Bifacial Peptide Nucleic Acid (Bpna) As a Regulator of Nucleic Acid Function

Total Page:16

File Type:pdf, Size:1020Kb

Bifacial Peptide Nucleic Acid (Bpna) As a Regulator of Nucleic Acid Function Bifacial Peptide Nucleic Acid (bPNA) as a Regulator of Nucleic Acid Function Dissertation Presented in Partial Fulfillment of the Requirement for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Xin Xia, B.S. Graduate Program in Chemistry The Ohio State University 2015 Dissertation Committee: Dr. Dennis Bong, Advisor Dr. Karin Musier-Forsyth Dr. Kotaro Nakanishi Copyright by Xin Xia 2015 Abstract This dissertation contains research summaries regarding the characterizations and applications of a novel bifacial peptide nucleic acid (bPNA) triplex system. The main content is divided into two parts: part one (chapter 2) presents systematic studies on effective in vitro inhibition of transcription, reverse-transcription and exonuclease function via the formation of synthetic bPNA-nucleic acid triplex structures; part two (chapters 3 and 4) demonstrates that bPNA triplex hybrid functionally substitutes for native duplex structures that are crucial for proper functions of aptamers and ribozyme, further a two- way communication system describing RNA-templated oxidative coupling of bPNA fragments leads to the emergence of ribozyme cleavage is discussed in details. In part one, we speculate that the thermodynamically stable synthetic bPNA-nucleic acid triplex can be utilized to generate template distortions that are inhibitory to nucleic acid based enzymatic reactions. Three enzymatic systems were investigated: T7 RNA polymerase, Exonuclease T, and AMV reverse transcriptase. bPNA hybridization kinetics and inhibitory efficacies on each system will be discussed in detail in chapter 2. In part two, study on bPNA-nucleic acid triplex system was expanded to investigate the structure-function relation of nucleic acid. In chapter 3, three biologically active nucleic acids folds were selected: IgE DNA aptamer, spinach RNA aptamer and minimal type I hammerhead ribozyme. Replacement of a duplex stem with unstructured oligo-T/U strands, which are bPNA binding sites, imposed structure-function loss in all three nucleic ii acids folds. Functional rescue was observed upon bPNA-driven refolding of oligo-T/U strands into triplex hybrid system. Further, in chapter 4, we demonstrated a 2-way communication between the abiotic bPNA hybridization site and the native ribozyme cleavage site, where the ribozyme-templated bPNA ligation in turn restore the ribozyme self-cleavage activity. In summation, we will demonstrate to you that bPNA triplex stem structure is compatible with biological processes and presented to be competitive inhibitor for DNA/RNA specific enzymes; further, bPNA triplex stem is biologically similar to native stem structures, not only the bPNA hybridization but also the nucleic acid templated bPNA ligation can restore native nucleic acid activities, demonstrate readout and transformation of non-native macromolecules through an abiotic template interface in DNA/RNA template topologies that are not accessible via native base-pairing. iii To my parents and my fiancé iv Acknowledgement I hold great appreciation to Dr. Bong, as he is an intelligent, patient and responsible mentor to me. He took me to into his lab on my third year, and since then he has been constantly helping me to not only build up knowledge, but also confidence. His persistence in research originality is highly admirable, and it has inspired me and will keep on inspiring me far beyond the graduate school. I also want to express my appreciation to Dr. Karin Musier-Forsyth and Dr. Kotaro Nakanishi for serving on my graduation committee, providing guidance and constructive input. Thank Dr. Thomas Magliery for his generosity in sharing his lab equipment constantly throughout my graduate study. Also, thank Dr. Kurt Fredrick for a productive collaboration. Finally, I want to thank my father Ming Xia and mother Ningning Zhang for their endless support and unconditional love throughout these years; thank my fiancé Zhun Zhou for holding my hands during all the ups and downs, studying and researching together; last but not the least, thank to my two fluffy friends Pangpang and Niuniu for necessary distractions. v Vita 2001-2004 ..................................................................Jinling High School, Nanjing, China 2004-2008 .................................... B.S., China Pharmaceutical University, Nanjing, China 2008-2009 ......................................Q.A., Simcere Pharmaceutical Group, Nanjing, China 2009-2015 ................ Graduate Research/Teaching Assistant, The Ohio State University Publications during Ph.D. program at the Ohio State University Zhou, Z., Xia, X. and Bong, D.* (2015) “Synthetic Polymer Hybridization with DNA and RNA Directs Nanoparticle Loading, Silencing Delivery, and Aptamer Function.” J. Am. Chem. Soc., DOI: 10.1021/jacs.5b05481 Piao, X., Xia, X., Mao, J. and Bong, D.* (2015) “Peptide ligation and RNA cleavage via an abiotic interface.” J. Am. Chem. Soc., 137, 3751-3754. Xia, X., Piao, X., and Bong, D.* (2014) "Bifacial PNA as an allosteric switch for aptamer and ribozyme function." J. Am. Chem. Soc., 136, 7265-7268. Xia, X., Piao, X., Fredrick, K, and Bong, D., (2014) “Bifacial PNA Complexation Inhibits Enzymatic Access to DNA and RNA.” ChemBioChem. 15, 31-36. Piao, X., Xia, X., and Bong, D.* (2013) “Bifacial Peptide Nucleic Acid Directs Cooperative Folding and Assembly of Binary, Ternary, and Quaternary DNA Complexes.” Biochemistry, 52, 6313-6323. Saibal Bandyopadhyay, Xin Xia, Andre Matseiyeu, Georgeta Mihai, Sanjay Rajagopalan and Dennis Bong.* (2012) “Z-Group Ketone Chain Transfer Agents for RAFT Polymer Nanoparticle Modification via Hydrazone Conjugation.” Macromolecules, 45, 6766-6773. Field of Study Major field: Chemistry vi Table of Contents Abstract ........................................................................................................................... ii Acknowledgement ........................................................................................................... v Vita ................................................................................................................................. vi Table of Contents .......................................................................................................... vii List of Figures .............................................................................................................. xvii List of Tables ................................................................................................................ xxi CHAPTER 1 Nucleic Acids Structures and Targeting Strategies ................................................... 1 1.1 Native Nucleic Acids Structures ............................................................................ 2 1.1.1 Duplexes ........................................................................................................ 2 1.1.2 G-Quadruplex ................................................................................................ 4 1.1.3 RNA Folds ..................................................................................................... 6 1.2 Nucleic Acids Triplex ............................................................................................ 7 1.2.1 Structural Characters of Triplex ...................................................................... 7 1.3.2 Nucleobase Modifications .............................................................................10 1.3.3 Sugar Modifications ......................................................................................12 1.3.4 Backbone Modifications ................................................................................13 1.4 Peptide Nucleic Acid (PNA) as DNA Mimic ..........................................................14 1.4.1 PNA Structure and Recognition Mechanism .................................................14 vii 1.4.2 Antigene Therapeutics of PNA ......................................................................17 1.4.3 Antisense Regulation of PNA ........................................................................20 1.4.4 PNAs as Detection Probes and Biosensors ..................................................21 1.4.5 Chemical Modifications of PNA .....................................................................21 1.5 Bifacial Nucleobase Analogues ............................................................................23 1.5.1 Bifacial Nucleobase Displaying PNA for Triplex Formation ...........................24 1.5.2 Melamine Derivatives Recognize T-T/U-U Mismatch ....................................25 1.6 PNA With Native Peptide Backbone ....................................................................26 1.7 Melamine Displayed Bifacial Peptide Nucleic Acid (bPNA) ..................................27 1.8 References for Chapter 1 .....................................................................................31 CHAPTER 2 bPNA Triplex Inhibits Enzymatic Access to DNA and RNA ......................................46 2.1 Introduction ..........................................................................................................47 2.2 Results and Discussion ........................................................................................50 2.2.1 Triplexes Inhibit in vitro T7 RNA Transcription. .............................................52 2.2.2 Triplexes are Resistant Towards Exonuclease T Digestion ...........................56 2.2.3 Triplexes Inhibit AMV Reverse Transcription .................................................59
Recommended publications
  • Peptide Nucleic Acids, Morpholinos and Related Antisense Biomolecules
    MEDICAL INTELLIGENCE UNIT Peptide Nucleic Acids, Morpholinos and Related Antisense Biomolecules Christopher G. Janson, M.D. Departments of Neurosurgery, Neurology and Molecular Genetics Cell and Gene Therapy Center UMDNJ-Robert Wood Johnson Medical School Camden, New Jersey, U.S.A. Matthew J. During, M.D., ScD. Department of Molecular Medicine and Pathology University of Auckland Auckland, New Zealand LANDES BIOSCIENCE / EUREKAH.COM KLUWER ACADEMIC / PLENUM PUBLISHERS GEORGETOWN, TEXAS NEW YORK, NEW YORK USA U.SA PEPTIDE NUCLEIC ACIDS, MORPHOLINOS AND RELATED ANTISENSE BIOMOLECULES Medical Intelligence Unit Landes Bioscience / Eurekah.com Kluwer Academic / Plenum Publishers Copyright ©2006 Eurekah.com and Kluwer Academic / Plenum Publishers All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher, vdth the exception of any material supplied specifically for the purpose of being entered and executed on a computer system; for exclusive use by the Purchaser of the work. Printed in the U.S.A. Kluwer Academic / Plenum PubHshers, 233 Spring Street, New York, New York, U.S.A. 10013 http ://www.wkap .nl/ Please address all inquiries to the Publishers: Landes Bioscience / Eurekah.com, 810 South Church Street, Georgetown, Texas, U.S.A. 78626 Phone: 512/ 863 7762; FAX: 512/ 863 0081 http ://v^^ww.eurekah. com http://www.landesbioscience.com Peptide
    [Show full text]
  • Resistance to HIV (Exercise)
    1 Evolution in fast motion – Resistance to HIV (Exercise) Resistance to HIV In the early 1990s, a number of studies revealed that some people – although they had repeatedly contact with HIV – did not become carriers of HIV or, in the case of a confirmed HIV-infection, showed a delayed onset of the disease (AIDS) (a delay of several years was reported). First attempts to explain these phenomena were observed a few years later, when scientists identified important co-receptor molecules on the surface of the host cells, which are essential for HIV to infect the host cell. Scientists assumed that resistant persons may carry an aberrant version of the co-receptor molecule, which makes it impossible for the virus to enter the host cell. Such a co-receptor is the chemokine co-receptor CCR5, which is normally involved in the host’s immune answer (Dean & O’Brien, 1998). In order to test their hypothesis, the scientists sequenced the genes which code for the co- receptor CCR5. They investigated more than 700 samples from HIV-infected patients and compared them with the CCR5-sequences from more than 700 healthy persons. The results of the DNA-sequencing revealed mutations in the CCR5-gene in HIV-infected persons with a delayed onset of AIDS, as well as in some samples of healthy persons (but not in HIV- patients with typical onset of AIDS) (Samson et al., 1996). Exercises 1. In material 1, you can find two CCR5-gene-sequences selected from the data set of the scientists. Compare the sequences and a. find out where the mutation is (identify the position and label it in both! sequences).
    [Show full text]
  • Mirna Research Guide Mirna Guide Cover Final.Qxd 9/28/05 10:24 AM Page 4
    miRNA_guide_cover_final.qxd 9/28/05 10:24 AM Page 3 miRNA Research Guide miRNA_guide_cover_final.qxd 9/28/05 10:24 AM Page 4 Contents Introduction to microRNAs and Experimental Overview Introduction to microRNAs . .1 miRNA Experimental Overview . .2 microRNA Isolation and Enrichment miRNA Isolation . .3 mirVana™ miRNA Isolation Kits . .3 “miRNA Certified” FirstChoice® Total RNA . .3 RecoverAll™ Total Nucleic Acid Isolation Kit . .3 miRNA Enrichment . .4 flashPAGE™ Fractionator System . .4 Global microRNA Expression Profiling miRNA Expression Profiling . .5 Overview of the mirVana™ Array System . .6 mirVana™ miRNA Labeling Kit . .7 mirVana™ miRNA Probe Set . .7 mirVana™ miRNA Bioarrays . .8 Detection and Quantification of Specific microRNAs mirVana™ miRNA Detection Kit . .9 mirVana™ miRNA Probe and Market Kit . .9 mirVana™ miRNA Probe Construction Kit . .10 mirVana™ qRT-PCR miRNA Detection Kit . .11 microRNA Functional Analysis miRNA Functional Analysis . .12 Anti-miR™ miRNA Inhibitors . .12 Pre-miR™ miRNA Precursor Molecules . .13 siPORT™ NeoFX™ Transfection Agent . .13 pMIR-REPORT™ miRNA Expression Reporter Vector . .13 microRNA Information Resources miRNA Resource . .14 miRNA Database . .14 miRNA Array Resource . .14 Introduction to microRNAs . .14 miRNA Application Guide . .15 Technical miRNA Seminars . .15 Highly Trained miRNA Technical Support Scientists . .15 miRNA e-Updates . .15 TechNotes Newsletter . .15 Reference Relative miRNA Expression Among Common Cell Types . .16 miRNA_guide_guts_final.qxd 9/28/05 10:26 AM Page 1 Introduction to microRNAs and Experimental Overview Introduction to microRNAs Overview of microRNA processing Small regulators with global impact miRNAs are transcribed as regions of longer RNA molecules that can be as long as 1000 nt (Figure 3). Description of microRNAs MicroRNAs (miRNAs) are evolutionarily conserved, small, noncoding RNA mol- The longer RNA molecules are processed in the nucleus into hairpin RNAs of ecules that regulate gene expression at the level of translation (Figure 1).
    [Show full text]
  • Aptamer-Mediated Cancer Gene Therapy Dongxi Xiang , Sarah
    Aptamer-Mediated Cancer Gene Therapy Dongxi Xiang1*, Sarah Shigdar 1*, Greg Qiao2, Shu-Feng Zhou3, Yong Li4, Ming Q Wei5, 6 1 7 8 9** Liang Qiao , Hadi Al.Shamaileh , Yimin Zhu , Conglong Zheng , Chunwen Pu and Wei Duan1** 1School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria, 3217, Australia. 2 Department of Chemical and Biomolecular Engineering, Melbourne School of Engineering The University of Melbourne, Parkville, Victoria 3010, Australia 3Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA. 4Cancer Care Centre, St George Hospital, Kogarah, NSW2217, and St George and Sutherland Clinical School, University of New South Wales (UNSW), Kensington, NSW2052, Australia 5Division of Molecular and Gene Therapies, Griffith Health Institute and School of Medical Science, Griffith University, Gold Coast, QLD 4222, Australia 6Storr Liver Unit, at the Westmead Millennium Institute, the University of Sydney at the Westmead Hospital, Westmead NSW, 2145, Australia 7Suzhou Key Laboratory of Nanobiomedicine, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, China, 215123 8Department of Biology, Medical College, Dalian University, Liaoning, People’s Republic of China 9The Affiliated Zhongshan Hospital of Dalian University, 6 Jiefang Road, Dalian, Liaoning, The People's Republic of China, 116001. 1 * These authors contributed equally. ** Corresponding authors: E-mail: [email protected] (C. Pu); or [email protected] (W. Duan). 2 Abstract Cancer as a genetic disorder is one of the leading causes of death worldwide. Conventional anticancer options such as chemo- and/or radio-therapy have their own drawbacks and could not provide a cure in most cases at present.
    [Show full text]
  • Lab-On-A-Chip Systems for Aptamer-Based Biosensing
    micromachines Review Lab-on-a-Chip Systems for Aptamer-Based Biosensing Niazul I. Khan 1 and Edward Song 1,2,* 1 Department of Electrical and Computer Engineering, University of New Hampshire, Durham, NH 03824, USA; [email protected] 2 Materials Science Program, University of New Hampshire, Durham, NH 03824, USA * Correspondence: [email protected]; Tel.: +1-603-862-5498 Received: 6 January 2020; Accepted: 17 February 2020; Published: 20 February 2020 Abstract: Aptamers are oligonucleotides or peptides that are selected from a pool of random sequences that exhibit high affinity toward a specific biomolecular species of interest. Therefore, they are ideal for use as recognition elements and ligands for binding to the target. In recent years, aptamers have gained a great deal of attention in the field of biosensing as the next-generation target receptors that could potentially replace the functions of antibodies. Consequently, it is increasingly becoming popular to integrate aptamers into a variety of sensing platforms to enhance specificity and selectivity in analyte detection. Simultaneously, as the fields of lab-on-a-chip (LOC) technology, point-of-care (POC) diagnostics, and personal medicine become topics of great interest, integration of such aptamer-based sensors with LOC devices are showing promising results as evidenced by the recent growth of literature in this area. The focus of this review article is to highlight the recent progress in aptamer-based biosensor development with emphasis on the integration between aptamers and the various forms of LOC devices including microfluidic chips and paper-based microfluidics. As aptamers are extremely versatile in terms of their utilization in different detection principles, a broad range of techniques are covered including electrochemical, optical, colorimetric, and gravimetric sensing as well as surface acoustics waves and transistor-based detection.
    [Show full text]
  • Real-Time PCR for Direct Aptamer Quantification on Functionalized
    www.nature.com/scientificreports OPEN Real-time PCR for direct aptamer quantifcation on functionalized graphene surfaces Viviane C. F. dos Santos1,2*, Nathalie B. F. Almeida1,2, Thiago A. S. L. de Sousa1, Eduardo N. D. Araujo3, Antero S. R. de Andrade2 & Flávio Plentz1 In this study, we develop a real-time PCR strategy to directly detect and quantify DNA aptamers on functionalized graphene surfaces using a Staphylococcus aureus aptamer (SA20) as demonstration case. We show that real-time PCR allowed aptamer quantifcation in the range of 0.05 fg to 2.5 ng. Using this quantitative technique, it was possible to determine that graphene functionalization with amino modifed SA20 (preceded by a graphene surface modifcation with thionine) was much more efcient than the process using SA20 with a pyrene modifcation. We also demonstrated that the functionalization methods investigated were selective to graphene as compared to bare silicon dioxide surfaces. The precise quantifcation of aptamers immobilized on graphene surface was performed for the frst time by molecular biology techniques, introducing a novel methodology of wide application. DNA (deoxyribonucleic acid) aptamers are single strand oligonucleotides that presents high afnity and speci- fcity to their binders1. In comparison with traditional ligands, such as antibodies, aptamers present some advan- tages. Tey are chemically stable, cost-efective, more resistant to pH and temperature variations, and are more fexible in the design of their structures2. Due to these characteristics, they have great potential as sensing compo- nents in diagnostic and detection assays. Biosensor platforms based on DNA aptamers are more stable for storage and transport than the antibodies counterparts2.
    [Show full text]
  • New Constrained Amino Acids and Peptide Nucleic Acid Building Blocks for the Construction of Bio-Polymers Alexandra Gresika
    New constrained amino acids and peptide nucleic acid building blocks for the construction of bio-polymers Alexandra Gresika To cite this version: Alexandra Gresika. New constrained amino acids and peptide nucleic acid building blocks for the construction of bio-polymers. Other. Université Côte d’Azur, 2018. English. NNT : 2018AZUR4104. tel-02073232 HAL Id: tel-02073232 https://tel.archives-ouvertes.fr/tel-02073232 Submitted on 19 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT Nouveaux synthons contraints de type - amino acides et PNA en vue de l´élaboration de bio-foldamères New constrained amino acids and peptide nucleic acid building blocks for the construction of biopolymers Alexandra Gresika Molécules Bioactives Présentée en vue de l’obtention Devant le jury, composé de : du grade de docteur en Chimie Muriel Amblard, Directrice de Recherche d’Université Côte d’Azur CNRS, IBMM UMR 5247, Université de Dirigée par : Nadia Patino Montpellier Karine Alvarez, Chargée de Recherche Soutenue le : 16.11.2018 CNRS, AFBM UMR 7257, Université Aix- Marseille Mohamed Mehiri, Maître de Conférences, ICN UMR 7272, Université Côte d’Azur Nadia Patino, Professeur des Universités, ICN UMR 7272, Université Côte d’Azur 1 New constrained amino acids and peptide nucleic acid building blocks for the construction of bio-polymers.
    [Show full text]
  • Design Strategies for Aptamer-Based Biosensors
    Sensors 2010, 10, 4541-4557; doi:10.3390/s100504541 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Review Design Strategies for Aptamer-Based Biosensors Kun Han 1,2, Zhiqiang Liang 3 and Nandi Zhou 1,4,* 1 Department of Biochemistry and National Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China 2 Suzhou Institute of Biomedical Engineering Technology, Chinese Academy of Science, Suzhou 215163, China; E-Mail: [email protected] 3 Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, China; E-Mail: [email protected] 4 School of Biotechnology and the Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-510-8591-8116; Fax: +86-510-8591-8116. Received: 11 February 2010; in revised form: 1 April 2010 / Accepted: 4 April 2010 / Published: 4 May 2010 Abstract: Aptamers have been widely used as recognition elements for biosensor construction, especially in the detection of proteins or small molecule targets, and regarded as promising alternatives for antibodies in bioassay areas. In this review, we present an overview of reported design strategies for the fabrication of biosensors and classify them into four basic modes: target-induced structure switching mode, sandwich or sandwich-like mode, target-induced dissociation/displacement mode and competitive replacement mode. In view of the unprecedented advantages brought about by aptamers and smart design strategies, aptamer-based biosensors are expected to be one of the most promising devices in bioassay related applications.
    [Show full text]
  • Download Article (PDF)
    DNA and RNA Nanotechnology 2015; 2: 42–52 Mini review Open Access Martin Panigaj*, Jakob Reiser Aptamer guided delivery of nucleic acid-based nanoparticles DOI 10.1515/rnan-2015-0005 Evolution of Ligands by Exponential enrichment) [4,5]. Received July 15, 2015; accepted October 3, 2015 Nucleic acid-based aptamers are especially well suited Abstract: Targeted delivery of bioactive compounds is a for the delivery of nucleic acid-based therapeutics. Any key part of successful therapies. In this context, nucleic nucleic acid with therapeutic potential can be linked acid and protein-based aptamers have been shown to to an aptamer sequence [6], resulting in a bivalent bind therapeutically relevant targets including receptors. molecule endowed with a targeting aptamer moiety and In the last decade, nucleic acid-based therapeutics a functional RNA/DNA moiety like a small interfering coupled to aptamers have emerged as a viable strategy for RNA (siRNA), a micro RNA (miRNA), a miRNA antagonist cell specific delivery. Additionally, recent developments (antimiR), deoxyribozymes (DNAzymes), etc. In addition in nucleic acid nanotechnology offer an abundance of to the specific binding, many aptamers upon receptor possibilities to rationally design aptamer targeted RNA recognition elicit antagonistic or agonistic responses that, or DNA nanoparticles involving combinatorial use of in combination with conjugated functional nucleic acids various intrinsic functionalities. Although a host of issues have the potential of synergism. Since the first report including stability, safety and intracellular trafficking describing an aptamer-siRNA delivery approach in 2006 remain to be addressed, aptamers as simple functional many functional RNAs and DNAs conjugated to aptamer chimeras or as parts of multifunctional self-assembled sequences have been tested in vitro and in vivo [7-9].
    [Show full text]
  • Riboprobe(R) in Vitro Transcription Systems Technical Manual TM016
    TECHNICAL MANUAL Riboprobe® in vitro Transcription Systems InstrucƟ ons for use of Products P1420, P1430, P1440, P1450 and P1460 Revised 10/13 TM016 tm016.1013:EIVD_TM.qxd 9/26/2013 11:10 AM Page 1 Riboprobe® in vitro Transcription Systems All technical literature is available on the Internet at www.promega.com/protocols Please visit the web site to verify that you are using the most current version of this Technical Manual. Please contact Promega Technical Services if you have questions on use of this system. E-mail [email protected] 1. Description..........................................................................................................1 2. Product Components.........................................................................................3 3. General Considerations....................................................................................4 A. Properties of Promega Vectors Suitable for in vitro Transcription ..............4 B. Applications of Promega Vectors ......................................................................6 C. General Cloning Techniques ..............................................................................6 4. RNA Transcription in vitro .............................................................................7 A. DNA Template Preparation................................................................................7 B. Synthesis of High-Specific-Activity Radiolabeled RNA Probes ...................8 C. Determining Percent Incorporation and Probe Specific Activity ...............10
    [Show full text]
  • Lecture 1 1. to Understand the Flow of Biochemical Information from DNA to RNA to Proteins and Ultimately to Biochemical And
    Lecture 1 1. To understand the flow of biochemical information from DNA to RNA to proteins and ultimately to biochemical and cellular function and dysfunction (disease) Central Dogma: DNARNAProteinPhenotype NucleotidegeneDNAchromosomegenome - In reality it is much more complex DNA sequence RNA sequence Protein sequence Protein structure Protein function RNA structure RNA function Know: - Structure of DNA/RNA and proteins - Intermolecular interactions: o Hydrogen bonds o Disulfur bonds o Ion bonds o Polar bonds - Main aspects of the central dogma o Translation (at the ribosome) o Transcription o Genetic code DNA structure: - Sugar-phosphate backbone - 4 bases o A/G = purines o T/C = pyrimidines o A-T and G-C - 5’-3’ antiparallel (always read 5’3’) o Addition occurs at the 3’ end o 5’ position to commence reading depends on promotor o Reading frame depends on promotor - Coding and template strand: o Depends on the position of the promotor RNA structure: - U replaces T - Self-complementarity = annealing of strand to itself - tRNA/mRNA/pre-RNA - Spliced (exons remain) to form mature RNA Therefore 6: - 3 from the codon from the top 5’ end, 3 from the codon from the bottom 5’ end. Protein Structure: Chemical Properties Depends on N or C-terminus, peptide bonds and side chains - Non-polar aliphatic - Polar but uncharged - Aromatic - Positively charged - Negatively charged pKa = pH at which the protein has a charge of zero. Alpha-helices: side chains point sideways Beta-helices: - Parallel and anti-parallel to produce alternate the direction the side chains point - In reality, there is a combination of parallel and anti-parallel side chains - Different bonds between NH and CO groups in each direction of side chain Sample Question 1.
    [Show full text]
  • Mutation of a DNA Polymerase Into an Efficient RNA Polymerase
    Directed evolution of novel polymerase activities: Mutation of a DNA polymerase into an efficient RNA polymerase Gang Xia, Liangjing Chen, Takashi Sera, Ming Fa, Peter G. Schultz*, and Floyd E. Romesberg* Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 Edited by Jack W. Szostak, Massachusetts General Hospital, Boston, MA, and approved March 22, 2002 (received for review October 30, 2001) The creation of novel enzymatic function is of great interest, but of an attached substrate. However, the substrate was attached to remains a challenge because of the large sequence space of the major phage coat protein, pVIII, raising the concern of proteins. We have developed an activity-based selection method to cross-reactivity between a polymerase on one phage and a evolve DNA polymerases with RNA polymerase activity. The Stoffel substrate attached to another phage. Cross-reactivity will com- fragment (SF) of Thermus aquaticus DNA polymerase I is displayed promise the association of genotype with phenotype and inhibit on a filamentous phage by fusing it to a pIII coat protein, and the the successful evolution of desired function (see below). substrate DNA template͞primer duplexes are attached to other We have developed an activity-based selection method, in which adjacent pIII coat proteins. Phage particles displaying SF poly- a DNA polymerase and its substrate are both attached to the minor merases, which are able to extend the attached oligonucleotide phage coat protein, pIII. The pIII proteins are localized to only one primer by incorporating ribonucleoside triphosphates and biotin- end of the phage particle (Fig.
    [Show full text]