Finite Element Analysis for Thermoforming Process of Starch/ Biodegradable Polyester Blend

Total Page:16

File Type:pdf, Size:1020Kb

Finite Element Analysis for Thermoforming Process of Starch/ Biodegradable Polyester Blend AIJSTPME (2012) 5(2): 33-37 Finite Element Analysis for Thermoforming Process of Starch/ Biodegradable Polyester Blend Thongwichean T. Agricultural Machinery Technology Department, Rajamangala University of Technology Srivijaya Rattaphum College, Thachamuang Rattaphum Songkla 90180. Thailand Phalakornkule C. Department of Chemical Engineering, King Mongkut’s University of Technology North Bangkok, 10800. Thailand Chaikittiratana A.* Department of Mechanical and Aerospace Engineering, King Mongkut’s University of Technology North Bangkok, 10800. Thailand. *Corresponding author, email: [email protected] Abstract The objective of this work is to study the behaviour during sheet thermoforming process of a Tapioca starch- biodegradable polyester (EnpolTM) blend with the mixing ratio of 50:50 by weight. The mechanical behavior of the material extruded in the form of thin sheet was studied by means of compression tests with varying strain rates at temperatures ranging from between 363 K to 393 K. The Elastic–Perfectly Plastic material model was used to capture the compressive deformation behavior of the material. It was found that the model described reasonably well the behavior of the material and the 2D Finite element simulation with Elastic–Plastic material model gave good representation of the real thermoforming process. Keywords: Bioplastics, Thermoforming, Finite Element Analysis 1 Introduction Bioplastics is derived from renewable resources and applications such as bone replacement, tissue could be degraded more easily than petroleum-based scaffolds and drug-delivery systems [2]. plastics. With the growing environmental concerns Starch-based bioplastics can be processed by several and the realization that petroleum resources are techniques traditionally undertaken with petroleum- limited, a wide range of biodegradable plastics have based plastics. However, processing of starch-based been developed in the last two decades in order to bioplastics could be very different from petroleum- reduce the amount of long-lived petroleum-based based plastics because of the highly-branched plastics wastes. Starch-based bioplastics is one class molecular structure and the hydrophilic nature of of bioplastics, which can be further divided into three starch. A number of computational modeling of categories [1]: (1) thermoplastic starch materials; thermoforming processes of petroleum-based modified starch with plasticizing additives; (2) plastics have been developed and proposed blends of starch and biodegradable plastics; (3) ([3],[4],[5],[6],[7],[8]), but only few for starch-based plastics whose monomers are biochemically derived bioplastics. Szegda et al. [1] employed finite element from starch. Among these materials, the blends of techniques to model thermoforming processes of starch and biodegradable plastics have been PlanticTM, commercial starch-based thermoplastics, developed into packaging materials and biomedical in order to predict its thermoformed structure. Even 33 Thongwichean T. et al. / AIJSTPME (2012) 5(2): 33-37 though the prediction did not perfectly match the 2.3 Differential Scanning Calorimeter test experimental data, the model could capture some The thermal analysis was performed using a Mettler features of the thickness variation. Further model Toledo Differential Scanning Calorimeter (DSC) modifications such as the considerations of non- model DSC 822 at the heating rate of 20oC/min. Data uniform initial thickness and the moisture and from DSC showed that the blend had one temperature effects were necessary to improve the endothermic melting peak between 383-403 K with model predictions. the highest point located at 391 K. The paper is among the first attempts to develop a simple computational modeling based on finite 2.4 Mechanical Testing element techniques to predict the behavior of a blend of starch/biodegradable plastic, EnpolTM. The In order to determine the mechanical deformation mechanical behavior of the material extruded to the behaviour of the biodegradable material, the uniaxial form of thin sheet was studied by means of compression tests were performed at various compression tests at temperatures from 363 toto 393 temperatures ranging from 363 K to 393 K with K and at strain rates of 0.1 and 0.5 s-1. Elastic-plastic strain rates of 0.1 and 0.5 s-1. The compression tests material models was used to capture the compressive were carried out according to ASTM D695 using an behavior of the material and 2-dimensional finite universal testing machine (Instron model 5567) element simulation of the sheet thermoforming equipped with a temperature control chamber. Two process was presented. thin square samples described earlier were stacked up on a compression platen as shown in Figure 2. The 2 Experimental Work dependence on temperature and strain rate of the deformation is shown in a compressive engineering 2.1 Materials stress vs. engineering strain plot given in Figure 3. The polymer in this study was tapioca starch- As temperature increases, the material behaves as a EnpolTM blend, provided by DES Co.Ltd.(Thailand). softer material and yield stress decreases. On the EnpolTM is a fully biodegradable aliphatic polyester other hand, the yield strain values at different resin developed by IRe Chemical Ltd. (Seoul, temperatures are not affected by temperature and Korea). The ratio of tapioca starch to EnpolTM was yielding occurred at approximately the engineering 50:50 by weight. strain of 0.07. As the strain rate increases the material becomes stiffer but only very slightly, thus it can be said that the deformation behaviour is almost 2.2 Samples preparation unaffected by strain rates. When true stress are The tapioca starch-EnpolTM blend was extruded into plotted against true strain at different temperatures thin strips with cross-sectional area of 2mm x 20mm, and a strain rate of 0.5 S-1 in Figure 4, it can be using a twin screw extruder (HAAKE Polylab, observed that the deformation undergoes without Rheomex CTW 100P). To eliminate moisture increase in stress after yielding and that it deforms in content, the material was dried in a hopper drier at elastic-perfectly plastic manner. From the tests 80oC for 4 hours, prior to the extrusion process. The conducted, the optimum processing condition was extruded material, shown in Figure 1, was then cut in achieved at 393K with strain rate of 0.5 S-1. At this to small thin square test pieces with dimension of condition, the compressed specimen was easily 12x12x2 mm for compression tests. deformed and had good surface appearance. For other conditions, cracks appeared on the specimen's surface. These test results also provided material's properties used in the subsequent finite element modelling. 2.5 Sheet thermoforming Sheet thermoforming was performed by a match Figure 1: Thin strips of extruded tapioca starch- mould compression method with die and punch EnpolTM blend. configuration shown in Figure. 5. Before subjected to compression, a strip of specimen was heated at 393 K 34 Thongwichean T. et al. / AIJSTPME (2012) 5(2): 33-37 for 20 minutes. The compression sheet thermoforming process was carried out at 393 K and the punch was set to travel 10mm in 4 seconds. An example of stamped specimen strip is shown in Figure 6. Compressing load Stack of small thin samples Compressing plattens Figure 5: Sheet thermoforming test arrangement 4 mm. Figure 6: Specimen after the sheet thermoforming process Figure 2: Compression test arrangement 3 Finite Element Simulation 3.1 Material Model 60 Since the deformation behavior was found to be 50 temperature dependence, strain rate insensitive with no strain hardening after yield, thus it was modeled 40 with a standard isotropic elastic-perfectly plastic material model inbuilt in a commercial finite element 30 -1 -1 90363 อK ง ศาเซ 0.5ลเซ sยี ส έ = 0.5 s package ABAQUS 6.5 [9]. The input material's -1 -1 363 K 0.1 s έ = 0.1 s 90 องศาเซลเซยี -1ส properties needed are Young's modulus, Poisson's 373 K 0.5 s -1 20 100 องศาเซลเซยี ส έ = 0.5 s -1 -1 10037 3 อKง ศาเซ ล0.เ1ซ sยี ส έ = 0.1 s Ratio and true yield stress. Young's modulus and true -1 -1 11038 3 อKง ศาเซ ล0.เ5ซ sยี ส έ = 0.5 s -1 -1 yield stress are temperature dependent and were 10 11038 3 อKง ศาเซ ล0.เ1ซ sยี ส έ = 0.1 s -1 393 K 0.5 s-1 έ = 0.5 s 120 องศาเซลเซยี ส determined from true stress-strain curves shown in -1 -1 Compression Engineering Stress (MPa) 12039 3 อKง ศาเซ ล0.เ1ซ sยี ส έ = 0.1 s 0 Figure 4. These values are tabulated in Table 1. 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 Poisson's ratio of the materials was assumed to be Compression Engineering Strain 0.4. A comparison between the experimental data Figure 3: Plot of compressive engineering stress vs. and finite element simulation using a single 3D engineering strain at different temperatures and strain element (C3D8H) with elastic-perfectly plastic rates material model is given in Figure 7 and a very good agreement of to the data can be observed. 55 50 35 45 30 40 25 35 30 20 363 K Data 25 ทดสอบที่ 90 องศาเซลเซียส 15 373 K Data -1 20 ทดสอบที่ 100 องศาเซลเซียส 9036 3อ งKศ าเซล 0.5เซีย sส ทด3ส8อ3บ Kท ี่ Data110 องศาเซลเซียส 10 100373 อKง ศาเซ 0.5ลเซ sีย-1ส 15 ทด3ส9อ3บ Kท ี่ Data120 องศาเซลเซียส 363 K Simulation -1 แบบจ าลองที่ 90 องศาเซลเซียส 383 K 0.5 s 10 5 110 องศาเซลเซียส แบ3บ7จ3 า Kล อ Simulationงที่ 100 อ งศาเซลเซียส 393 K 0.5 s-1 383 K Simulation Compression True Stress (MPa) Stress True Compression 5 120 องศาเซลเซียส แบบจ าลองที่ 110 องศาเซลเซียส 393 K Simulation 0 Compression Engineering Stress (MPa) แบบจ าลองที่ 120 องศาเซลเซียส 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Compression True Strain Compression Engineering Strain Figure 4: Plot of compressive true stress vs.
Recommended publications
  • Thermoforming
    APPLICATION GUIDE: Thermoforming TIME REQUIRED COST SKILL LEVEL By Brian Sabart, Stratasys Inc. and Jeff Gangel, Formech International, Ltd. OVERVIEW Vacuum Forming Materials: Thermoforming is a relatively simple manufacturing process that is inexpensive when compared to other - ABS plastic molding and forming methods. Although thermoforming is often associated with manufacturing - Polyvinylchloride (PVC) of packaging items such as blister packs and disposable coffee cup lids, the cost and time advantages - Polycarbonate (PC) are realized in a broad spectrum of products in an equally broad range of industries. When using a Fortus - Polyethylene (PE) 3D Production System with FDM technology to construct thermoforming tooling, the process becomes - Low Density Polyethylene (LDPE) simpler, more efficient and increasingly cost-effective. - High Density Polyethylene (HDPE) - Polypropylene (PP) - Polystyrene (PS) PROCESS DESCRIPTION - Polyphenylene Oxide (PPO) Thermoforming is a collection of manufacturing methods that heat and form sheets of extruded plastic. - Polyphenylene Ether (PPE) Thermoforming processes include drape, vacuum and pressure forming. - Polymethyl-Methacrylate (PMMA) - Acrylic Drape forming relies on gravity to pull the sheet against the tool. Vacuum forming, as the name implies, - Closed Cell Foam Polyester (PBT, PET) draws the heated sheet against the tool with the assistance of a vacuum. Pressure forming combines - Polyester Copelymer (PETG) vacuum and pressure to simultaneously pull and push the plastic sheet to the contours of the tool. - Thermoplastic Olefin (TPO) - Thermoplastic Elastomer (TPE) This process guide documents the steps for vacuum forming since it is the most common thermoforming - Thermoplastic Rubber (TPR) method. However, many of the details presented may also be applied to drape and pressure forming.
    [Show full text]
  • Food Packaging Technology
    FOOD PACKAGING TECHNOLOGY Edited by RICHARD COLES Consultant in Food Packaging, London DEREK MCDOWELL Head of Supply and Packaging Division Loughry College, Northern Ireland and MARK J. KIRWAN Consultant in Packaging Technology London Blackwell Publishing © 2003 by Blackwell Publishing Ltd Trademark Notice: Product or corporate names may be trademarks or registered Editorial Offices: trademarks, and are used only for identification 9600 Garsington Road, Oxford OX4 2DQ and explanation, without intent to infringe. Tel: +44 (0) 1865 776868 108 Cowley Road, Oxford OX4 1JF, UK First published 2003 Tel: +44 (0) 1865 791100 Blackwell Munksgaard, 1 Rosenørns Allè, Library of Congress Cataloging in P.O. Box 227, DK-1502 Copenhagen V, Publication Data Denmark A catalog record for this title is available Tel: +45 77 33 33 33 from the Library of Congress Blackwell Publishing Asia Pty Ltd, 550 Swanston Street, Carlton South, British Library Cataloguing in Victoria 3053, Australia Publication Data Tel: +61 (0)3 9347 0300 A catalogue record for this title is available Blackwell Publishing, 10 rue Casimir from the British Library Delavigne, 75006 Paris, France ISBN 1–84127–221–3 Tel: +33 1 53 10 33 10 Originated as Sheffield Academic Press Published in the USA and Canada (only) by Set in 10.5/12pt Times CRC Press LLC by Integra Software Services Pvt Ltd, 2000 Corporate Blvd., N.W. Pondicherry, India Boca Raton, FL 33431, USA Printed and bound in Great Britain, Orders from the USA and Canada (only) to using acid-free paper by CRC Press LLC MPG Books Ltd, Bodmin, Cornwall USA and Canada only: For further information on ISBN 0–8493–9788–X Blackwell Publishing, visit our website: The right of the Author to be identified as the www.blackwellpublishing.com Author of this Work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.
    [Show full text]
  • Packaging Technology
    PACKAGING TECHNOLOGY KAZAKH NATIONAL AGRARIAN UNIVERSITY ALMATY, KAZAKHSTAN 19 - 30 OCT. 2015 by ROSNITA A. TALIB BSc (Food Sc & Tech), MSc. (Packaging Engineering) UPM PhD (Materials Engineering) Sheffield, UK. Department of Process and Food Engineering Faculty of Engineering 43400 UPM Serdang, Selangor Universiti Putra Malaysia Email: [email protected] Course Outcomes Students are able to : 1. To describe the functions, basic packaging design elements and concepts 2. To analyse various types of packaging materials for use on appropriate food 3. To differentiate standard test methods for packaging quality control 4. Describe various types of packaging equipment in food industry References/Textbooks 1. Soroka, W. (2009) Fundamentals of Packaging Technology. Naperville. Instituue of Packaging Professionals. 2. Klimchuk, M.R. and Krasovec, S.A. (2006) Packaging Design Successful Product Branding from Concept to Shelf. Hoboken. John Wileys & Sons 3. Morris, S.A. (2010). Food Packaging Engineering. Iowa: Blackwell Publishing Professional. 4. Robertson, G.L. (2006). Food Packaging - Principles and Practice (2nd Edition). Boca Raton: CRC Press. 5. Kelsey, R.J. (2004). Handbook of Package Engineering (4th Edition). Boca Raton: CRC Press. Package vs Packaging - Simple examples of package: boxes on the grocer's shelf and wrapper on a candy bar. - The crate around a machine or a bulk container for chemicals. - Generically, package is any containment form. - Package (noun) is an object. A physical form that is intended to contain, protect/preserve; aid in safe, efficient transport and distribution; and finally act to inform and motivate a purchase decision on the part of a consumer. Package vs Packaging Packaging is Packaging also - Packaging is a verb, reflecting the ever-changing nature of the The development and production of medium.
    [Show full text]
  • Optimizing Thermoforming of High Impact Polystyrene (HIPS) Trays by Design of Experiments (DOE) Methodologies
    Optimizing Thermoforming of High Impact Polystyrene (HIPS) Trays by Design of Experiments (DOE) Methodologies Vishal M. Dhagat Department of Electrical & Computer Engineering, UConn Storrs, CT 06269-4157 [email protected] Ravindra Thamma Manufacturing & Construction Management, CCSU 1615 Stanley Street, New Britain, CT 06050 [email protected] Abstract The process of heating and reshaping plastics sheet and film materials has been in use since the beginning of the plastics industry better known as thermoforming. Today this process is very ubiquitous for industrial products including signage, housings, and hot tubs. It also produces much of the packaging in use today including blister packs, cartons, and food storage containers. The process of thermoforming has many advantages over other methods for producing high quality plastic products, with some limitations, which can be resolved by implementing stringent quality control using scientific methods to improve process performance. Two areas of interest in today’s industry of great concerns are lean manufacturing operations and environment. Thermoforming of high impact polystyrene sheets using vacuum forming technique requires technical knowledge on material behavior, mold type, mold material, and process variables. Research on these various subjects is well documented but very limited research is done in process optimization of HIPS (High Impact Polystyrene). Design of Experiments (DOE) approaches like the face-centered cubic central composite design can be used to refine the process and to minimize rejects. In this paper, we present a case study on thermoforming of HIPS single use trays made on a semi automatic machine using three criteria solely based on the FCC Design method. The optimization of tray forming and wall thickness distribution is explored.
    [Show full text]
  • Innovations in High Performance Polyaryletherketone Victrex Polymer Solutions – Product and Technology Overview
    Innovations in High Performance Polyaryletherketone Victrex Polymer Solutions – Product and Technology Overview With over 30 years of focus and experience Victrex Polymer Solutions, a division of Victrex plc, is the world’s leading manufacturer of high performance polyaryletherketones, including VICTREX ® PEEK polymer. Demands for higher performing and more efficient products combined with an increasing rate of change driven by shorter product life cycles and product development timeframes requires companies to provide cost effective solutions to meet these challenges. Victrex provides a wide range of polyaryletherketone products, technical service and support to our customers and end users on a global basis to help them deliver innovative cost effective solutions to the market. Working together we identify material and technical solutions that meet the most difficult design challenges. Using our high performance materials can help to achieve weight reduction, enhanced energy efficiency, the ability to produce smaller yet more powerful and functional devices, an increase in application lifetime, enhanced performance, compliance with legislation and environmental regulations, and overall lower cost. aving the most diversified product range of all suppliers • VICTREX ® PEEK High Flow Polymers — Designed for Hof polyaryletherketone allows us to offer different injection molding thin-walled intricate parts; they can viscosities and a wide range of product modifications to be used unfilled or with the capability for high filler meet customer requirements. Victrex materials are used loadings, offering ease of processing, shorter cycle times, successfully in a wide range of applications. When compared and outstanding performance. The excellent weld line with other polymers such as LCPs, PPS, PEI, and polyimides strength compared to LCP and PPS enables use for PI and PAI, or polysulfones like PES, fluoropolymers PTFE, design of thin wall moldings and micro parts.
    [Show full text]
  • Financial Costs of Plastics Marking" Was Launched by the Com- Mission of the European Communities (DG-XI) in February 1999
    &RPPLVVLRQRIWKH(XURSHDQ&RPPXQLWLHV '*;, )LQDQFLDO&RVWVRI3ODVWLFV 0DUNLQJ )LQDO5HSRUW $XJXVW )LQDQFLDOÃ&RVWVÃRIÃ3ODVWLFVÃ/DEHOOLQJ i 7DEOHRI&RQWHQWV $FURQ\PV ([HFXWLYH6XPPDU\ %DFNJURXQGDQGSXUSRVH 0HWKRGRORJ\ 6WXG\ILQGLQJV ,QWURGXFWLRQ 2EMHFWLYH 6WXG\$SSURDFK 6WUXFWXUHRIWKH5HSRUW $FNQRZOHGJHPHQWV %DFNJURXQG 3ODVWLFFRQVXPSWLRQLQWKHFRQYHUWHULQGXVWU\LQ(8 6PDOODQG0HGLXPVL]HG(QWHUSULVHV &RQVXPSWLRQLQ&(($FFHVVLRQ&RXQWULHV 7UDGH3HUVSHFWLYHV 5HYLHZRI0DUNLQJ6FKHPHV $SSURDFKWRFRVWHVWLPDWLRQ 0HWKRGRORJ\RQFRVWV 0DUNLQJ0HWKRGVDQG6KDUHV 8QLW&RVWV )LQDQFLDO&RVWVRI0DUNLQJ 7RWDO&RVWVDWWKH(8/HYHO &RVWV(VWLPDWHVE\&RXQWU\DQG6HFWRU ,PSDFWRQWKH&(($FFHVVLRQ&RXQWULHV 7UDGH,VVXHV 8?PPV?ILQDOGRF Ã ii )LQDQFLDOÃ&RVWVÃRIÃ3ODVWLFVÃ/DEHOOLQJ 7DEOHRI$SSHQGLFHV 5HIHUHQFHV &RQWDFWV 5HYLHZRI&RVW6WXGLHV 4XHVWLRQQDLUH6XUYH\ 4XHVWLRQQDLUHIRUWKHFRVWDVVHVVPHQWRIGLIIHUHQWSODVWLFLGHQWLILFDWLRQ VFKHPHV %DFNJURXQG,QIRUPDWLRQRQ3ODVWLF&RQYHUWHUV 1DWLRQDO6WDWLVWLFVIRU(VWRQLD)UDQFH,WDO\6ORYDNLDDQGWKH8QLWHG .LQJGRP 8?PPV?ILQDOGRF )LQDQFLDOÃ&RVWVÃRIÃ3ODVWLFVÃ/DEHOOLQJ iii $FURQ\PV STANDARDISATION CEN European Committee for Standardization ISO International Organization for Standardization IUPAC International Union of Pure and Applied Chemistry PLASTIC INDUSTRY AHPI Association of the Hungarian Plastics Industry APME Association of Plastics Manufacturers in Europe BPF British Plastics Federation CEPMC Council of European Producers of Materials for Con- struction CIPAD Council of International Plastics Associations Directors ERRA European Recovery
    [Show full text]
  • Sustainable Plastic Packaging
    ® Thermoforming ® Quarterly A JOURNAL OF THE THERMOFORMING DIVISION OF THE SOCIETY OF PLASTIC ENGINEERS FIRST QUARTER 2013 I VOLUME 32 I NUMBER 1 MANAGE WHAT YOU MEASURE Revisiting Labor-Based Costing pages 8-11 INSIDE … Sustainability: Strengthening the Message pages 20-25 SPE Council Review pages 28-29 WWW.THERMOFORMINGDIVISION.COM Thermoforming FIRST QUARTER 2013 Thermoforming Quarterly® VOLUME 32 I NUMBER 1 Quarterly® A JOURNAL PUBLISHED EACH Contents MANAGE WHAT YOU MEASURE CALENDAR QUARTER BY THE THERMOFORMING DIVISION I Departments OF THE SOCIETY OF Chairman’s Corner R 2 PLASTICS ENGINEERS Thermoforming in the News R 4 Editor Front Cover Conor Carlin University News R 15 (617) 771-3321 Thermoforming & Sustainability R 20-25 [email protected] Sponsorships Laura Pichon (847) 829-8124 +LJKHUSULFHG *URZLQJ DQGRU'HSOHWHG 'HPDQGIRU )RVVLO)XHOV 3ODVWLFV :RUOGZLGH Fax (815) 678-4248 [email protected] 3ODVWLFV 6XVWDLQDELOLW\ (IIRUWV I Features Conference Coordinator &RQVXPHUDQG 5HJXODWRU\ 5HWDLOHU 3UHVVXUHV Lesley Kyle 3UHVVXUHV *+*V HPLVVLRQVHWF The Business of Thermoforming R 8-11 (914) 671-9524 Page 20 The Dangers of Direct Labor-Based Costing in Manufacturing [email protected] Thermoforming Division Industry Practice R 12-13 Executive Assistant Grant to Help Students See Manufacturing as Opportunity Gwen Mathis Cover Artwork courtesy of Dallager Photography (706) 235-9298 All Rights Reserved 2012 Fax (706) 295-4276 [email protected] Thermoforming Quarterly® is pub- lished four times annually as an infor- mational and educational bulletin to Page 12 the members of the Society of Plastics Engineers, Thermoforming Division, and the thermoforming industry. The name, “Thermoforming Quarterly®” and its logotype, are registered trademarks of the Thermoforming Division of the Society I In This Issue of Plastics Engineers, Inc.
    [Show full text]
  • Modern Biodegradable Plastics—Processing and Properties Part II
    materials Article Modern Biodegradable Plastics—Processing and Properties Part II Janusz W. Sikora 1,*, Łukasz Majewski 1 and Andrzej Puszka 2 1 Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland; [email protected] 2 Department of Polymer Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, ul. Gliniana 33, 20-614 Lublin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-8153-84-222 Abstract: Four different plastics were tested: potato starch based plastic (TPS-P)–BIOPLAST GF 106/02; corn starch based plastic (TPS-C)–BioComp BF 01HP; polylactic acid (polylactide) plastic (PLA)—BioComp BF 7210 and low density polyethylene, trade name Malen E FABS 23-D022; as a petrochemical reference sample. Using the blown film extrusion method and various screw rotational speeds, films were obtained and tested, as a result of which the following were determined: breaking stress, strain at break, static and dynamic friction coefficient of film in longitudinal and transverse direction, puncture resistance and strain at break, color, brightness and gloss of film, surface roughness, barrier properties and microstructure. The biodegradable plastics tested are characterized by comparable or even better mechanical strength than petrochemical polyethylene for the range of film blowing processing parameters used here. The effect of the screw rotational speed on the mechanical characteristics of the films obtained was also demonstrated. With the increase in the screw rotational speed, the decrease of barrier properties was also observed. No correlation between roughness and permeability of gases and water vapor was shown.
    [Show full text]
  • Optimizing Thermoforming of High Impact Polystyrene (HIPS) Trays by Design of Experiments (DOE) Methodologies
    Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 Vol. 6 Issue 04, April-2017 Optimizing Thermoforming of High Impact Polystyrene (HIPS) Trays by Design of Experiments (DOE) Methodologies Vishal M. Dhagat, Ravindra Thamma , University of Connecticut ; Central Connecticut State University Abstract - The process of heating and reshaping plastic sheet and Products" (non- packaging) include items that have a short film materials has been in use since the beginning of the plastics life expectancy but are not on the packaging side of the industry better known as thermoforming [1]. Today this process business [1]. This market includes disposable plastic plates is very ubiquitous for industrial products including signage, and drinking cups. "Packaging Products" is a huge, high housings, and hot tubs [1]. It also produces much of the volume, an industry devoted to providing manufacturers with packaging in use today including blister packs, cartons, and food storage containers [1]. The process of thermoforming has many low-cost packaging to display, protect, and/or extend the life advantages over other methods for producing high-quality of their products [2]. plastic products, with some limitations, which is resolved by implementing stringent quality control using scientific methods Various new research technologies define new and exiting to improve process performance. Two areas of interest in today’s thermoforming processes and products. Process simulations industry of great concerns are lean manufacturing operations using novel computer based software and environment [2]. Polystyrene scrap must be segregated from like COMSOL developed and well studied. Detailed new other materials in the waste stream before it can be recycled [3].
    [Show full text]
  • THERMOFORMING Over 50 Years of Thermoforming Experience
    AN INTRODUCTION TO THERMOFORMING Over 50 Years of Thermoforming Experience Placon provides high-quality, custom thermoformed packaging solutions for consumer, industrial, food, and medical products. With over 50 years of thermoforming design and manufacturing experience, you can trust that Placon’s award-winning design and engineering teams will deliver the best packaging solution for your product no matter what industry you are in. Using state of the art design software and a collaborative new product innovation process, our team specializes in delivering a distinctive package that will meet your business objectives on time and within budget. Placon has a reputation in the industry for delivering the highest quality products. We offer: • ISO9001 certification • ISO13485 certification (Elkhart, IN) • ISO14001 compliant • AIB certification (Madison, WI) • SQF certification (West Springfield, MA) • GMP compliant We have multiple clean rooms to serve you: • Elkhart, IN • Plymouth, MN • Madison, WI Team up with us and you’ll benefit from: • More than 250 combined years of design experience with over 700 employees • Exceptional customer service • Rapid prototyping and production-quality samples • In-house tooling and matched-metal thermoforming • Validation process expertise with strict quality control standards (for medical packaging) Continuously setting the bar in plastic packaging solutions, we’re committed to quality with a deep integrity in all that we do. We create packaging breakthroughs that inspire better engagement between people and products. 2 CALL 800.541.1535 TO PLACE AN ORDER Table of Contents 04 WHAT IS THERMOFORMING? 08 COMMONLY USED MATERIALS 11 CONDUCTIVE/ANTISTATIC PRODUCTS 12 TYPES OF STERILIZATION 14 SEALING TECHNIQUES 16 PRODUCT DEVELOPMENT 20 MANUFACTURING ENVIRONMENT 22 ACRONYM INDEX 23 GLOSSARY 24 DATA TABLES PLACON.COM 3 WHAT IS THERMOFORMING? Thermoforming is a process that involves heating a flat sheet of plastic until it is soft enough to mold.
    [Show full text]
  • Pulp Plastic 2.0
    Pulp Plastic 2.0 An Innovation by Kate Berg The Problem Plastics (and even bioplastics) rely on manufactured materials to make, which means more raw materials are used. The (Other) Problem The making of citrus products results in an organic waste product - orange fiber - that can be processed and put to use in other ways. ○ Citri-Fi is a company that processes the citrus Background fiber from citrus products. ○ Bioplastics require a plasticizer and a polymer. ◦ Polymers are long molecular chains that comprise the basic structure of a bioplastic. In bioplastics, this is often starch. ◦ “Starch is a naturally-occurring biopolymer that, once plasticized, can be thermally processed and handled on traditional extrusion, injection-molding, blow-molding, or thermoforming equipment.” -Packworld Article The citrus fiber produced by Citri-Fi could be utilized as a polymer in bioplastic! Pulp Plastic 1.0 Original Successful ○ 6g glycerol Recipe ○ 18g gelatin ○ 6g Citri-Fi 125FG ○ 120ml distilled water Gelatin acts as the polymer in the plastic. It provides structure. In all plastics, there is a polymer (long carbon chains) that provide structure. The citri-fi works well as a polymer because of its fibrous qualities. There Were Places to ○ Only a few recipes were tested due to Improve... limited time. ○ The sheets were wrinkled and hard to test. ○ No recipe with 100% Citri-Fi was tested. ○ The water-solubility was a concern - the plastic became flexible again when submerged in water. Time for something new! Now, it’s Pulp Plastic 2.0! The Product A water-soluble, biodegradable plastic made from citrus fiber waste products.
    [Show full text]
  • Environmental Impact of Food Packaging Materials: a Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials
    materials Review Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials Lindani Koketso Ncube 1, Albert Uchenna Ude 1,*, Enoch Nifise Ogunmuyiwa 2, Rozli Zulkifli 3 and Isaac Nongwe Beas 4 1 Department of Mechanical, Energy and Industrial Engineering, Faculty of Engineering and Technology (FET), Botswana International University of Science and Technology (BIUST), Private Mail Bag 16, Palapye, Botswana; [email protected] 2 Department of Chemical, Materials &Metallurgical Engineering Academic, FET, BIUST, Private Mail Bag 16, Palapye, Botswana; [email protected] 3 Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, The National University of Malaysia, UKM, Bangi 43600, Malaysia; rozlizulkifl[email protected] 4 Botswana Institute for Technology Research and Innovation (BITRI), Private Bag 0082, Gaborone, Botswana; [email protected] * Correspondence: [email protected] Received: 24 August 2020; Accepted: 28 September 2020; Published: 6 November 2020 Abstract: Plastics have remained the material of choice, and after serving their intended purpose, a large proportion ends up in the environment where they persist for centuries. The packaging industry is the largest and growing consumer of synthetic plastics derived from fossil fuels. Food packaging plastics account for the bulk of plastic waste that are polluting the environment. Additionally, given the fact that petroleum reserves are finite and facing depletion, there is a need for the development of alternative materials that can serve the same purpose as conventional plastics. This paper reviews the function of packaging materials and highlights the future potential of the adoption of green materials.
    [Show full text]