Rock-Solid Plywood Bench Build This Versatile Workbench in a Weekend for Under $250
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Matchfit 360 System Workbench Plans Project Overview
MATCHFIT 360 SYSTEM WORKBENCH PLANS PROJECT OVERVIEW The MATCHFIT 360 System Workbench is an all-in-one multifunctional workbench. Using MATCHFIT Dovetail Clamps and Dovetail Hardware, it allows you to go beyond the edge and clamp anywhere on the surface for hassle-free assembly. TOOLS & MATERIALS - Table Saw - 3/4” MDF, 32”x72” - Router table - 16’ 1-1/2” thick hard maple - 5” wide - MATCHFIT Dovetail Router bit, or comparable - Adjustable Locking Router Guide - free plans HERE 14º, 1/2” diameter dovetail router bit - Vertical Edge Routing Guide - free plans HERE - 1/4” diameter straight router bit - 3/4” diameter forstner bit - 1” diameter forstner bit - 1-1/2” 10-32 panhead screws and washers - 1/2” diameter forstner bit - MATCHFIT Dovetail Hardware - 45 degree chamfer router bit - 3/4” good quality plywood, 32”x72” FREE DOWNLOADABLE JIG PLANS Scan this QR code for access to our library of free jig plans and for more information about the MATCHFIT 360 System. microjig.com/matchfitplans INSTRUCTIONS STEP 1 - CUT THE STOCK TO SIZE To create the top and vertical side of the 360 workbench, cut a sheet of 3/4” plywood to 45-1/2” x 29-1/2”, and another at 29-1/2” x 18-1/2” on the table saw. Next, cut a sheet of 3/4” MDF to 45-1/4” x 29-1/4”, and another at 29-1/4” x 17-1/4”. INSTRUCTIONS STEP 2 - LAMINATE PLYWOOD AND MDF TOGETHER Glue MDF and plywood together leaving 1/8” reveal on all sides. This is to ensure that you have a flat edge to run along the fence when cutting laminated pieces to final size on the table saw. -
TECO Design and Application Guide Is Divided Into Four Sections
Structural Design and Plywood Application Guide INTRODUCTION Plywood as we know it has been produced since early in the 20th century. It has been in widespread use as sheathing in residential and commercial construction for well over 50 years and has developed a reputation as a premium panel product for both commodity and specialty applications. Structural plywood products give architects, engineers, designers, and builders a broad array of choices for use as subfloors, combination floors (i.e. subfloor and underlayment), wall and roof sheathing. Besides the very important function of supporting, resisting and transferring loads to the main force resisting elements of the building, plywood panels provide an excellent base for many types of finished flooring and provide a flat, solid base upon which the exterior wall cladding and roofing can be applied. This TECO Design and Application Guide is divided into four sections. Section 1 identifies some of the basics in selecting, handling, and storing plywood. Section 2 provides specific details regarding the application of plywood in single or multilayer floor systems, while Section 3 provides similar information for plywood used as wall and roof sheathing. Section 4 provides information on various performance issues concerning plywood. The information provided in this guide is based on standard industry practice. Users of structural-use panels should always consult the local building code and information provided by the panel manufacturer for more specific requirements and recommendations. -
Grades and Specifications Contents Introduction
APA The Engineered Wood Association PRODUCT GUIDE GRADES AND SPECIFICATIONS CONTENTS INTRODUCTION Introduction ................................................................................................. 3 This guide to APA – The Engineered Wood Key Definitions ............................................................................................. 4 Association panel grades and specifications is APA Trademark........................................................................................ 4 meant to serve as a useful reference source for Product Standard PS 1-83 ........................................................................ 4 APA Performance Standards ..................................................................... 5 structural wood panel users, specifiers, Grade ...................................................................................................... 5 Exposure Durability ................................................................................. 5 dealers and distributors. It contains key Species Group Number............................................................................ 7 information about the many structural wood Span Ratings ............................................................................................ 7 panel grades produced by APA member mills, APA Performance Rated Panels...................................................................... 9 including APA Performance Rated Panels, APA Rated Siding......................................................................................... -
Study Unit Toolholding Systems You’Ve Studied the Process of Machining and the Various Types of Machine Tools That Are Used in Manufacturing
Study Unit Toolholding Systems You’ve studied the process of machining and the various types of machine tools that are used in manufacturing. In this unit, you’ll take a closer look at the interface between the machine tools and the work piece: the toolholder and cutting tool. In today’s modern manufacturing environ ment, many sophisti- Preview Preview cated machine tools are available, including manual control and computer numerical control, or CNC, machines with spe- cial accessories to aid high-speed machining. Many of these new machine tools are very expensive and have the ability to machine quickly and precisely. However, if a careless deci- sion is made regarding a cutting tool and its toolholder, poor product quality will result no matter how sophisticated the machine. In this unit, you’ll learn some of the fundamental characteristics that most toolholders have in common, and what information is needed to select the proper toolholder. When you complete this study unit, you’ll be able to • Understand the fundamental characteristics of toolhold- ers used in various machine tools • Describe how a toolholder affects the quality of the machining operation • Interpret national standards for tool and toolholder iden- tification systems • Recognize the differences in toolholder tapers and the proper applications for each type of taper • Explain the effects of toolholder concentricity and imbalance • Access information from manufacturers about toolholder selection Remember to regularly check “My Courses” on your student homepage. Your instructor -
Jigs and Fixtures for the Scene Shop
Jigs and Fixtures for the Scene Shop By: John McCullough A Thesis Submitted to the faculty Of the Yale School of Drama Department of Technical Design and Production In Partial Fulfillment of the Requirements For the Degree of Master of Fine Arts in Drama From Yale University May 2009 ©2009 by John McCullough. All rights reserved. Contents Introduction 1 Jigs and Fixtures for the Scene Shop 2 What are Jigs and Fixtures? 2 Adding Jigs to a Manufacturing Process 3 How to use this Book 9 Jig and Fixture Construction 11 Safety 15 Fences and Guards 17 Featherboards 20 Push Sticks 22 Table Saw 23 Zero Clearance Plate 25 Dado Blade Width Guage 26 Template Jig 27 Multi-Angle Miter Guage 29 Tenon Jig 30 Cross-cut Sled 32 Radial Arm Saw 37 45° Miter Jig 39 Stop Block 40 Band Saw 41 Band Saw 42 Band Saw Template Jig 43 V-Block Splitter 45 V-Block Cross-cut Sled 46 Band Saw Circle Jig 47 Routers and Router Tables 49 Circle Edging Safety Board 51 Circle Jig 52 Fractionating Baseplate 53 Routing Guide 54 Circular Saw 55 Rip Fence 57 Belt-Disc Sander 59 Dowel Pointing Guide 61 Chamfer Sanding Guide 62 Jigs Around the Shop 63 Pocket Miter Box 65 Jig Blocks 66 90° Stop Block 67 Board Bender 68 Story Stick 69 The Next Step 71 Appendix A 73 Bibliography 75 INTRODUCTION 2 Jigs and Fixtures for the Scene Shop Jigs and Fixtures for the Scene Shop This thesis seeks to promote safety and effi ciency in the scene shop by presenting commonly used and popular jigs and fi xtures for the scene shop. -
Split-Top Roubo Bench Plans
SPLIT-TOP ROUBO BENCH PLANS Design, Construction Notes and Techniques Copyright Benchcrafted 2009-2014 · No unauthorized reproduction or distribution. You may print copies for your own personal use only. 1 Roubo’s German Cabinetmaker’s Bench from “L’Art Du Menuisier” ~ Design ~ The Benchcrafted Split-Top Roubo Bench is largely based on the workbenches documented by French author André Roubo in his 18th-century monumental work “L’Art Du Menuisier” (“The Art of the Joiner”). The Split-Top bench design primarily grew out of Roubo’s German cabinetmaker’s bench documented in volume three of Roubo’s series. Author and bench historian Christopher Schwarz, who has re-popularized several classic bench designs of late, and most notably the Roubo, was also an influence through his research and writings. We built a version of Roubo’s German bench and it served as a platform from which the Split-Top Roubo was conceived. We were attracted to the massive nature of Roubo’s German design and were interested to see how the sliding leg vise in particular functioned in day-to-day use. From the start we opted to do away with the traditional sliding-block tail vise, with its pen- chant for sagging and subsequent frustration. In the process of the bench’s development the Benchcrafted Tail Vise emerged and it has proven to be an excellent workholding solution, solving all of the problems of traditional tail vises without sacrificing much in terms of function, i.e., the ability to clamp between open-front jaws. For all the aggrava- 2 tion that the Benchcrafted Tail Vise eliminates, that feature isn’t missed all that much. -
Plywood Or Osb?
Form No. TT-047A Page 1 of 5 May 2005 PLYWOOD OR OSB? USED AS INTENDED, THE TWO PRODUCTS ARE INTERCHANGEABLE Since its introduction 25 years ago, oriented strand board (OSB) has played an increasingly important role as a structural panel for all kinds of construction applications. OSB production in the United States and Canada totaled 25.4 billion square feet (3/8- inch basis), or 59 percent of the total combined production of structural plywood and OSB in 2004. Some design and construction professionals have come to swear by oriented strand board. Others, however, prefer to stick with plywood. So which product is really better? The answer, for most routine construction applications, is both. That’s because both products, although different in composition and appearance, are manufactured according to a set of standards that assure very similar performance when used in applications for which they are intended: sheathing, single-layer flooring, and exterior siding. Manufacturing Process Plywood is composed of thin sheets of veneer or plies, peeled from a log as it is turned on a lathe against a knife blade. The veneer is clipped to suitable width, dried, and graded. Growth characteristics in the veneer, such as knots and knotholes, can be repaired or plugged to improve the grade. Adhesive is applied to the plies, which are then laid up in cross-laminated layers. Plywood has an odd number of layers with each layer consisting of one or more plies. Face layers normally have the grain oriented parallel to the long dimension of the panel. The glued veneer assembly is placed in a hot press where they are bonded together under heat and pressure. -
2.7 Application of Panels in Structural Wall Sheathing
2.7 Application of panels in Where panels are used as structural sheathing they are generally at risk of wetting during initial erection and structural wall sheathing over the remainder of the building process until the 2.7.1 Selection of panels for sheathing cladding is complete. In service the panels are likely to be exposed to high humidity on a regular basis but 2.7.1.1 Performance considerations should not be subject to significant direct wetting. These The selection of panel type depends on an overall assess- conditions are unlikely to lead to the prolonged excessive ment of wall performance including: moisture contents which can lead to the onset of decay. • strength and stability Panels however may occasionally be at risk from wetting • whether the sheathing is to be positioned on the in service due to building defects. Good design and inside or the outside of the framing workmanship, together with the correct type and grade • durability of panel, will reduce the likelihood and consequences of • thermal performance wetting in service. • interstitial condensation risk • the possible effects of moisture in service There are no requirements for preservative treatment of • other components in the wall such as vapour control any wood-based structural sheathing used in a conven- layers, insulation type and thickness, breather tional timber frame system. Where wood-based panels membranes, cavity barriers. are used as external sheathing that is exposed to the weather, the specifier should take account of the degree Strength and stability of exposure and the type of cladding when deciding Sheathing is primarily used to provide racking resist- what type of preservative, if any, should be specified. -
SHAKERWORKBENCH Design, Construction Notes and Techniques
BENCHCRAFTED · SHAKER BENCH PLANS SHAKERWORKBENCH Design, Construction Notes and Techniques “Don't make something unless it is both necessary and useful; but if it is both neces- sary and useful, don't hesitate to make it beautiful." –Shaker Dictum Introduction and Design: Ron Brese Construction Notes and Techniques: Jameel Abraham Measured Drawings: Louis Bois Copyright Benchcrafted 2011·2014 No unauthorized reproduction or distribution. You may print copies for your own personal use only. 1 BENCHCRAFTED · SHAKER BENCH PLANS · INTRODUCTION & DESIGN · “Whatever perfections you may have, be assured people will find them out, but whether they do or not, nobody will take them on your word” Canterbury, New Hampshire, 1844 When I first laid eyes on the workbench at the Hancock Shaker Museum in Pittsfield, Massachusetts I had a pretty good idea of the configuration of my next workbench. I think it would be safe to say that I was inspired. However, designing a workbench that is inspired by a Shaker icon can be intimidating as well. I had to do justice to the original and keep in mind what might be considered acceptable. Luckily, most are aware that the Shakers were quite accepting of new technologies that could be practically applied, so this did allow a fair amount of leeway in regards to using more recent workholding devices on this bench. In the end, I did want the look to be very representative of the Shaker Ideal. “‘Tis a Gift to Be Simple” is an over used Shaker pronouncement, however I often think it’s meaning is misinterpreted. I believe it means having freedom from making things unnecessarily complicated. -
Architectural Woodwork Standards, 2Nd Edition
Architectural Woodwork Standards SHEET PRODUCTS 4S E C T I O N SECTION 4 Sheet Products table of contents INTRODUCTORY INFORMATION Species ...........................................................................................76 Reconstituted Veneers ...................................................................76 Introduction ...........................................................................................73 Speciality Sheet Products .....................................................................77 Plywood ................................................................................................73 Panel Adhesive .....................................................................................77 Types of Panel ......................................................................................73 Fire Retardance ....................................................................................77 Industrial Grade Particleboard ........................................................73 Photodegradation ..................................................................................77 Moisture Resistant Particleboard ...................................................73 Oxidation ...............................................................................................77 Fire Retardant Particleboard ..........................................................73 Types of Veneer Cuts ............................................................................77 Medium Density Fiberboard (MDF) ................................................73 -
AP-42, CH 10.5: Plywood Manufacturing
10.5 Plywood Manufacturing 10.5.1 General Plywood is a building material consisting of veneers (thin wood layers or plies) bonded with an adhesive. There are two types of plywood: softwood plywood and hardwood plywood. Softwoods generally correspond to coniferous species. The most commonly used softwoods for manufacturing plywood are firs and pines. Hardwoods generally correspond to deciduous species. For hardwood plywood, commonly used wood species include oak, poplar, maple, cherry, and larch. Softwood plywood is manufactured by gluing several layers of dry softwood veneers together with an adhesive. Softwood plywood is used for wall siding, sheathing, roof decking, concrete formboards, floors, and containers. Softwood plywood is classified under Standard Industrial Classification (SIC) code 2436, and North American Industrial Classification System (NAICS) code 321212 for “Softwood Plywood and Veneer”. Hardwood plywood is made of hardwood veneers bonded with an adhesive. The outer layers (face and back) surround a core which is usually lumber, veneer, particleboard, or medium density fiberboard. Hardwood plywood may be pressed into panels or plywood components (e.g., curved hardwood plywood, seat backs, chair arms, etc.). Hardwood plywood is used for interior applications such as furniture, cabinets, architectural millwork, paneling, flooring, store fixtures, and doors. Hardwood plywood is classified under SIC code 2435 and NAICS code 321211, for “Hardwood Plywood and Veneer”. Softwood plywood plants typically produce softwood veneers and softwood plywood on the same plant site. However, most hardwood plywood and veneer plants either produce hardwood plywood or hardwood veneer. Hardwood veneer plants cut and dry hardwood veneers. Hardwood plywood plants typically purchase hardwood veneers and press the veneers onto a purchased core material. -
CLASSIC WORKBENCH Design, Construction Notes & Techniques
BENCHCRAFTED CLASSIC WORKBENCH Design, Construction Notes & Techniques Copyright, Benchcrafted December 2016 www.benchcrafted.com 1 DESIGN When we set out to design a new workbench for our customers, from the very beginning we decided it should, above all, be simple. Not only in function, but also to build. We make no bones about it, our vises are designed and made to work sweetly, but not to a price point. However, not everyone is ready for their ultimate Split Top Roubo bench build, either monetarily, or technically. For those looking to get their feet wet in traditional woodworking, using time-proven techniques and tools, this bench will provide all the workholding required to test the waters. For many, this will be all the bench you need, and for others it will be an excellent springboard to our Split Top Roubo, while keeping the Classic as a second bench. The Classic Workbench is based largely on the famous Plate 11 workbench from Roubo’s “The Art of the Joiner”. We’ve built dozens of these “Roubo” benches over the past decade, helped others build hundreds more and examined extant French benches from the period. We’ve haven’t changed our opinion on this fundamental design. The Classic is a simpler, easier to build version of Roubo’s Plate 11 bench that captures all the functionality of Roubo’s design. French technical schools of the late 19th and early 20th centuries were outfitted with benches just like this. Paring down the bench to its essentials, we’ve incorporated our Classic Leg Vise, Planing Stop and Holdfast as workholding devices.