyone. You are especially encouraged to discuss solutions with your instructor and your classmates. o Plagiarism is Forbidden: the assignments and code that you turn in should be written entirely on your own. o Do NOT Search for a Solution On-Line: You may not actively search for a solution to the problem from the internet. This includes posting to sources like StackExchange, Reddit, Chegg, etc o Violation of ANY of the above will result in an F in the course / trip to Honor Council Previously on CSCI 3022 o Conditional Probability: The probability that A occurs given that C occurred P (A C) P (A C)= ∩ | P (C) o Multiplication Rule: P (A C)=P (A C) P (C) ∩ | o Independence: Events A and B are independent if 1. P (A B)=P (A) | 2. P (B A)=P (B) | 3. P (A B)=P (A)P (B) ∩ Law of Total Probability Example: Suppose I have two bags of marbles. The first bag contains 6 white marbles and 4 black marbles. The second bag contains 3 white marbles and 7 black marbles.
    [Show full text]
  • AOSC630-Class1-Ji-Sun Kang
    Review of Probability Wilks, Chapter 2 Ji-Sun Kang and Eugenia Kalnay AOSC630 Spring, 2008, updated in 2017 Definition § Event: set, class, or group of possible uncertain outcomes q A compound event can be decomposed into two or more (sub) events q An elementary event cannot be decomposed § Sample space (event space), S q The set of all possible elementary events § MECE (Mutually Exclusive & Collectively Exhaustive) q Mutually Exclusive: no more than one of the events can occur q Collectively Exhaustive: at least one of the events will occur ! A set of MECE events completely fills a sample space Probability Axioms § P(A) ≥ 0 § P(S) = 1 § If (E1 ∩ E2)=0, i.e., if E1 and E2 exclusive, then P(E1 ∪ E2)=P(E1)+P(E2) E1 E2 Probability § Probability ~ Frequency Recall Threat Score (TS) #E = yes q P(E) = lim P(F = yes ∩ Ob = yes) n→∞ total _ n = P(F = yes ∪ Ob = yes) § If E 2 ⊆ E 1 , then P(E1) ≥ P(E2 ) = § P (E1 ∪ E2 ) = P(E1) + P(E2 ) − P(E1 ∩ E2 ) Venn Diagrams E E E1 2 E1E 1 ∪ E2 2 E1 ∩ E2 Conditional Probability § Probability of E1 given that E2 has happened P(E ∩ E ) P(E E ) = 1 2 1 2 P(E ) 2 P(E1 ∩ E2 ) = P(E1 E2 )P(E2 ) ; Multiplicative Law § Independent Event q The occurrence or nonoccurrence of one does not affect the probability of the other P ( E1 ∩ E 2 ) = P ( E1 ) P ( E 2 ) P(E1 ∩ E2 ) i.e. P(E1 E2 ) = = P(E1) P(E2 ) Exercise § From the Penn State station data for Jan.
    [Show full text]
  • STA111 - Lecture 3 Review, Total Probability, and Bayes’ Rule
    STA111 - Lecture 3 Review, Total Probability, and Bayes’ Rule First, we will review permutations, combinations, and conditional probability. Please check the previous set of notes for definitions and examples. 1 Law of total probability and Bayes’ rule Let’s start the section with a simple result that can be derived from the axioms of probability. If A and B are events, P (A) = P (A \ B) + P (A \ Bc ). Drawing a Venn diagram helps here and I will draw one in Lecture (draw one yourself, it’s good practice!). A more formal argument would be: P (A) = P ((A\B)[(A\Bc )) = P (A \ B) + P (A \ Bc ). Law of total probability: The previous result can be extended to a more general case. If A1;A2; :::: ; An are disjoint events (Ai \ Aj = ; for i 6= j) and A1 [ A2 [ :::: [ An = Ω (i.e. if A1; ::: ; An is a partition of Ω), then P (B) = P (B \ A1) + P (B \ A2) + ::: + P (B \ An) = P (A1)P (B j A1) + ::: + P (An)P (B j An): This formula looks daunting, but it can be interpreted as a weighted average. As usual, drawing a Venn diagram helps, as we saw/will see in Lecture. Examples: • Let’s go back to the example where Bobby has 3 bags of beans (Lecture 2). We can compute the probability that he picks a red bean (without knowing the bag from which he draws the bean) directly as 1/2, since he’s equally likely to select either bag and there are 40 red beans and 40 green beans in total.
    [Show full text]
  • Conditional Probability
    CONDITIONAL PROBABILITY Alan H´ajek 1 INTRODUCTION A fair die is about to be tossed. The probability that it lands with ‘5’ showing up is 1/6; this is an unconditional probability. But the probability that it lands with ‘5’ showing up, given that it lands with an odd number showing up, is 1/3; this is a conditional probability. In general, conditional probability is probability given some body of evidence or information, probability relativised to a specified set of outcomes, where typically this set does not exhaust all possible outcomes. Yet un- derstood that way, it might seem that all probability is conditional probability — after all, whenever we model a situation probabilistically, we must initially delimit the set of outcomes that we are prepared to countenance. When our model says that the die may land with an outcome from the set 1, 2, 3, 4, 5, 6 , it has already ruled out its landing on an edge, or on a corner, or{ flying away, or} disintegrating, or . , so there is a good sense in which it is taking the non-occurrence of such anomalous outcomes as “given”. Conditional probabilities, then, are supposed to earn their keep when the evidence or information that is “given” is more specific than what is captured by our initial set of outcomes. In this article we will explore various approaches to conditional probability, canvassing their associated math- ematical and philosophical problems and numerous applications. Having done so, we will be in a better position to assess whether conditional probability can rightfully be regarded as the fundamental notion in probability theory after all.
    [Show full text]
  • Some Basic Probability Concepts
    Some Basic Probability Concepts July 15-17, 2020 Huining Kang [email protected] Contents • Events and event operations • Definition of probability – Classical probability (equally likely model) – Relative frequency probability – Probability properties • Calculating probability of a event – Rule of complementation – Addition rule – Conditional probability – Multiplication rule – Independent event – Joint probability and marginal probability Events • Random experiment – An experiment (process or trial) with a random outcome – When being performed, it results in one of a well- defined collection (sample space) of possible chance outcomes (mutually exclusive, collectively exhaustive). Sub-collections of outcomes are called events – An event is said to occur if one of the outcomes contained in the event occurs • Example 1 – Tossing a simple six-sided die with faces marked with from one through six dots. • Sample space S = {1 dot, 2 dots, 3 dots, 4 dots, 5 dots, 6 dots} • A=“even number of dots” = {2 dots, 4 dots, 6 dots} • B=“number of dots >3” = {4 dots, 5 dots, 6 dots} Favorable outcomes Event – Example 2 • A group of students consists of six girls and three boys as follows: ID g1 g2 g3 g4 g5 g6 b1 b2 b3 Strong skill dance dance singing singing piano piano dance singing piano Wearing glasses No No Yes No Yes No Yes No Yes • Experiment: randomly select one as the representative of the group. • If using ID of the selected student to denote the outcome, then the sample space can be written as S = {g1, g2, g3, g4, g5, g6, b1, b2, b3} • Event:
    [Show full text]