Np4a Alarmones Function in Bacteria As Precursors to RNA Caps
Np4A alarmones function in bacteria as precursors to RNA caps Daniel J. Lucianoa,b and Joel G. Belascoa,b,1 aKimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016; and bDepartment of Microbiology, New York University School of Medicine, New York, NY 10016 Edited by Gisela Storz, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, and approved January 2, 2020 (received for review August 15, 2019) Stresses that increase the cellular concentration of dinucleoside ΔapaH mutants, such caps appear to be present at a high level tetraphosphates (Np4Ns) have recently been shown to impact RNA on most primary transcripts whose 5′-terminal transcribed nu- degradation by inducing nucleoside tetraphosphate (Np4) capping cleotide is A, C, or U and at a lower level on transcripts that of bacterial transcripts. However, neither the mechanism by which beginwithG.Bycontrast,fewifanyNp4-capped transcripts are such caps are acquired nor the function of Np4Ns in bacteria is present in unstressed wild-type cells. These caps are removed in known. Here we report that promoter sequence changes upstream E. coli by either of two enzymes, ApaH or the RNA pyrophos- of the site of transcription initiation similarly affect both the effi- phohydrolase RppH, thereby triggering rapid RNA degradation ciency with which Escherichia coli RNA polymerase incorporates (21). Of the two, ApaH appears to play a greater role in decapping, dinucleoside polyphosphates at the 5′ end of nascent transcripts and its inactivation by inducers of disulfide stress helps to explain E.
[Show full text]