Capsaspora Owczarzaki

Total Page:16

File Type:pdf, Size:1020Kb

Capsaspora Owczarzaki The origin of metazoan multicellularity: what comparative genomics is telling us and how we could go forward Iñaki Ruiz-Trillo, Institute of Evolutionary Biology & Universitat de Barcelona & Kitp Cooperation And The Evolution Of Multicellularity, Kitp, 21 February 2013 1 Institut de Biologia Evolutiva (UPF-CSIC) 2 3 3 3 3 last common unicellular ancestor 4 last common unicellular ancestor 4 1. A phylogenetic framework 5 who are the closest living relatives of animals? Fungi Choanoflagellata Metazoa 6 who are the closest living relatives of animals? Fungi Choanoflagellata Metazoa Capsaspora Ministeria Nuclearia Ichthyosporea ? Corallochytrium 6 A new phylogenetic framework Fungi Choanoflagellata Metazoa Holozoa Ruiz-Trillo et al. 2008 Mol Biol Evol 25:664-672. Shalchian-Tabrizi et al. 2008 PLoS ONE 3:e2098. Brown et al. 2009 Mol Biol Evol 26:2699-2709. Torruella et al. 2012 Mol Biol Evol 29, 531–544. 7 A new phylogenetic framework Fungi Choanoflagellata Metazoa Nucleariidae Fonticula alba Holozoa Ruiz-Trillo et al. 2008 Mol Biol Evol 25:664-672. Shalchian-Tabrizi et al. 2008 PLoS ONE 3:e2098. Brown et al. 2009 Mol Biol Evol 26:2699-2709. Torruella et al. 2012 Mol Biol Evol 29, 531–544. 7 A new phylogenetic framework Fungi Choanoflagellata Metazoa Nucleariidae Filasterea Capsaspora Ministeria Fonticula alba Holozoa Ruiz-Trillo et al. 2008 Mol Biol Evol 25:664-672. Shalchian-Tabrizi et al. 2008 PLoS ONE 3:e2098. Brown et al. 2009 Mol Biol Evol 26:2699-2709. Torruella et al. 2012 Mol Biol Evol 29, 531–544. 7 A new phylogenetic framework Fungi Choanoflagellata Metazoa Nucleariidae Filasterea Capsaspora Ministeria Fonticula alba Ichthyosporea Holozoa Ruiz-Trillo et al. 2008 Mol Biol Evol 25:664-672. Shalchian-Tabrizi et al. 2008 PLoS ONE 3:e2098. Brown et al. 2009 Mol Biol Evol 26:2699-2709. Torruella et al. 2012 Mol Biol Evol 29, 531–544. 7 2. Genome data 8 M. brevicollis genome Fungi Choanoflagellata Metazoa King et al. 2008 Nature 451:783-788. 9 M. brevicollis genome Fungi Choanoflagellata Metazoa King et al. 2008 Nature 451:783-788. 9 M. brevicollis genome Fungi Choanoflagellata Metazoa cell adhesion (cadherins) cell signaling (protein tyrosine kinases) King et al. 2008 Nature 451:783-788. 9 M. brevicollis genome Fungi Choanoflagellata Metazoa cell adhesion (cadherins) cell signaling (protein tyrosine kinases) integrins WNT pathway TGF-B pathway Notch pathway Hedgehog pathway several TFs King et al. 2008 Nature 451:783-788. 9 Unicellular relatives of animals: not a game of one Fungi Holozoa Choanoflagellata Metazoa Nucleariidae Filasterea Capsaspora Ministeria Fonticula alba Ichthyosporea Ruiz-Trillo et al. 2008 Mol Biol Evol 25:664-672. Shalchian-Tabrizi et al. 2008 PLoS ONE 3:e2098. Brown et al. 2009 Mol Biol Evol 26:2699-2709. Torruella et al. 2011 Mol Biol Evol 10 Unicellular relatives of animals: not a game of one Fungi Holozoa Choanoflagellata Metazoa Nucleariidae Filasterea Capsaspora Ministeria Fonticula alba Ichthyosporea Ruiz-Trillo et al. 2008 Mol Biol Evol 25:664-672. Shalchian-Tabrizi et al. 2008 PLoS ONE 3:e2098. Brown et al. 2009 Mol Biol Evol 26:2699-2709. Torruella et al. 2011 Mol Biol Evol 10 Unicellular relatives of animals: not a game of one Fungi Holozoa Choanoflagellata Metazoa Nucleariidae Filasterea Capsaspora Ministeria Fonticula alba Ichthyosporea Ruiz-Trillo et al. 2008 Mol Biol Evol 25:664-672. Shalchian-Tabrizi et al. 2008 PLoS ONE 3:e2098. Brown et al. 2009 Mol Biol Evol 26:2699-2709. Torruella et al. 2011 Mol Biol Evol 10 Unicellular relatives of animals: not a game of one Fungi Holozoa Choanoflagellata Metazoa Nucleariidae Filasterea Capsaspora Ministeria Fonticula alba Ichthyosporea Ruiz-Trillo et al. 2008 Mol Biol Evol 25:664-672. Shalchian-Tabrizi et al. 2008 PLoS ONE 3:e2098. Brown et al. 2009 Mol Biol Evol 26:2699-2709. Torruella et al. 2011 Mol Biol Evol 10 UNICORN project Fungi Holozoa Allomyces macrogynus Choanoflagellata Salpingoeca Monosiga Spizellomyces Filasterea rosetta brevicollis Metazoa punctatus Capsaspora Ministeria Mortierella owczarzaki vibrans verticillata Ichthyosporea Nucleariidae Sphaeroforma Amoebidium arctica parasiticum Fonticula alba Thecamonas Apusozoa trahens Ruiz-Trillo et al. 2007. Trends in Genetics 23:113-118. 11 UNICORN: sequenced genomes (August 2012) Fungi Allomyces macrogynus Choanoflagellata Monosiga Spizellomyces Salpingoeca Filasterea brevicollis Metazoa punctatus rosetta Capsaspora Ministeria Mortierella owczarzaki vibrans verticillata Ichthyosporea Nucleariidae Sphaeroforma Amoebidium arctica parasiticum Fonticula alba we are responsible for Capsaspora Thecamonas Apusozoa and trahens Sphaeroforma Ruiz-Trillo et al. 2007. Trends in Genetics 23:113-118. 12 Integrin-mediated adhesion system: pre-UNICORN view Amoebozoa Thecamonas Fungi Capsaspora Choanoflagellata Metazoa Salpingoeca Allomyces Monosiga Spizellomyces Batrachochytrium membrane 13 Integrin-mediated adhesion system: post-UNICORN view Amoebozoa Thecamonas Fungi Capsaspora Choanoflagellata Metazoa Allomyces Monosiga Salpingoeca Spizellomyces Batrachochytrium membrane Sebé-Pedrós et al. 2010. PNAS 107:10142-10147. 14 Metazoan Transcription Factors (TFs) Other Other eukaryotes Amoebozoa Amastigomonas fungi Allomyces Spizellomyces Capsaspora Monosiga Metazoa HD: PBC, prd-like. Ets, Smad, NR HD: ANTP, POU, LIM, Irx, Meis. bZIP: PAR, C/EBP, CREB. bZIP: Jun, Fos, Atf3, ... Grainyhead-like bHLH: Groups A, D, E, F. bHLH: MAD, MITF, Class I Fox TFs USF, Mlx, Group C. HMGbox: Sox, TCF/LEF. bZIP: Atf4/5 HMGbox: Sox-like Holozoa Grainyhead-like Runx NFkappaB/Rel p53 bZIP: Oasis, Atf6, CREB, PAR, C/EBP, Atf2. Opisthokonts bHLH: Myc, Max, Mad, USF, Mlx, SREBP, MITF, Group C: ARNT. HD: Pbx, Prd-like. T-box Unikonts Metazoan-like Mef2 CP2 TFs Metazoan-like STAT Fox TFs STAT TFs Churchill Mef2-like (Type II) MAD-box bZIP TFs bHLH TFs HD: TALE, non-TALE HMGbox TFs Sebé-Pedrós et al. 2011. Mol. Biol. Evol. 28:1241-54 15 Metazoan Transcription Factors: pre-UNICORN view Metazoa Capsaspora Choanoflagellata NF-Kappa Thecamonas Monosiga Allomyces Fungi ETS, Smad, NR Grainyhead-like T-box Spizellomyces Amoebozoa Runx p53 other eukaryotes Fox membrane 16 Metazoan Transcription Factors: post-UNICORN view Metazoa Capsaspora Choanoflagellata Thecamonas Monosiga Allomyces Fungi ETS, Smad, NR Spizellomyces Amoebozoa other Grainyhead-like eukaryotes p53 Runx NF-Kappa T-box membrane Fox Sebé-Pedrós et al. 2011. Mol. Biol. Evol. 28:1241-54 17 Capsaspora has a Brachyury gen Brachyury Fungi Co Dtbx1 Dm Bra Filasterea Sd Bra Porifera Hs Tbx19 Om Bra Cnidaria & Ctenophora Pp Bra Nv Bra Co Bra Placozoa Bra Ml Ta Bra Hv Bra2 Bilateria Co Dtbx2 Hs T Pc Bra Sr Bra Hv Bra1He Bra Aq Tbx1/15/20 Av Tbx1/15/20 Sp Tbx 100/1.00 60/0.98 50/0.98 Tbx2/3 64/1.00 Tbr Dm bi 34/0.84 Hs Tbx21HsEomes Pp Tbx2/3 Ta Tbx2/3 Hs Tbx3 100/1.00 Hs Tbr1 ! Nv Tbx2/3 Hs Tbx2 d Ml Tbx2/3 77/1.00 -/0.90 -/- -/1.00 Aq TbxA Aq TbxE Hs Tbx15 Nv Tbx20 67/0.99 85/1.00 Aq TbxC Hs Tbx18 41/1.00 Aq TbxD Hs Tbx22 Nv Tbx20.3 Hs Tbx6 Hs Tbx5 Hs Tbx4 Hs MGA Nv Tbx20.2 Hs Tbx20 PcTbx4/5 Dm dc2 AqTbx4/5 Dm dc1 Ml Tbx1 Dm dc3 Dm midline Nv Tbx1p Tbx2 Sd Tbx6 Aq TbxB Dm H15 Hs Tbx1 Nv Tbx4/5 Nv Tbx1 Nv Tbx20.1 Dm org-1 Tbx1/15/20 Hs Tbx10 Tbx4/5 Co Tbx3 0.4 Sebé-Pedrós et al. 2011. Mol. Biol. Evol. 28:1241-54 18 PFAM gain/loss a i k b [Gain] Gene Ontology N domains za ollis r c Holozoa Signal transducer activity 8 oa i z evi cza Transcription regulatory region DNA binding 7 r w g eta o un Metazoa Extracellular region 9 . F M M. b C Outgroup Transcription regulatory region DNA binding 8 c [Loss] 5157 3014 3287 3941 +235 +19 +6 +55 Holozoa Hydrolase activity (O-glycosyl bonds) 7 -56 -1983 -1688 -1143 Fungi Multi-organism process 10 Negative regulation of hydrolase activity 7 Transcription regulatory region DNA binding 16 Metazoa+ 4978 Choano +61 M. brevicollis Extracellular region 29 -52 Regulation of transcription, DNA-dependent 62 Nucleoplasm 22 Holozoa 4969 Developmental process 11 +100 Cellular cell wall organization or biogenesis 7 -160 Racemase and epimerase activity 8 C. owczarzaki Extracellular region 26 5029 Opisthokonta Receptor binding 12 Reproduction 12 Multicellular organismal process 13 Cell wall organization biogenesis 11 Pathogenesis 8 Viral reproduction 9 External encapsulating structure 7 19 Figure 2. Suga et al. PFAM gain/loss a i k b [Gain] Gene Ontology N domains za ollis r c Gains (geneHolozoa ontology,Signal transdu >cer 7 a domainsctivity ) 8 oa i z evi cza Transcription regulatory region DNA binding 7 r w g eta o un HolozoaMetazoa Extracellular region 9 . F M M. b C Outgroup Transcription regulatory region DNA binding 8 Signal transducer activity c [Loss]Transcription regulatory 5157 3014 3287 3941 +235 +19 +6 +55 regionHolozoa DNAHydrolase binding activity (O-glycosyl bonds) 7 -56 -1983 -1688 -1143 Fungi Multi-organism process 10 Negative regulation of hydrolase activity 7 Transcription regulatory region DNA binding 16 Metazoa+ 4978 Choano +61 M. brevicollis Extracellular region 29 -52 Regulation of transcription, DNA-dependent 62 Nucleoplasm 22 Holozoa 4969 Developmental process 11 +100 Cellular cell wall organization or biogenesis 7 -160 Racemase and epimerase activity 8 C. owczarzaki Extracellular region 26 5029 Opisthokonta Receptor binding 12 Reproduction 12 Multicellular organismal process 13 Cell wall organization biogenesis 11 Pathogenesis 8 Viral reproduction 9 External encapsulating structure 7 19 Figure 2. Suga et al. PFAM gain/loss a i k b [Gain] Gene Ontology N domains za ollis r c Gains (geneHolozoa ontology,Signal transdu >cer 7 a domainsctivity ) 8 oa i z
Recommended publications
  • Sex Is a Ubiquitous, Ancient, and Inherent Attribute of Eukaryotic Life
    PAPER Sex is a ubiquitous, ancient, and inherent attribute of COLLOQUIUM eukaryotic life Dave Speijera,1, Julius Lukešb,c, and Marek Eliášd,1 aDepartment of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands; bInstitute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 370 05 Ceské Budejovice, Czech Republic; cCanadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8; and dDepartment of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic Edited by John C. Avise, University of California, Irvine, CA, and approved April 8, 2015 (received for review February 14, 2015) Sexual reproduction and clonality in eukaryotes are mostly Sex in Eukaryotic Microorganisms: More Voyeurs Needed seen as exclusive, the latter being rather exceptional. This view Whereas absence of sex is considered as something scandalous for might be biased by focusing almost exclusively on metazoans. a zoologist, scientists studying protists, which represent the ma- We analyze and discuss reproduction in the context of extant jority of extant eukaryotic diversity (2), are much more ready to eukaryotic diversity, paying special attention to protists. We accept that a particular eukaryotic group has not shown any evi- present results of phylogenetically extended searches for ho- dence of sexual processes. Although sex is very well documented mologs of two proteins functioning in cell and nuclear fusion, in many protist groups, and members of some taxa, such as ciliates respectively (HAP2 and GEX1), providing indirect evidence for (Alveolata), diatoms (Stramenopiles), or green algae (Chlor- these processes in several eukaryotic lineages where sex has oplastida), even serve as models to study various aspects of sex- – not been observed yet.
    [Show full text]
  • Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
    Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
    [Show full text]
  • The Revised Classification of Eukaryotes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D.
    [Show full text]
  • Group of Microorganisms at the Animal-Fungal Boundary
    16 Aug 2002 13:56 AR AR168-MI56-14.tex AR168-MI56-14.SGM LaTeX2e(2002/01/18) P1: GJC 10.1146/annurev.micro.56.012302.160950 Annu. Rev. Microbiol. 2002. 56:315–44 doi: 10.1146/annurev.micro.56.012302.160950 First published online as a Review in Advance on May 7, 2002 THE CLASS MESOMYCETOZOEA: A Heterogeneous Group of Microorganisms at the Animal-Fungal Boundary Leonel Mendoza,1 John W. Taylor,2 and Libero Ajello3 1Medical Technology Program, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing Michigan, 48824-1030; e-mail: [email protected] 2Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102; e-mail: [email protected] 3Centers for Disease Control and Prevention, Mycotic Diseases Branch, Atlanta Georgia 30333; e-mail: [email protected] Key Words Protista, Protozoa, Neomonada, DRIP, Ichthyosporea ■ Abstract When the enigmatic fish pathogen, the rosette agent, was first found to be closely related to the choanoflagellates, no one anticipated finding a new group of organisms. Subsequently, a new group of microorganisms at the boundary between an- imals and fungi was reported. Several microbes with similar phylogenetic backgrounds were soon added to the group. Interestingly, these microbes had been considered to be fungi or protists. This novel phylogenetic group has been referred to as the DRIP clade (an acronym of the original members: Dermocystidium, rosette agent, Ichthyophonus, and Psorospermium), as the class Ichthyosporea, and more recently as the class Mesomycetozoea. Two orders have been described in the mesomycetozoeans: the Der- mocystida and the Ichthyophonida. So far, all members in the order Dermocystida have been pathogens either of fish (Dermocystidium spp.
    [Show full text]
  • Revisiting the Phylogenetic Position of Caullerya Mesnili (Ichthyosporea), a Common
    Revisiting the phylogenetic position of Caullerya mesnili (Ichthyosporea), a common Daphnia parasite, based on 22 protein-coding genes Yameng Lu 1, 2, *, Eduard Ocaña-Pallarès 3, *, David López-Escardó 3, 4, Stuart R. Dennis 2, Michael T. Monaghan 1, 5, 6, Iñaki Ruiz-Trillo 3, 7, 8, Piet Spaak 2, Justyna Wolinska 1, 6 *these authors contributed equally to this work 1Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; 2Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland; 3Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain; 4Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain; 5Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany; 6Institut für Biologie, Freie Universität Berlin (FU), Berlin, Germany; 7Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona 08028, Catalonia, Spain; 8ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain; This document is the accepted manuscript version of the following article: Lu, Y., Ocaña-Pallarès, E., López-Escardó, D., Dennis, S. R., Monaghan, M. T., Ruiz- Trillo, I., … Wolinska, J. (2020). Revisiting the phylogenetic position of Caullerya mesnili (Ichthyosporea), a common Daphnia parasite, based on 22 protein-coding genes. Molecular Phylogenetics and Evolution, 106891 (31 pp.). https://doi.org/10.1016/ j.ympev.2020.106891 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Abstract Caullerya mesnili is a common and virulent parasite of the water flea, Daphnia. It was classified within the Haplosporidia (Rhizaria) for over a century.
    [Show full text]
  • Diversity and Distribution of Unicellular Opisthokonts Along the European Coast Analyzed Using High-Throughput Sequencing
    Diversity and distribution of unicellular opisthokonts along the European coast analyzed using high-throughput sequencing Javier del Campo1,2,*, Diego Mallo3, Ramon Massana4, Colomban de Vargas5,6, Thomas A. Richards7,8, and Iñaki Ruiz-Trillo1,9,10 1Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain. 3Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Galicia, Spain 4Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain 5CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France 6UPMC Univ. Paris 06, UMR 7144, Station Biologique de Roscoff, Roscoff, France 7Geoffrey Pope Building, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK 8Canadian Institute for Advanced Research, CIFAR Program in Integrated Microbial Biodiversity 9Departament de Genètica, Universitat de Barcelona, Barcelona, Catalonia, Spain 10Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain Summary The opisthokonts are one of the major super-groups of eukaryotes. It comprises two major clades: 1) the Metazoa and their unicellular relatives and 2) the Fungi and their unicellular relatives. There is, however, little knowledge of the role of opisthokont microbes in many natural environments, especially among non-metazoan and non-fungal opisthokonts. Here we begin to address this gap by analyzing high throughput 18S rDNA and 18S rRNA sequencing data from different European coastal sites, sampled at different size fractions and depths. In particular, we analyze the diversity and abundance of choanoflagellates, filastereans, ichthyosporeans, nucleariids, corallochytreans and their related lineages. Our results show the great diversity of choanoflagellates in coastal waters as well as a relevant role of the ichthyosporeans and the uncultured marine opisthokonts (MAOP).
    [Show full text]
  • Fossils, Feeding, and the Evolution of Complex Multicellularity
    Fossils, Feeding, and the Evolution of Complex Multicellularity The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Knoll, Andrew H., and Daniel J.G. Lahr. 2016. "Fossils, feeding, and the evolution of complex multicellularity." In Multicellularity, Origins and Evolution, The Vienna Series in Theoretical Biology, eds. Karl J. Niklas and Stuart A. Newman. Cambridge, MA: MIT Press. Published Version https://mitpress.mit.edu/books/multicellularity Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:34390340 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Fossils, Feeding, and the Evolution of Complex Multicellularity Andrew H. Knoll and Daniel J. G. Lahr Andrew H. Knoll Department of Organismic and Evolutionary Biology, Harvard University Daniel J.G. Lahr Department of Zoology, Institute of Biosciences, University of São Paulo The evolution of complex multicellularity is commonly viewed as a series of genomic events with developmental consequences. It is surely that, but a focus on feeding encourages us to view it, as well, in terms of functional events with ecological consequences. And fossils remind us that these events are also historical, with environmental constraints and consequences. Several definitions of complex multicelluarity are possible; here we adopt to view that complex multicellular organisms are those with tissues or organs that permit bulk nutrient and gas transport, thereby circumventing the limitations of diffusion (Knoll, 2011).
    [Show full text]
  • Controlled Sampling of Ribosomally Active Protistan Diversity in Sediment-Surface Layers Identifies Putative Players in the Marine Carbon Sink
    The ISME Journal (2020) 14:984–998 https://doi.org/10.1038/s41396-019-0581-y ARTICLE Controlled sampling of ribosomally active protistan diversity in sediment-surface layers identifies putative players in the marine carbon sink 1,2 1 1 3 3 Raquel Rodríguez-Martínez ● Guy Leonard ● David S. Milner ● Sebastian Sudek ● Mike Conway ● 1 1 4,5 6 7 Karen Moore ● Theresa Hudson ● Frédéric Mahé ● Patrick J. Keeling ● Alyson E. Santoro ● 3,8 1,9 Alexandra Z. Worden ● Thomas A. Richards Received: 6 October 2019 / Revised: 4 December 2019 / Accepted: 17 December 2019 / Published online: 9 January 2020 © The Author(s) 2020. This article is published with open access Abstract Marine sediments are one of the largest carbon reservoir on Earth, yet the microbial communities, especially the eukaryotes, that drive these ecosystems are poorly characterised. Here, we report implementation of a sampling system that enables injection of reagents into sediments at depth, allowing for preservation of RNA in situ. Using the RNA templates recovered, we investigate the ‘ribosomally active’ eukaryotic diversity present in sediments close to the water/sediment interface. We 1234567890();,: 1234567890();,: demonstrate that in situ preservation leads to recovery of a significantly altered community profile. Using SSU rRNA amplicon sequencing, we investigated the community structure in these environments, demonstrating a wide diversity and high relative abundance of stramenopiles and alveolates, specifically: Bacillariophyta (diatoms), labyrinthulomycetes and ciliates. The identification of abundant diatom rRNA molecules is consistent with microscopy-based studies, but demonstrates that these algae can also be exported to the sediment as active cells as opposed to dead forms.
    [Show full text]
  • Throughput Environmental Sequencing Reveals High Diversity of Litter and Moss Associated Protist Communities Along a Gradient of Drainage and Tree Productivity
    Environmental Microbiology (2018) 20(3), 1185–1203 doi:10.1111/1462-2920.14061 High-throughput environmental sequencing reveals high diversity of litter and moss associated protist communities along a gradient of drainage and tree productivity Thierry J. Heger ,1,2,3* Ian J. W. Giesbrecht,3,4 alpha diversity from the blanket bog ecosystem to Julia Gustavsen ,5 Javier del Campo,2,3 the zonal forest ecosystem. Among all investigated Colleen T. E. Kellogg,3,7 Kira M. Hoffman,3,6 environmental variables, calcium content was the Ken Lertzman,3,4 William W. Mohn3,7 and most strongly associated with the community Patrick J. Keeling2,3 composition of protists, but substrate composition, 1Soil Science Group, CHANGINS, University of Applied plant cover and other edaphic factors were also Sciences and Arts Western Switzerland, Delemont, significantly correlated with these communities. Switzerland. Furthermore, a detailed phylogenetic analysis of uni- 2Botany Department, University of British Columbia, cellular opisthokonts identified OTUs covering most Vancouver, BC, Canada. lineages, including novel OTUs branching with Disci- 3Hakai Institute, Heriot Bay, BC, Canada. cristoidea, the sister group of Fungi, and with 4School of Resource and Environmental Management, Filasterea, one of the closest unicellular relatives to Simon Fraser University, Burnaby, BC, Canada. animals. Altogether, this study provides unprece- 5Department of Earth, Ocean and Atmospheric dented insight into the community composition of Sciences, University of British Columbia, Vancouver, moss- and litter-associated protists. BC, Canada. 6School of Environmental Studies, University of Victoria, Victoria, BC, Canada. Introduction 7Department of Microbiology and Immunology, Life Mosses and litter are major sources of organic matter in Sciences Institute, University of British Columbia, peatland and forest soils.
    [Show full text]
  • Multigene Phylogeny of Choanozoa and the Origin of Animals
    Multigene Phylogeny of Choanozoa and the Origin of Animals Kamran Shalchian-Tabrizi1*, Marianne A. Minge2, Mari Espelund2, Russell Orr1, Torgeir Ruden3, Kjetill S. Jakobsen2, Thomas Cavalier-Smith4 1 Microbial Evolution Research Group, Department of Biology, University of Oslo, Oslo, Norway, 2 Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway, 3 Scientific Computer Group, Center for Information Technology Services, University of Oslo, Oslo, Norway, 4 Department of Zoology, University of Oxford, Oxford, United Kingdom Abstract Animals are evolutionarily related to fungi and to the predominantly unicellular protozoan phylum Choanozoa, together known as opisthokonts. To establish the sequence of events when animals evolved from unicellular ancestors, and understand those key evolutionary transitions, we need to establish which choanozoans are most closely related to animals and also the evolutionary position of each choanozoan group within the opisthokont phylogenetic tree. Here we focus on Ministeria vibrans, a minute bacteria-eating cell with slender radiating tentacles. Single-gene trees suggested that it is either the closest unicellular relative of animals or else sister to choanoflagellates, traditionally considered likely animal ancestors. Sequencing thousands of Ministeria protein genes now reveals about 14 with domains of key significance for animal cell biology, including several previously unknown from deeply diverging Choanozoa, e.g. domains involved in hedgehog, Notch and tyrosine kinase signaling
    [Show full text]
  • The Evolutionary Landscape of Dbl-Like Rhogef Families: Adapting Eukaryotic Cells to Environmental Signals Philippe Fort, Anne Blangy
    The Evolutionary Landscape of Dbl-Like RhoGEF Families: Adapting Eukaryotic Cells to Environmental Signals Philippe Fort, Anne Blangy To cite this version: Philippe Fort, Anne Blangy. The Evolutionary Landscape of Dbl-Like RhoGEF Families: Adapting Eukaryotic Cells to Environmental Signals. Genome Biology and Evolution, Society for Molecular Biology and Evolution, 2017, 9 (6), pp.1471-1486. 10.1093/gbe/evx100. hal-02267212 HAL Id: hal-02267212 https://hal.archives-ouvertes.fr/hal-02267212 Submitted on 24 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License GBE The Evolutionary Landscape of Dbl-Like RhoGEF Families: Adapting Eukaryotic Cells to Environmental Signals Philippe Fort1,2,* and Anne Blangy1,2 1CRBM, Universite´ of Montpellier, France 2CNRS, UMR5237, Montpellier, France *Corresponding author: E-mail: [email protected]. Downloaded from https://academic.oup.com/gbe/article-abstract/9/6/1471/3852527 by guest on 24 June 2020 Accepted: May 24, 2017 Abstract Thedynamicsofcellmorphologyineukaryotesislargely controlledbysmallGTPasesoftheRhofamily.RhoGTPasesareactivatedby guanine nucleotide exchange factors (RhoGEFs), of which diffuse B-cell lymphoma (Dbl)-like members form the largest family. Here, we surveyed Dbl-like sequences from 175 eukaryotic genomes and illuminate how the Dbl family evolved in all eukaryotic supergroups.
    [Show full text]
  • OEB51: the Biology and Evolu on of Invertebrate Animals
    OEB51: The Biology and Evoluon of Invertebrate Animals Lectures: BioLabs 2062 Labs: BioLabs 5088 Instructor: Cassandra Extavour BioLabs 4103 (un:l Feb. 11) BioLabs2087 (aer Feb. 11) 617 496 1935 [email protected] Teaching Assistant: Tauana Cunha MCZ Labs 5th Floor [email protected] Basic Info about OEB 51 • Lecture Structure: • Tuesdays 1-2:30 Pm: • ≈ 1 hour lecture • ≈ 30 minutes “Tech Talk” • the lecturer will explain some of the key techniques used in the primary literature paper we will be discussing that week • Wednesdays: • By the end of lab (6pm), submit at least one quesBon(s) for discussion of the primary literature paper for that week • Thursdays 1-2:30 Pm: • ≈ 1 hour lecture • ≈ 30 minutes Paper discussion • Either the lecturer or teams of 2 students will lead the class in a discussion of the primary literature paper for that week • There Will be a total of 7 Paper discussions led by students • On Thursday January 28, We Will have the list of Papers to be discussed, and teams can sign uP to Present Basic Info about OEB 51 • Bocas del Toro, Panama Field Trip: • Saturday March 12 to Sunday March 20, 2016: • This field triP takes Place during sPring break! • It is mandatory to aend the field triP but… • …OEB51 Will not meet during the Week folloWing the field triP • Saturday March 12: • fly to Panama City, stay there overnight • Sunday March 13: • fly to Bocas del Toro, head out for our first collec:on! • Monday March 14 – Saturday March 19: • breakfast, field collec:ng (lunch on the boat), animal care at sea tables,
    [Show full text]