Quick viewing(Text Mode)

Chromic Acid Oxidation of Hydrocarbons at The

Chromic Acid Oxidation of Hydrocarbons at The

CHROMIC OXIDATION OF HYDROCARBONS AT THE

BENZYLIC POSITION USING THE JONES REAGENT

AND C-13 NMR STUDIES OF GEM-DIMETHYL­

INDANS AND -INDANONES

By

Radhika Rangarajan Ii Bachelor of Science

Annamalai University

Annamalai Nagar, India

1979

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 1984 1hes\s )ti84 D ~ \°' U,£!-­ c.o p, ~ BENZYLIC POSITION USING THE JONES REAGENT AND C-13 NMR STUDY OF GEM-DIMTHYL­ INDANS AND -INDANONES

Thesis Approved:

(] . . Dean of the Graduate College

ii 1218538 •t ACKNOWLEDGMENTS

I wish to begin with expressing my whole-hearted gratitude to Dr.

E. J. Eisenbraun for his care and guidance during the course of this research.

My committee members Dr. R. A. Bunce, Dr. E. M. Holt and Dr. E. C.

Nelson have been very helpful in carefully evaluating this work. I appreciate all their help. I would like to thank Dr. T. Rangarajan, Dr.

Pourahmady, Mr. Stan Sigle and Mr. Norm Perreira, who played an important role in this investigation.

I acknowledge the financial support provided by the Oklahoma State

University, Department of Chemistry, Department of Energy and Dow

Chemical Company during my graduate tenure.

I extend my deepest appreciation to my parents, Rangarajan and

Shantha Rangarajan, without whose encouragement this study would not have been possible. A special thanks is due to Mrs. Lisa Thompson for typing my manuscript.

iii TABLE OF CONTENTS

Chapter Page I. INTRODUCTION AND HISTORICAL...... 1 II. RESULTS AND DISCUSSION •• ...... 15 General •••••• . . . . 15 Oxidation of Hydrocarbons •••••••• 19 Estimation of Solvent Consumption. 24 Attempted Modification of the Jones Reagent. 24 Substitute for ••••• 28 Role of Anhydrous MgS04 and Silica Gel in . • • • • • • • • • • • • • • • • • • • 30 Trial of Various Cr(VI) Reagents for Benzylic Oxidation. 31 Comparison of Cr(VI) Oxidation Procedures. • • 32 Discussion of 13c NMR of Gem-dimethylindans. 35 13c NMR Assignments for Gem-dimethylindans. 43 Summary of Significance of Research. • 53

III. EXPERIMENTAL •• . . . . . 54 General Information •••••• . . 54 Jones Reagent Preparation •• 55 General Oxidation Procedure Using the Jones Reagent. 55 Yield Optimization in Converting Tetralin to 1-Tetralone • •••••••••••••••••• . . . 56 Stability of 1-Tetralone During Jones Oxidation. 56 Preparation of Hydrocarbons •••••••••••• 56 Synthesis of 41c from 1-Tetralone (1b) ••••• 60 Hydrogenation of 41c to 1-Methyl-1,2,3,4-tetrahydro- naphthalene (41a) ••••••••••••••••• 60 Aromatization of 41b to 4-Methyl-1-naphthol (44) •••• 61 4-Methyl-1-tetralone (41b) ••••••••• -•••• 62 3(2-Acetylphenyl)propionic Acid (42) •••••••••• 62 Hydrogenation of 45 to 1,2,J,4,5,6°;"7,8-0ctahydroanthra- cene ( 46). • • -. • . • • • • • • • • • · • • • . • • • • 62 3,4,5,6,~8-Hexahydroanthracene(2H)-1-one (47) ••••• 63 Aldol Condensation of 47 to 48 Using Basic Alumina ••• 63 Conversion of 47 or 48 to 1,2,3,4-Tetrahydroanthracene (49) with NaOH/KOH .-. • • • • • • • • • • • • • • • 63 Trioxide Consumed and Acetic Acid Formed Blank Runs • • •• ...... 64 Deuteration of 3,3,5,6-Tetramethyl-1-indanone (30b). 65

iv Chapter Page BIBLIOGRAPHY ...... 66

APPENDIX A - GLOSSARY OF STRUCTURES •• 71

APPENDIX B - SELECTED SPECTRA •••• 80

v LIST OF TABLES

Table Page

I. Chemical Shift and Relaxation Times of Quaternary Carbons in Codeine and Reserpine •••• ...... 14 II. Jones Oxidation of Hydrocarbons at the Benzylic Position 16

III. Estimation of Acetic Acid in a Jones Oxidation (Blank Runs). 25 IV. Estimation of in Blank Runs ••• 26 V. Determination of Consumed and Acetic Acid Formed During Jones Oxidation. • • • • • • • • • 27

VI. Trial of Various Solvents for the Jones Oxidation •• 29

VII. Comparison of Cr(VI) Oxidation Procedures. 34 VIII. 13c Chemical Shifts for Model Indans •••• 38

IX. 13c Chemical Shifts for Gem-dimethylindans 39 X. Long-Range Aromatic Carbon-Proton Coupling Data •• 41

XI. l3c Chemical Shifts of Model Indanones ••••• 44 XII. 13c Chemical Shifts for Gem-Dimethylindanones. . . . 46 XIII. Relaxation Times and Chemical Shift Assignments for Indanone 28b • • •••••• 47

XIV. Long-Range Carbon-Proton Coupling Data. 50

vi

" LIST OF FIGURES

Figure Page

1. Mechanism of Chromic Acid Oxidation of Hydrocarbons. 4 13 2. Examples for Assigning c Shift From T1 Data. 13 3. Jones Oxidation of 1-Methyltetralin. 22 4. Synthesis of Tetrahydroanthracene From Octahydroanthracene. 23

vii LIST OF SPECTRA

Spectrum Page

1 • HETCOR 2 D Plot for the Aliphatic Region of 27a •••••• 40

2. The Aromatic Region of 32a Selectively Decoupled ( 13c[ 1H]). 42 1 . 3. H NMR of 30b and 30c • • • • • • • • • • • • • • • • • 48

4. Aromatic Region of 30c Selectively Decoupled ( 13c[ 1H]). 49

5. The Aromatic Region of 32b Selectively Decoupled ( 13c[ 1H]). 51

6. The Aromatic Region of 33b Selectvely Decoupled ( 13c[ 1H]). 52

7. 1H NMR of 4-Methyl-1-tetralone ( 41 b). • • • • • • • • • • • 81

8. 1H NMR of 1-Methyl-1,2,3,4-tetrahydro-1-naphthol (41c) ••• 82

9. 1H NMR of 3(2 1 -Acetyl)phenylpropionic Acid (42) 83

10. 1H NMR of 4-Methyl-1-naphthol (44) ••••••• 84

11 • 13c NMR of 4-Methyl-1-tetralone (41b) 85 12. 13c NMR of 1-Methyl-1,2,3,4-tetrahydro-1-naphthol (41c) •• 86

13. l3c NMR of 3(2 1 -Acetyl)phenylpropionic Acid (42) •• 87

14. 13c NMR of 4-Methyl-1-naphthol (44) •••••••• . . 88

viii CHAPTER I

INTRODUCTION AND HISTORICAL

Chromic acid oxidation of hydrocarbons at a saturated carbon­ bond may be divided into three classes; 1 oxidation occurring a

to an aromatic ring (the benzylic position); oxidation taking place to

a carbon-carbon double bond (the allylic position) and those involving

the oxidation of saturated aliphatics. The first type has found consid-

erable use in the synthesis of arylketones and arylcarboxylic as

well as for the determination of the orientation or alkyl groups at­

tached to an aromatic nucleus. 2 The other two classes of oxidation have

been of less synthetic interest and value since they generally lead to

mixtures of compounds in low yields.

Several hexavalent-chromium reagents are available for the oxida-

tion of hydrocarbons: chromic acid in aqueous acetic acid, aqueous

sodium dichromate at high temperature, chromyl acetate in acetic anhy-

dride, di-tertiary-butyl chromate in a variety of solvents, and chromyl

chloride in an inert solvent such as carbon disulfide or carbon tetra-

chloride.

Chromium trioxide in aqueous acetic acid at room temperature 3 and

aqueous sodium dichromate at elevated temperature 4 are widely used for

oxidation of hydrocarbons at a benzylic position. Thus, oxidation of

tetralin (~) with chromium trioxide in aqueous acetic acid gives 1-

tetralone (1b) in 55%5 yield. With aqueous sodium dichromate, ring

1 2 oxidation becomes negligible and side chain oxidation predominates.4 As applied to 2-methylnaphthalene, chromium trioxide in aqueous acetic acid gives the quinone shown below6 and sodium dichromate forms the corre­ sponding naphthoic acid4 in 60% and 88% yield respectively. In general, it has been observed that the extent of aromatic ring oxidation in­ creases with increasing acid concentration.7 Hence in neutral Cr(VI)

, attack at the aromatic ring is greatly suppressed and side

chains are oxidized.

a

la lb

b @§JH3 @:@:(co 2H ' / 0 2 3

a

0 C§l}CH3

0 4

acro3, aqueous acetic acid, room temperature. bAqueous sodium dichromate, 250 °c, 18 h. 3

Detailed mechanistic studies have been reported for Cr(VI) oxida- 3 tion at the benzylic position. As early at 1959, various substituted 8,9 diphenylmethanes were studied by Wiberg. His conclusions were: (1)

electron-releasing groups attached para to the site of the methylene

group undergoing oxidations moderately enhance the rate of oxidation to

the corresponding benzophenone. (2) Rate of the reaction is propor-

tional to the Cr(VI) concentration. However, at very high chromic acid

concentrations it was found that the rate of reaction was large initial-

ly, but decreased to the normal value as the reaction progressed. Poly-

chromate formation may be responsible for the decreased rate. (3) The

rate determining step is the breaking of the carbon-hydrogen bond, since

a very large kinetic isotope effect, KH/K0 = 6.4 at 30 °C, was obtained

during the oxidation of diphenylmethane-a,a-d2 • The breaking of a C-H bond by a free radical mechanism and by a

cation intermediate were both suggested. The former mechanism is sup- • + ported by the fact that Wiberg obtained a value of -1.17 for P in the

oxidation of para-substituted diphenylmethanes. This is in good agree-

ment with the value for hydrogen abstraction from , which falls

between -0.75 and -1.5. The latter mechanism was used to rationalize . + the poor fit of P values in the oxidation of E,,P-diphenylmethane and

its £-methoxy derivative.

Rocek has shown 10 that the rates of chromic acid oxidation of

hydrocarbons parallel the rates of solvolysis of the tosylates and has

further concluded that steric hindrance is not important in the oxida-

tion of alkylcyclohexanes.

The following mechanism can be considered to be general for chromic

acid oxidation at the benzylic position. The initially formed species 4 may be a resonance hybrid of an alkyl radical-Cr(V) complex as shown in

Figure 1. This hybrid possesses less energy than either one of the mesomeric forms and also accounts for the radical-like and carbonium ion-like characteristics observed during earlier investigations. The subsequent step gives the Cr(IV) which in turn is oxidized to the

Cr(V) ester and subsequently collapses to Cr(III) and the of interest.

cp ~ /,\0 OH \ I \.'\ / ¢ C Cr \. v 8-H C=cr (OH) 3 cp I \ H OI/ "' OH I

+ Cr-H+

Figure 1. Mechanism for the chromic acid oxidation of hydrocarbons. 5

Another available oxidant, for the conversion of arylalkanes to 11 arylketones, is 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ). Though both rings and side chains are attacked by DDQ, the yield appears to be dependent upon the size of the fused ring systems as well as the sol- vent. Larger fused ring systems undergo oxidation more rapidly than di- or tri- nuclear aromatic hydrocarbons such as naphthalene or phenan- threne, as shown from the following examples.

a orb ~0 ~0 Sa Sb a= 407. b • 757.

C'R3 CHO ~ a Orb 00 6a 6b a at: b = 07.

a orb ~ CHlHJ ~ COCHJ 7a 7b a= 48% b = 07.

a= DDQ, CHC13, HzO, 3-16h, 65 °C. b = DDQ, aqueous dioxane, refluxt 16 h. 6

Further, solvent effects were found to be unpredictable. In some cases superior yields were obtained with dioxane, while in other cases chloro- form gave better results. Hence the application of DDQ has considerable limitations.

At this time, the Jones chromic acid oxidizing reagent (Jones reagent) appears to be the most eff.ecti v:e one for oxidation at the benzylic position. Ordinarily it -i:s used for the oxidation of secondary 12,13 to . The Jones reagent is prepared by dissolving 14 chromium trioxide in aqueous sulfuric acid. Two millimoles of Jones reagent oxidizes three millimoles of a monohydric according to the following equation.

3R2C=O + 2Cr(OH)z + 4Hz0

Acetone is the usual solvent of choice for this oxidation due to

its rate-enhancing properties and ease of its remova: from the products.

Jones oxidations of secondary alcohols are usually carried out at 0-

10 °C (ice-water bath). There are literature reports of the oxidation

of acetylenic carbinols with Jones reagent in satisfactory yields de-

spite the possibility that the triple bond could be attacked by chromic . 12 acid.

Jones [OJ ?>

Earlier reports of chromic acid oxidation of symmetrical and unsym-

metrical tetralins to 1-tetralones in high yields with considerable

selectivity5• 15 was a factor in initiating this study of the Jones 16 oxidation of hydrocarbons. There are scattered reports of the use of 7 the Jones reagent in large-scale syntheses of alkyl quinones from alkyl phenols in moderate to high yields. This reagent also oxidizes benzyl 17 alkyl ethers to . Benzyl ethers are commonly used as the pro- tected form of alcohols because they are easily formed and once formed are stable to a variety of reagents, yet there are specific methods available for regenerating the alcohol from the ether. However, in the presence of an excess of Jones reagent (4 equiv.) some benzyl ethers are oxidized as shown below.17 Thus the utility of the benzyl group as a protecting group is diminished if oxidation is involved.

a + 6 + 8 9 10 11

Total Yield= 72%

a Cro3, aqueous H2so4, .

NMR Studies

The Jones oxidation provided an interesting series of polymethy-

lated indanones from polymethylated indans as described in chapter 2.

The 13c NMR investigation of these systems is the next topic of study. 8

13c NMR has greater potential than 1H NMR for the study of organic mole­ cules 18, especially since hydrocarbons of attached or nearby carbon atoms have a pronounced effect on 13c chemical shifts.19 As early as 1959, Grant and Paul studied the 13c chemical

shifts 20 •21 for 17 simple paraffins, and reported that the chemical

shifts were additive and could be derived from the number of a-, S-, Y-, u-,s: ana' E-car bon a t oms. La t er severa1 inves. t"iga t ors22 ' 23 ex t en d e d th"is

work and arrived at empirical rules that predicted 13c chemical shift

data for about 59 paraffins.

Empirical assignments for substituted alkanes and alicyclics as

well as for polymers are obtained by studying substituent shift parame-

ters. Values so obtained are not valid in molecules having sterically

crow d e d su b s t i·t uen t s. Ear 1· ier Pa 1 aniswamy. 24 s t u d"ie d a series. o f mono-

and dialkyl-substituted indans (.:!.3. through 20) and reported substituent

shift parameters for monomethylated indans.

12 R CH R = CH 18 R = CH = = 3 l2. = 3 = 3 .u. = R = C2H5 16 R C2H5 19 = R = c2H5 R i-C H 17 R = 20 R _h-C H 14 = = - 3 7 = _h-C3H7 = = 3 7 9

These parameters are of less value in the study of polymethylated indans. However, 300 MHz NMR studies permit assignments. 13 Some of the conventional experiments used in the current C NMR study are off-resonance proton decoupling, gated-decoupling, and relaxa- 13 1 tion studies. Selective C( H) decoupling (over a wide range of fre- 13 1 quency), deuteration combined.with selective C( H) decoupling, and heteronuclear correlated two-dimensional spectra were used when needed.

The two-dimensional experiment established direct connectivities between bonded nuclei. The two dimensions are the carbon and the proton shifts in the 13 c experiment. This experiment essentially expands the proton 13 spectrum into the C shift range.

Off-resonance proton decoupling removes all the long-range coup- 13 1 lings and reduces the one-bond C- H coupling to a fraction of its 25 original value. This indicates the multiplicity of bonded directly to the carbon of interest. On the other hand, gated-decoupling provides information about long range C-H couplings. In aromatic rings 2 4 the geminal C-H ( JCCH) as well as the four-bond coupling ( JcccH) are 3 found to be small (1-2 Hz) in contrast to the vicinal coupling ( JcccH), 25 7-12 Hz. 13 A one-to-one correlation between proton and C chemical shifts can

be established with the aid of selective decoupling experiments. By

using this technique and removing one-bond couplings, the long range

coupling in which the irradiated proton is involved is also eliminated.

Hence, the assignments for quaternary carbons are simplified as is evi- 26,27 dent from the following example. 10

3 J CsaHl = 12 Hz 21 3 J c4aH6 = 10 Hz

In pterine (~),28 the long range couplings of carbon 8a and 4a with protons c7-H and c6-H proved to be of considerable value. With the aid of low-power irradiation, the couplings as well as chemical shifts

for carbons Sa and 4a were assigned, on the basis of the known proton

chemical shifts.

In addition, 13 c relaxation studies can give sets of parameters that are useful in characterizing organic molecule3. 29 , 3o The kind of 13 information available from C relaxation studies is generally unobtain-

able from NMR chemical shifts, spin-spin coupling and integration

parameters. Further this gives a better understanding of the overall

geometry of the molecules, bonded and nonbonded interactions and other 31 factors controlling the molecular motion.

Spin-lattice relaxation (T 1 ) is a process of energy exchange be- tween individual nuclear spins and the surrounding liquid or solid

"la tt•ice 11 • 32,33 This relaxation allows the lattice to act as a heat

sink to establish and restore thermal equilibrium for the nuclear spins.

Spin-spin relaxations (T2) are somewhat harder to measure and are used 34 less often.

13 C spin-lattice. . re l axa t"ion occurs mainly b y four mechanisms:. 19

dipole-dipole relaxation (DD), spin-rotation relaxation (SR), scalar

relaxation (SC), and chemical-shift anisotropy (CSA). DD relaxation 11 arises from local magnetic fields associated with magnetic nuclei.

Relaxation of 13c nuclei in organic molecules usually results from dipole- dipole interactions with protons. In fact, for protonated carbons only bonded hydrogens make major dipolar contributions to T1DD. The SR mechanism is common in small molecules or in freely rotating 19 13 molecular segments. The scalar coupling mechanism is found when a C nucleus is bound to a X (halogen atom), and can undergo spin-spin coup- ling if the lifetimes of their respective nuclear magnetic energy levels are sufficiently large. This is quite uncommon and is important primari­ ly in systems where 13c is bonded to one or more 79Br atoms.

The last type of mechanism is the CSA relaxation. The rate of CSA depends on the square of the applied magnetic field as is evident from the following equation, unlike the other types of relaxation mechanisms.

CSA is encountered in systems containing~ bonds, i.e. derivatives of benzene. 35

1 2 2 2 ( ,2 RCSA = = r c HO crlCcrlJ Tc Tl CSA 15

H applied field strength a =

= values of shielding tensor parallel and perpendicular to the symmetry axis respectively. 12

CSA contributes 50% of the relaxation of nonprotonated carbons near CSA 68 MHz. However, T1 does not dominate at lower magnetic fields (25 MHz), as is evident from the equation.

Carbon atoms that have one or more directly attached hydrogens

(protonated carbons) relax mainly by DD mechanism and have smaller T1 values than nonprotonated carbons. One way of identifying individual nonprotonated carbons is from comparison of observed T1 values. Spec- tral assignments are difficult for quaternary carbons in complex mole- cu1 es an d coupe 1 d 13c spec t ra may no t b e useru.~ 1 36,37

In large molecules the DD mechanism dominates, even for nonpro- tonated carbons (at lower magnetic fields; at high fields NOE will be 2 reduced and T1CSA will contribute for ~ or~ quaternary carbons.)

Accurate T1 measurements differentiate quaternary carbons from their dependence on nearby nonbonded protons for dipolar relaxation. This is illustrated in the following examples.

I n co d eine· 38 , among th e f our qua t ernary aroma t•ic car bon signa. 1 s,

(as indicated in Figure 2) those at the lowest field are for chemical shift reasons assigned to the oxygen-bearing ones; since C-14 has one proton in the a-position, whereas C-13 has none, the latter should relax more slowly. Hence the signal at 146.6 ppm (T 1 = 8.9 s) belongs to C-13 and that at 141.7 ppm (T 1 = 5.2 s) to C-14. Analogous arguments can be applied to C-3 and C-12 with three and no a-protons respectively. It is also interesting to note that C-12 relaxes faster than C-13, which can be explained by the close proximity of C-12 methylene protons at C-15.

For reserpine38 (Figure 2), it is found that the four aromatic

carbons that bear the methoxy groups have T1 values related to the

number of a-protons. The longest T1 (12.8 s) is assigned to the carbon 13

Codeine a

a Reserpine

a* Carbons are Discussed in Table I.

1 Figure 2. Examples for ~c Shift Assignments From T1 Data. 14

TABLE I

Chemical Shifts and Relaxation Times of Quaternary Carbons in Codeine and Reserpine

b b Carbon a Tl ( s) ppm Tl ( s) ppm Codeine Reserpine

3 1 .82 127.0 2.95 156. 52 11 1. 53 42.9 12 5 .1 130.9 13 8.9 146.6 14 5. 1 130.9 25 4-85 153.34 26 12.8 142. 77 27 4.85 153.34

aThe numbering systems refer to that used in Figure 2.

b In ppm relative to internal Si ( C~ \.

that has no vicinal proton (at 142.8 ppm). The indole methoxy-substi- tuted ring carbon is assigned at 156.5 ppm, due to short T1 (3 s). This again reflects the presence of two a hydrogens. The other two methoxy- bound ring carbons (T 1 = 4.8 s) have one a hydrogen and are assigned at

153.3 ppm. These two examples illustrate clearly that T1 studies can be effectively used for nonprotonated carbon assignments. CHAPTER II

RESULTg AND DISCUSSION

General

In adapting the Jones reagent for this new application, several reaction parameters were systematically examined with the intent of improving oxidation at a benzylic position. These parameters include changes in hydrocarbon structure, a search for substitutes for acetone and sulfuric acid, addition of anhydrous Mgso4 or oven-dried silica gel to decrease the water content of the system as the reaction proceeds, 39 the effect stirring has on the outcome of the reaction and finally a trial of various Cr(VI) species.

This discussion is divided into four parts. The successful use of the Jones reagent in converting several different hydrocarbons toke- tones is discussed in the first part. The second part is focused on the estimation of solvent oxidation, i.e. consumption of acetone, during a typical Jones oxidation reaction. The third area deals with the several tested modifications of the Jones reagent, and the final part gives a comparison of various Cr(VI) reagents available for oxidation of hydro- carbons at the benzylic position.

15 16 Table II

Jones Oxidation of Hydrocarbons at the Benzylic Position

a Hydrocarbons Ke tones % ·field

0-

@() @6 68 la lb

@r@ esl@ 62 22a 22b a

@'0§; @(© 98 23a 23b

0 ©C:@ @Cr§) 71 24a 24b

0 ----- ©0 @() 80 ZS a 25b

0 ~0 @o 85 26a ~by_

(or-\ 78 ~,L___ / ~ 27a 27b 17

Table II (Continued)

a Hydrocarbons Ke tones % Yield

~ ~/ 73 Z8a 28b

~\~ 80 ¢c5 I

29a 291:i 0 m )§r;_ 82 30a :30b

0 ~ ~ 85 ~ 31 b

~ )§[j 86 ~ 32 a 32b

I~ 75 in ~- 33.:i .JJb 18 Table II (Continued)

a Hydrocarbons Ketonesb,c Ratio b:c % Yield

0 ho )§r5 ~ 5:1 75 34a 34b 34c ¥ ~ ~ 40:1 80 35a 35b 35c 0 @0' @Cf @();_ 1:3 75 36a 36b 36c

.@() 1:1 75 ~ ~ 37c ca ~ ~ 1:1 75 38a 38b 38c c@0 ~ ~ 5:3 79 39a 39b 39c

-I O -Q§0 t@9~ 5:2 81 40a 40b 40c 19 aConsult experimental for preparation of alkyl-substituted indans and tetralins. bRatio determined by g.l.c. A 5% Carbowax 20 M coating on 80-100 mesh Gas-Pak contained in an 0.25 11 x 10 copper tube was used. Peak areas for calculating ratios were obtained by triangulation of g.c~ peaks. cAuthentic samples of 27b, 32b, 33b, 34b, 34c, 35c, 36b, 37b, 38b, 39c, and 40c were available-.--

Oxidation of Hydrocarbons

This study provides a convenient route to otherwise less accessible ketones, as shown in Table II. Aldol dimers have not been isolated even

though they are likely to be formed. The availability of hydrocarbons

26a-40a in adequate purity40 made this study possible. In turn, inda- 13 nones 27b-33b were required for a related C NMR study.

Table II also shows the ratio of ketones obtained when there is

more than one kind of benzylic position available for oxidation. From

the ratio of indanones 34b:34c (5:1), it is apparent that an electronic

effect is operative in the oxidation of alkyl-substituted rings. This

is also in accordance with Wiberg 1 s observation that an electron releas-

ing (methyl) group attached at the para position enhances the formation

of isomer 34b over 34c. In the oxidation of 35a, attack occurs in the

five-membered ring (as expected), rather than at the ethyl group.

When a bulky tert-butyl group is present adjacent to a potential

carbonyl site (C-2), as in 36a, steric effects control the product ratio

as encountered in tetralones 36b:36c (1:J).41 However, when the bulky

tert-butyl group is present at the peri position to a potential carbonyl

site, as in 37a, the steric effect is dominated by the electron-donating

effect and tetralones 37b:37c are produced in a 1:1 ratio.41

Oxidation of 38a also gives a 1:1 ratio of 38b:38c. Earlier, 20

42 Vuppalapaty reported formation of the same isomers in 1:5 ratio by

Cro3/acetic acid oxidation of 38a. At this point we attribute this ratio difference to the more powerful oxidizing nature of the Jones reagent, which thus shows decreased selectivity.

When there is a second benzylic position available for oxidation in the same molecule, mixtures of mono- and di-ketones are produced as listed in Table II. However, the formation of a diketone is not sup- pressed when the benzylic-CH2 is at the para position to an electron withdrawing carbonyl functionality. This is evidenced in the ratio of

39b:39c (5:3) as compared to 40b:40c (5:2).

The formation of diketones in the oxidation of 39a and 40a in- creased with longer exposure to the oxidizing (Jones) reagent. Hence these reactions were continued until no starting material could be detected with gas chromatagraphy. The corresponding ratios of products are reported in the Table II.

1-Methyltetralin (41a), was selected as a test compound to deter- mine whether hydrocarbons of this type would be readily oxidized to

ketones in reasonable yield and whether attack of a methine (3°) hydro-

gen at a benzylic position would be preferred over that at a methylene

position. Earlier Wiberg has shown that the rates of chromic acid

oxidation of aliphatic CH bonds are in the ratio 7 x 103:11 x 102 :1 for 1,43 3°, 2° and 1° hydrogens respectively.

It was expected that the Jones oxidation of 41a would provide 41b

and 41c as initial products (Figure 3). Indeed, these were found in the

ratio 6:1 (41b:41c), their combined yield being 36%. The bicarbonate

soluble fraction provided crystalline 42 in 39% yield. However, the

base-soluble fraction did not yield any 44. 21

This suggested that ~-41c was oxidized further to --42 as to be expec- ted from the Fieser and Szmuskovicz oxidation of 3° alcohols to keto aci. d s. 44 To confirm this point we synthesized (Figure 3) alcohol 41c from 1b and then subjected it to Jones oxidation. This provided 42 in

60% yield. The formation of 44 (4-methyl-1-naphthol) was also antici- pated to determine whether simultaneous attack at C-1 and C-4 in 41a

(41b to 43 or 41c to 43) takes place, and it was not found as a product in either case. To prove the absence of 44, we also synthesized it by an in· d epen d en t rou t e, as repor t e d ear1· ier, i.e.,· aromatiza· t" ion of 41b.45

This study shows that extents of attack at 2° and J 0 hydrogens are almost comparable in Jones oxidation, the reagent being less selective.

Jones oxidation reactions also serve as important intermediate steps in the (large-scale) conversion of 1,2,J,4,5,6,7,8-octahydro- anthracene (46) to 1,2,J,4-tetrahydroanthracene (49). Hydrogenation of anthracene (45) usually provides mixtures of tetra-, octa-, and perhy- 46 droanthracenes. Separation of hydrogenated products are often tedious 46 despite the fact that procedures have been reported. Also hydrogena- tion could be controlled to yield largely one product at times, i.e., when 45 was hydrogenated using Ni on Kieselguhr in ethyl acetate 46 was the major product (Figure 4). 47 Jones oxidation of 46 yielded 47, as 48 expected. Earlier work done by Agranat and Shih on the conversion of

J,4-dihydro-1-(2H)-anthracenone to anthracene by alkali fusion reaction and by Springer et a149 for the conversion of various tetralones to naph- thalenes prompted trial of a similar reaction on 47 to obtain 49. The aldol dimer of 47 was believed to be an intermediate in this conver­ sion.49 Hence 48 was synthesized and was fused with alkali to yield 49. 22

0 b,c @O

4la lb

a

d

4lb 44

aCrOJ, H0 0, ~ulfuric acid, acetone. bCH 3~gBr, anhydrous ether. 0 cH2 ,.d/C~ acetic acid. Pd/C, 250° C, 4 h. Figure 3. Jones Oxidation of 1-Hethyltetralin. --

23

@@@ a 45 46

47 c

d

48 49

aH2/Ni on kieselguhr, ethyl acetate. bcro3 , H2o, sulfuric acid, acetone. CBastc alumina, cyclohexane, ultrasonic agitation, 24 h. NaOH/KOH, 220°C, 3· h.

Figure 4, Synthesis of Tetrahydroanthracene From Octahydroanthracene 24

Estimation of Solvent Consumption

Even though acetone appears to be a stable solvent in Jones oxida- tion reactions, it is to be expected that some acetone and its aldol dimer (formed as shown in the following equation) would be converted to acetic acid after prolonged exposure to chromic acid.

Accordingly, blank studies were carried out, in which the acetic

acid formed was steam distilled and estimated by titration with standar­

dized sodium , much as is done in a Kohn-Roth determination.51

These results are provided in Tables III and V.

The amount of chromic acid consumed for oxidizing acetone was also

estimated by repeating the blank runs under identical conditions. The

chromic acid left behind was estimated by titration with standardized

; the results obtained are summarized in Tables IV

and V. The results shown in Table V prove that neither the consumption

of chromic acid nor the amount of acetone oxidized to acetic acid is

excessive. Therefore acetone is a suitable solvent.

Attempted Modifications of the Jones Reagent

Over a number of years, Jones oxidations have been carried out with 52 acetone as solvent. This is mainly because the reaction is faster in

acetone than in acetic acid and because acetone is easily removed from the 52 product by evaporation. However, we wdertook a survey of substituting

several common solvents for acetone. The results are listed in Table VI. 25

Table III

Estimation of Acetic Acid In a Jones Oxidation (blank runsa)

distillate t·ime b,c (100 mL) 4 h 8 h 12 h

2.90 7.00 4.00

2 7.20 11.32 27.50

3 4.80 5.32 13.60 4 3.11 3.32 7. 50 5 2.70 2.00 4.66

6 1. JO 1. 34 3.06

7 1.00 0.92 2. 14

8 0.80 0.72 1. 36

9 0.60 0.58 1. 06

10 0.44 0.42 0.92

11 0.38 0.70

12 0.30 0.60

total 24.40 32.42 67.08 aMean values of duplicate runs. bPhenolphthalein used as indicator. cvolume in mL of 0.1 N NaOH .

Moles of acetone used in all the cases = 0.17

% acetic acid formed after 4 h = 24.LO ~ 0.1 2S 100 = 0.2 0.17 after 8 h = 32.42 ~ 0.1 2S 100 = 0.3 0.17 after 12 h = 67.08 x 0.1 x 100 = 0.6 ------0.17 26

Table IV

Estimation of Chromic Acid Consumed in Blank Runs

# (50 mL each) neat Amount of 0.1 N thiosulfate consumed after exposure to acetone (ml) Trial 4 h 8 h 12 h

1 43.40 37.80 32.80 28.50

2 · 43.40 37.80 32.80 28.40

3 43.50 37.85 32.80 28.50

mean 43.43 37.82 32.80 28.47

Moles of Cr(VI) available in the neat reagent = 3.43 ! 0.1 ! 100 3 x 1000

= 0.145 after 4 h Cr(VI) left unconsumed = 7.82 x 0.1 x 100 ------3 x 1000

= 0.126

% consumed after 4 h = (0.145 - 0.126) 100

= 1 .9 % consumed after 8 h = 3.6

% consumed after 12 h = 5 Table V

Determination of Chromium Trioxide Consumed and Acetic Acid Formed During ?ones Oxidation

stirring, hours % CrO consumed % Ac~tic acid formed

4 1.9 0.2

8 3.6 0.3

12 5.0 o.6 28

In order for a solvent to be suitable in Jones oxidation reactions, it ought to be stable to the Jones reagent over 8 hours of exposure time. As shown in Table VI, only ~,!-dimethylacetamide and benzene were suitable, the others undergoing rapid oxidation. Their instability was 53 indicated by the appearance of blue-green salt deposits. Brown used ethyl ether as a solvent for chromic acid oxidation of 2° alcohols to ketones, but at a higher dilution of the oxidizing reagent. Ethyl ether, as shown in Table VI, is not a suitable solvent for Jones oxida- tion of tetralin.

The Jones reagent in!, !-dimethylacetamide did not cause oxidation of tetralin or diphenylmethane at ice-water bath temperatures, but rapidly effected oxidation of benzhydrol to benzophenone in quantitative yield. At room temperature,!, !-dimethylacetamide was attacked by the 54 Jones reagent since the color changed from orange to blue-green.

The Jones reagent in benzene used with prolonged stirring (24-28 h) caused oxidation of tetralin to tetralone. Several other hydrocarbons listed in Table II were also oxidized in benzene to evaluate the role of benzene as solvent in Jones oxidations. 55 However, it turned out that

the yield isolated is less in most reactions in acetone and longer reaction hours were required. Hence of the solvents examined, acetone

remains the best.

Substitute for Sulfuric Acid

. 56 56 Methanesulfonic acid, trifluoroacetic acid, and 85% phosphoric

acid,57 were substituted for sulfuric acid, on a molar basis, for the

oxidation of tetralin. Even though color changes were observed, 1-tctra-

lone was not obtained and most of the starting material was recovered in Table VI a Trial of Various Solvents for the Jones Oxidation

Solvent Observation on exposure to Conclusion the Jones reagent

Acetoni trile Immediate hydrolysis takes place Unsuitable producing acetamide and acetic acid

~,B-dimethylformamide Immediate oxidation occurs Unsuitable

~-methyl pyrrolidinone Immediately attacked by the Jones Unsuitable reagent

Levulinic acid Oxidation takes place within minutes Unsuitable

Diethyl ether Immediate violent reaction occurs Unsuitable

B,~-dimethyl acetamide Stable over several hours Sui table

Benzene Stable over several hours Sui table

aThese solvents were cooled in an ice-water bath; then cold Jones reagent was added dropwise along the sides of the beaker and stirred. 30 all cases. Sulfuric acid remains the best acid in driving the reaction.

Chromium (III) sulfate precipitates out of the reactants, as shown in the following equation.

These results prompted a study of the effect of excess sulfuric acid on the performance of the Jones reagent. The Jones reagent does not normally use excess sulfuric acid. Examination of the Cr0 3/H 2so 4 ratios used in earlier publications show that there has been close adherence to the needed stoichiometric amount of sulfuric acid. In an attempt to minimize the need for excess Jones reagent, we decreased the equivalents from 6X to 4X, 3X and 1. At the same time sulfuric acid concentration was increased. In each case, we made runs using a two- fold and fourfold excess of sulfuric acid compared to the quantity of sulfuric acid normally present with the reagent. In all these runs, the yield of 1-tetralone from tetralin did not equal the yields in Table II.

Hence we believe that an excess of concentrated sulfuric acid will not increase the yield. Possibly aldol condensation of acetone takes place and hence Jones reagent is consumed in the oxidation of these condensa- tion products or oxidation of acetone.

Role of Anhydrous Mgso4 and Silica Gel in Jones Oxidation

13,14 Water, though minimized from earlier procedures, is necessary to dissolve chromium trioxide in the preparation of the Jones reagent.

As the reaction proceeds more water is produced (3 mol/ CH2 group) and consequently, as the Cr(III) salts appear, the reaction mixture becomes sticky. These salts cling to the sides of the flask and foul the 31 stirrer paddle, at times enough to cause a stirrer imbalance and thus interfere with mixing. They salts occlude starting material and product and thus cause a 15-20% yield decrease, and can prevent completion of the reaction. To minimize this problem, we added anhydrous magnesium sulfate to the reaction mixture. Presumably, the formation of magnesium sulfate hydrates decreases the water content and thus keeps the salts in suspension.

Oven-dried silica gel also is effective in preventing stickiness of th e reac t ion. mix . t ure. 58 These drying agents are about equally effective

in improving the ease of isolation of product.

We sought information about the stability of 1-tetralone toward an

excess of the Jones reagent. 1-Tetralone (0.02 mol) was subjected to

the same oxidation conditions as used in its preparation and 85% of 1-

tetralone was found to survive the oxidation.

Trial of Various Cr(VI) Reagents for Benzylic Oxidation

A variety of chromium trioxide complexes utilizing or

related structures are available for the oxidation of secondary alcohols

to ketones. As early as 1968, dipyridine-chromium(VI) oxide, (C5 HsN) 2- Cro3, in () was used for the conversion

of 2° alcohols to ketones.59 However, there are some significant diffi-

culties associated with the Collins reagent; careful purification of the

reaction mixture is required in order to remove the harmful chromium by-

products from the reaction product. Further, a large excess (6-10 molar

equivalence) of Collins reagent is necessary for the complete oxidation 60 of an alcohol. These problems prompted the development of other

oxidizing reagents. 32

Among these reagents, pyridinium chlorochromate (PPC),60 2,2'- bipyri. "d". inium c hl oroc hr oma t e 61 ' 62 an d c h romium . ()VI oxide on graphi't e

(200) mesh called Seloxette 63 are of considerable importance. Both PFC and 2,2 1 -bipyridinium chlorochromate are nonhygroscopic, air-stable and 61 effective after months of storage at room temperature. Seloxette, on the other hand, is a (60%) dispersion of chromium trioxide in .

Supported reagents have gained popularity in the last ten to fifteen years and have found wide application in organic, inorganic, and bio- c h emis. t ry. 64 They also have the following advantages: simplified reac- tion work-up since the reagent can usually be separated by filtration, greater selectivity than attainable in the corresponding homogeneous reaction, milder reaction conditions, and recoverability of reagents for recycling.. 63 ' 64

Both PPG (in CH 2Cl2) and Seloxette (in refluxing toluene) were tried as hydrocarbon oxidizing reagents and were found to be unreactive.

However, 2,2 1 -bipyridinium chlorochromate in dichloromethane or better

in acetone, causes benzylic oxidation of hydrocarbons. The usual ratio

of 4:1 (oxidant to substrate) found effective for alcohols was increased

to 16:1, whereupon good yields as shown in Table VII were realized. In

applying these three oxidizing reagents, the original procedures report-

ed were followed to determine the effectiveness, except that a hydro-

carbon was substituted in place of an alcohol.

Comparison of Cr(VI) Oxidation Procedures

Table VII provides a study of oxidation reactions carried out on

different hydrocarbons using Cr03 /HOAc; Jones reagent and 2,2'-bipyri­ dinium chlorochromate. The data show that the Jones oxidation at the 33 benzylic position does not provide an overall improved yield. However, the ratio of oxidation products is significantly different from the ratios obtained through use of Cr0 3/HOAc or 2,2 1 -bipyridinium chloro­ chromate.

In oxidation of J6a, 37a, and 38a, where a steric effect is expected to control the product ratio, the Jones reagent causes a marked increase of the sterically hindered product at the expense of the other isomer.

We attribute this ratio difference to the more powerful oxidizing nature of the Jones reagent, which thus shows decreased selectivity. Fortunate- ly, the overall yield is not impaired.

Jones oxidation has some other advantages over the other two oxidi- zing reagents listed on Table VII. A practical problem associated with

Cr03 /HOAc system is that a large volume of acetic acid is required as the solvent, due to the low solubility of Cro3 in acetic acid (0.1% or less).65 Acetic acid is unpleasant to work with and hence isolation of the reaction product becomes troublesome. On the other hand, acetone in

Jones oxidations is easily removed by rotary evaporation.

2,2 1 -Bipyridinium chlorochromate is required in a very large excess

(16 to 1 molar) for successful completion of oxidation at the benzylic position. Hence, cost of the reagent will become a limitation when large-scale reactions are considered using this reagent. On the other hand, in the preparation of Jones reagent, cost is minimized since both chromium trioxide and sulfuric acid are relatively cheap chemicals. 34

Table VII

Comparison of Cr(VI) Oxidation Procedures

hydrocarbon1 product kecones ratio of ketones and combined yield~ CrO/HOAc Jones reagent B1PCC/acetone .! : =- (7.) b:c (%) -b:c.. (7.) (55) (68) (6J)

(60) (62) (50)

(71) (68) (70)

l.0:4.4- (75) 1.0:S.O (75) 1.0:4.8 (72)

. 3E.a. l.0:5.8 (70) 1.0:J.O (75) ],.0:6.1 (70)

2.9:1.0 {62) l.0:1.0 (65) 4.0:1.0 (60)

l.0:S.O (70) 1.0:1.0 (74) l.0:4.5 (58)

ac~rrcspondin~ to kecones ct this table. bRatio decer~ined by glc. As: carbouax 20 M

co:1ctn~ on 80-100 mesh Gas Pack contained "in an 0.25" " 10' copper tube uas used. 7uo

pe~k ~reas for calculatLn• ractos uere obtained by crian•ulat1on 0i CC peaks. 35

Discussion of 13c NMR of Gem-Dimethylindans

The indans 25a, 50a, 26a, 34a, i!., and 52 serve as model compounds

(Table VIII) for assigning C-13 resonances in gem-dimethylindans (27a-

33a).

25a 50a 26a

34a 51 52

The 13 c chemical shifts for indan 25a have been reported by several other workers.19 •60 The assignments of resonance positions for the other two indans (50a and 26a) were accomplished by various techniques;61 mainly by taking into consideration the known substituent effect of a and S carbons (deshielding) and y carbon (shielding). Observation of a

doublet in the SFORD experiment at 39.4 ppm made the C-1 assignment

possible for 50a. Triplets were observed in the off-resonance spectrum

for the resonance lines at 34.7 and 31.4 ppm for 50a, 41.4 and 30.1 for

26a. The lines at 34.7 are assigned to C-2 in 50a and 41.4 to C-2 in

26a since the methyl substituent(s) at C-1 should deshield the S posi-

tions in both cases while they should shield they positions. Hence the

values 31.4 and J0.1 were assigned to C-3 for 50a and 26a respectively. It should also be noted that C-1 and C-2 are deshielded while C-3 is shielded in 50a and 26a when compared with C-1, C-2 and C-3 of indan

25a. The assignment of signals for the six aromatic carbons were made by comparison with 25a and taking into consideration the -deshielding effect of the methyls at C-1 and Y -shielding effect on C-7. Further, assignments for aromatic carbons were aided by earlier studies done by 24 Palaniswamy on dimethylindans 34a, .2l and 52.

On the basis of the chemical shift values provided in Table VIII,

13c resonances for compounds 27a-33a were assigned (Table IX). Due to the presence of gem-dimethyl groups on C-1, C-3a is more deshielded than

C-7a in all the cases (being i3) and C-7 is slightly more shielded ( Y position) than C-4.

For indan 27a, HETCOR two-dimensional contour plot helped assign the resonance lines for the aromatic methyl substituents (R4 and R5 ).

Of the two methyl groups, one is more shielded in both 1H and 13c spectra as evidenced from the HETCOR 2-D plot, and the other one is slightly downfield. The methyl substituent on C-4 (R4) is surrounded on either side by a methyl group and a five-membered ring respectively.

Hence the upfield value (15.8 ppm) is assigned to R4 and the downfield

signal at 19.6 is assigned to R5 •

l I '@=) 30a 31a 37

Aromatic carbon assignments for indans 32a and 33a were difficult because of the presence of an extra methyl group as compared to the earlier ones and ordinary gated-decoupling experiments failed to distin- guish between the quaternary aromatic carbons attached to methyl groups.

Hence, selective 13 c [1H] decoupling experiments were attempted on both

J2a and JJa. All the C-H couplings due to aliphatic protons (both methyl and methylene groups) were cancelled, and only the coupling due to interaction of the single aromatic proton with all the 6 aromatic 13 carbons were observed on the C spectra.

This was achieved easily on the 300 M,.~z FT-NMR by applying enough power to the decoupler (-5d.B) for both the indans. Carbons that were three bonds away from aromatic protons (C-3a, C-5 in 32a and C-4, C-7a in 33a) were split into doublets (Spectra 1 and 2), while the quaternary carbons that are two and four bonds away from the aromatic proton remain unsplit. 3JC-H Coupling constant were also measured in these cases.

Table X comprises the coupling constants for 32a and 3Ja. The proton- ated aromatic carbon gives a doublet with a very large J value, which is obvious due to its upfield nature. Assignments for methyl groups on the aromatic ring for 32a and 33a were done based on the values from 27a-

31a.

~ 32a 33a Table VIII

13Chemical Shifts of Model Indansa

Compound C-1 C-2 C-3 C-3a C-4 C-5 C-6 C-7 C-7a

25a 32.8 25.4 32.8 143.6 124.1 125. 8 125. 8 124.1 143.6 50a 39.4 34.7 31.4 143.3 124.0 125 .9 125. 9 122. 8 148.2 19.8 26a 43.8 41.4 30.1 142 .1 124.2 126. O 126.0 121. 3 152.0 22.6

34a 33.0 42.0 30.9 139.4 132.8 127. 5 135.3 122. 2 143.5 R4=18.9; R6=21.0

2.l 31.6 24.2 31.6 142.0 130.4 126.9 126. 9 130.4 142.0 R4,R 7=18.8 52 32.6 25.7 32.6 141.3 125.4 133.6 133.6 125 .4 141. 3 R5,R 6=19.6

ain ppm from internal Me4Si in 2 M solution.

v.) 00 Table IX 13c Chemical Shifts of gem-Dimethylindansa,b

c d d c c Compound C-1 C-2 C-3 C-3a C-4e C-5e C-6e C-7e C-7a C-8f Rf C-9

c c 27a 44.0 41.2 28,9 141, 7 132.2 134.2 128.1 119.0 149. 9 - 28,9 R4=15,8 R5=19,6 c 28a 44.0 41 .3 28.2 138,3 133.3c 127 .9 135,9 119, 8 152,3 28.8 R4=18,9 R6=18.6 c c 29a 45,0 42.4 28,4 141. 6 130,7 127 .2 129.2 130.0 148,0 27,4 R4=18,9 R7=18.9 c c g 30a 43,6 41.7 29.6 140.1 125,6 134, 1 134, 1 123.0 149,9 28.6 R5=19,6g R6=19,8 c c 31a 45,3 43,5 29,5 141. 2 121. 8 128,3 135 .1 123 ,3 148,9 27.6 R =20. 1 --- 6 R7=15,2 c c 1.2a 44, 1 41 .1 29,8 139,3 132 .o 132.6c 134,5 120.8 149.3 28.8 R4=16.4 R5=15,2 R6=21.0 c c 33a 45,5 43 .1 27.8 139,8 130,3c 129,4 135,1 129 ,3 148,6 27,7 R4=18.6 R6=19,4 R7=14,8 a b c (CDC13 ) in ppm from internal MeSi4 • Number~ng system provided as in~~· Singlet observed in off-resonance decoupled sp~ctrum (ORDS). Triplet o~served (ORDS). Doublet observed (ORDS) l,.) unless otherwise specified. Quartet observed (RDS). Assignments may be interchanged. \D 40

. tI 27a

t t I t

tl·

Spectrum 1. HETCOR-Two Dimensional Plot for the Aliphtic Region of 27a. 41

Table X a Long-range Aromatic Carbon-proton Coupling Data

Compound Carbon counlinga with protons on C-Ja C-4 C-5 C-6 C-7 C-?a

C-Ja 4.0

. C-4

C-5 5 .8

C-6

C-7 ~32a C-?a

C-Ja 7.0

C-4

C-5

C-6 ~ C-7 6.6 33a C-7a

a(CDC13 ) in hertz. *Aromatic carbons three bonds away from aromatic proton. I I 8,000 10. 100 Hi i I 4.J,o ,.o,oo .; -1--1-+- .J. ... __i_L 1 .. I I 2.,oo 2.~oa I I : I ! I.WO 2.000 I I ~00 mm Jo

-- :··r r- I I ; : I ! i -1- '

.. i I 200 PPM 1°0 135 150

Spectrum 2, The Aromatic Region of 32a Selectively Decoupled ( 13C[lH ]) . 43

13 G·, NMR Assignmen · t s f or Gem- Dime . t hylindanones

Indanones 25b, 50b and 26b served as models for assigning 13c chemical shifts for all the 3,3-dimethyl-1-indanones.

0 0 @) ~ ~ 25b SOb ~

Chemical shifts for 25b62 and 26b61 have been reported by several workers. Careful examination of the data on Table XI, makes it evident

that in all the indanones C-Ja (ortho carbon) is considerably deshielded

compared to C-7a (ipso g_arbon to the carbonyl group). This deshielding

effect gets more pronounced as more methyl groups are added to C-3.

Further, C-5, which is para to-the carbonyl group is more deshielded

than any other aromatic carbon other -than for C-Ja. Also, C-4 is seen

farther downfield as compared to C-7 as methyl groups are added on C-J.

The C-13 chemical shift values for the seven gem-dimethylindanones

shown below are summarized in Table XII.

mI MI 27b 28b

30b 3lb 32b 33b Table XI

13 c Chemical Shifts of Model Indanonesa

Inda none C-1 C-2 C-.3 C-Ja C-4 C-5 C-6 C-7 C-7a C-8 C-9

206.2 J6.o 25.6 154.9 127.0 134 • .3 126.6 123.3 136.9 205.6 45.1 .32.6 159.7 125.2 134.6 127.2 123.1 136.3 21.2 204.9 52.7 .38 • .3 16.3.3 122.9 134.6 127.1 123.3 136.9

8 In ppm (CDC1 3) from internal TMS. 45

For indanone 28b, 13 c resonance lines were assigned with the help DD of T values. T values depend on the number of a hydrogens present 1 1 and in 29b, both C-Ja and C-7 have one a hydrogen, C-5 has two and C-7a has none. Hence at 25.2 MHz, C-5 relaxes faster (indicated by small T1 value) than C-7 or C-3a. C-7a has a very large T1 value (from Table XIII), indicating the absence of a hydrogens.

In all the indanones studied, whenever there is a methyl group present on C-5 (as in JOb), that carbon appears farther downfield from

C-7a. However, in order to make unequivocal assignments for C-5 and C-

7a (for 31b), the -CH 2 group adjacent to carbonyl functionality was 13 1 deuterated, followed by a selective decoupling C [ H] experiment where the aromatic protons on C-4 and C-7 were both decoupled.

0 a) CH30Na/Uioxane, 24h reflux ~H b) D2o, 24h reflux ~D 30b 30c

C-7a can couple with hydrogens on C-2 and C-4 and C-5 can couple

with the methyl protons on C-6 as well as with the aromatic proton on C-

7. Incorporation of deuterium atoms on C-2 prevents C-7a from coupling

with C-2 hydrogens and decoupling the aromatic protons make it appear as

a sharp singlet (133.3 ppm), while the signal at 144.7 ppm (C-5) was

split into a multiplet. This is illustrated in Spectrum 4. Table XII

13c Chemical Shift Assignments for gem-Dimethylindanonesa

c Indanone C-1 C-3a C-7ac C-8f C-9

27b 207.1 53.9 36.8 162.6 120.2 135.9 136.1c 132.1c 136.1 30.2 R6=20.9 R7=15.7

28b 206.3 53.6 37.5 165 .2 121.3 145.2c 130.4 138.2c 130.6 30.1 R5=21.9 R7=18.9 g 206.2 54.9 38.3 159.9 131.8c 136.6 129.3 133.0c 135.8 27.6 R4:17.98 Rr18.9

204.2 52.8 37.8 161. 7 123.7 144.7c 135.9c 123.9 133.3 29.6 R5=20.5 R6=19.3 205 .6 55 .4 39.7 159.9 133.8c 145.5c 129.8 120.8 134.5 28.4 R4=15.7 R5=20.9 206.2 53.8 36.6 162 .1 29.9 R5=21.9 R6=14.9 R7=15.7 206.2 56.0 38.7 160.5 28.5 R4=15.4 R5=20.6 R7=18.2 a(CDC1 3 ) in ppm from internal MeSi4 • bNumberigg systems provided with structures. cSinglet £bserved in off-resonance decoupled spectra. Doublet obsrved in ORDS. eTriplet observed on ORDS. Quartet observed in ORDS. 8Assignments may be interchanged. 47

Table XIII

Relaxation Times and Chemical Shift Assignments for Indanone 28b a

ppm C-Assignment

26 165.2 C-3a

20 145 .2 C-5

28 138.2 C-7

39 130.6 C-?a

1 • 8 121.3 C-4

1.9 130.4 C-6

a In ppm from Me4 Si in CDC~.

Aromatic carbons in 32b and 33b were assigned, again, by using selective 13 c[1H] decoupling experiments as shown in Spectrum 5. The coupling constants on Table XIV allow assignments for carbons that are three bonds away from an aromatic proton. The splittings can be easily seen on Spectra 5 and 6. 1 ::= -:· ·:: :.:· ·i, · l;: :i!! ,, ·· 11111 1 l!:11·11 i111 P1 1·,i H1, !II 1,:1 ,: 1·, i1i: ,11 111,: :'' ,1 i11 11,1, · ··. r••. · • ~-: • ::•. :/•••. ••• ...... ,. ••• ...·1·:1! ••• • :;•. ·- ., ... , 11•.•.. '" I, . ·1 d,I ..... 1 i'!II I'''.,. '11 I . I J . I' 11 ... I, I ..,i I • I . . . ,, :: . : ·: ::: ::.· :,. :· ::. ::: iL::: i1'; I :ij'i (!iii: fl !;' l: .i '! :;: 'i!i .·.· I :· I. ::1·<11 ,!!: ::t ,!l: .: :.. ;:! 1 ···- ·•• --- ·-· ··- ·•• -· --· - ·, · :: ·""7" ·:-:- ;:. ·:1. T: f:'f '"7: :-:-:. ·, ··1·· i I i1 i !·1··1 r:j: :·1,i i!:I 1-.j1 ll:; :; 1 1 : ·:r 11· ~,.;; 11=17! ·,':: r1· ·,: :1r 1T -~i 7" .. . ::. !1' .•. · : ' I 1:1 : 1 :1 ' 1 I l',I ' I'll ',,. ·11 I :: ' I:".:: 11j1 'l I 1 1 'I 1 ·I ,, ·/ • ,· ·· · • 1 .... :: ·:: •• ·::· 1 I 1 :: :: . . . . i·:·... ::·. .... :;:... :": :=·. ·: · ,!.• i,1· ! 11::1..... ;!:. , ·rllm· !:!;.. , ·:=·.. 'I;1· , .•....11 i ::;1 ·11·•. ·I ..:i:· :: ·:!.. ·1'1· :!·'. 11 ·-:· ------,, ~ ~r: :' ): r,:~I ri,· ! .:l

. I

30b 3 2 5 .. a 7 . 6 ppm

1 1 H NHR of 30b and 30c : ~H/D Spectrum 3 )~)-f"H/D -30b or -30c 13 1 0 Spectrum 4. Aromatic Region of 30c Selectively Decoupled ( c [ HJ ) , "fnY~D /(~::::>y\u 30c 50

Table XIV

Long-Range Aromatic Carbon-Proton Coupling Data

Coupling a with Protons on Compound Carbon C-4 C-5 C-6 C-7

C-Ja

C-4

C-5 ,•~ C-6 5.2 )0 I C-7 32b C-7a 5.2

C-3a

C-4 4.9

C-5

C-6 ~ C-7 33b C-7a 4. 5

a(CDC13 ) in hertz. *Carbons 3 bonds away from aromatic proton. ~H, : • . I O I J __ ~-l-- ---i -·-, -1- "T ---1--- _,_ -.1--L+----·- -,o,l·mm--e-•-<---.1·-1- t-- r' -- _ :>O I I I 2 u, '" I I • l,SrJO I I 1.000 S I !' 1 1 )0 • . I ' i ' - I ! I I I . I .. , .. _ - -- - I I ' I : , ,,,,11 : i 1 1 ,110 ,bo I •o I 4nom J,, : I '. . I I I .lo I JJ I o I I I I ' I . I : I I - -' I I f I

r ...... i - - - 1 ' +H -_, ---- -... .: - - =- - .1J H .. I ' I I i ! ~~ · ! I I i

i I) 1 ; I . IJ;" _, - , I I : --- "'.".'"" i I 1~ J" .. [_ ! --1 )Tl -i-1-,-·- -1 -->O - - -1------~ ---;--r . ! I I I i . I I ) I I i : < I i I l I i I I I I I J -- -~ - ~ -~ I I I i : I I : ! : I I I --- - . - . I : ! I ---- i i ! - 1 i - ; -1 ! i I : ! I : , -;-,1--t,,T Trrr1. ~ --- .-r --~ --11----~ .. .• . < ! i ! i I j i I i I ·' --,, I:-1. . 1------1- ...... " . ' ! .. I~- ~. - - I l I I : i ;i I i !' I ; ; i I -. I I f ! ; · rr I 1 1·· - I 120 I I +'· ! ! ! :' , I i I u ' 1 I I 1~0 I I ,,, I' 1 I I 1 ! r I ! : ' i i I I

1 J§r} Spectrum 5. The Aromatic Region of ~ Selectively Decoupl~d (BC H ) • 32b , I I I t ~oo ! I .· ...... ·; .. :: . •; .: . I ·• . , i 2.cloo I I . . I I I .. : '.'.! . . : ' :. . .. . ; I I I I I r.._ 11 ····11 t,1,_11- c ~ -· - : ~r l-.1,--1-r ·J l I· . .. . ! • • •• ' • . -· -· I . I

? 0 ·1-· j- .·. : - - -, - " ' . ' -I_-:--~~·-··'··.·· .. ·- ·-~!' --J -+---'· !··· · 1 -1-:::: ·.·· ··. --· I . . i - ... -- ·-··· - -- l-- -- ' ,. . ~ ------,_ --

! : -···· -·-- --:~ ------· I : I ; l I . -···1-·_;_.: --- -··- --·· ; , I I ·--- .... - t. --· -- --, . ' ' .. . . I ,_.! -+-·

I i .. 1, ,/ ·v 'I "1. -·- ; ·r I I 110 ~ I ·1 1i 11

Spectr~m E. The Aromatic Region of 33b Selectively \J1 N Decoupled (13C C 1HJ ) 53

Summary of Significance of the Research

Although conversion of aromatic hydrocarbons to aryl ketones is a well known reaction, a comparative study of different available reagents has not been done before. This study also brings out a new application for the Jones reagent, which is ordinarily used for the conversion of 2° alcohols to ketones.

The 13c chemi·cal shift assignmen· t s as repor t e d in · th"is th esis· f or the gem-dimethylindans and -indanones have been successfully achieved.

Even though mono- and dimethylindans have been studied before, 42 this is the first~ where polymethylated indans and indanones have been investigated. CHAPTER III

EXPERIMENTAL

General Information

Proton NMR spectra were recorded at 300 MHz on a Varian XL-300 NMR 13 spectrometer. The C NMR spectra (fully decoupled, selectively de- coupled ( 13c[ 1H]), off-resonance proton decoupled and two-dimensional) were recorded at 75.4 MHz in the FT mode on a Varian XL-300 spectrometer.

Chemical shifts are reported in ppm downfield from internal SiMe 4 as standard. T1 studies were done at 25.2 MHz in the FT mode on a Varian XL 100A spectrometer interfaced with a 12K Nicolet 1080 computer system.

Infrared spectral data were collected with a Perkin-Elmer 681 spectrome-

ter. Mass spectra were recorded with a CEC 21-110B high resolution mass

spectrometer with Data General DS-50s data system at 70 ev. Melting

points were determined with a Thomas-Hoover capillary

apparatus. Melting and boiling points are uncorrected. Gas chromato-

graphic analyses were obtained with a Varian Model 3700 Capillary gas

chromatograph, and a Varian Aerograph model 550 instrument. Analytical

and preparative high-pressure LC were conducted on a Waters Associates

Micro-porosil (silica gel) column with a Waters Associates analytical or

preparative LC system 500 liquid chromatograph, equipped with UV and

index of refraction detectors. Acetone, used in all Jones oxidation

reactions, was distilled (once) from commercially available grade.

54 55

Jones Reagent Preparation

The Jones reagent was made up in 1.00 mol batches by dissolving 100 g of Cr03 in a minimum of distilled water. Sulfuric acid (86.5 mL) was added and more water (about 194 mL total) was then added to effect 14 solution of precipitated salts. The final volume was 336 mL (3.36 molar with respect to Cr03 ).

General Oxidation Procedure Using the Jones Reagent

To a two-necked 300-mL flask fitted with a high-speed mechanical stirrer and immersed in an ice-bath was added 0.2 mol of the hydrocarbon in 50 mL of acetone. The cooled mixture was stirred vigorously during . 12 the addition of 46 mL of Jones reagent over a period of 30 min. The ice-bath temperature was maintained at 5-15 °C throughout the reaction.

As the green Cr2(so4)3 began appearing, 8.4 g (0.07 mol) of anhydrous

MgS04 was added. This treatment minimized stirrer imbalance resulting from adhering salts. The use of 50 g of oven-dried (120-130 °C) silica

(50 mol/mol hydrocarbon) as a substitute for anhydrous magnesium sulfate

proved equally effective.58

Samples were withdrawn at intervals and analyzed by gas chromate-

graphy to determine the completeness of reaction. In most cases, 6-8 h

of reaction time was adequate for complete oxidation. Additional Jones

reagent was added to those hydrocarbons which oxidize slowly and stir-

ring was continued for a total of 10 h.

On disappearance of starting material (as evidenced by gc) excess 14 Jones reagent was destroyed by adding . The contents

of the flask were filtered through Dicalite to remove suspended chromium 56 salts. The filter cake was washed as needed with acetone and ether.

The filtrate was rotary-evaporated, the reaction product was dissolved in ether and the ether solution was extracted with sodium bicarbonate solution to remove any remaining sulfuric acid and acetic acid formed so through the oxidation of acetone. The ether extract was dried

(MgS04), filtered and concentrated to obtain the ketone of interest.

Yield Optimization in Converting Tetralin to 1-Tetralone

A series of five experiments in which the molar ratio of Cr03:tet­ ralin ranged from 4:1 to 10:1 were carried out. The maximum yield of 1- tetralone was obtained with a ratio of 6:1. The theoretical chromium trioxide/tetralin ratio is 4:3.

Stability of 1-Tetralone During Jones Oxidation

1-Tetralone (2.92 g, 0.02 mol) and 46.0 mL of Jones reagent in 50 mL of acetone were stirred together for 4 hat ice-bath temperature.

The isolation was carried out as described in the general procedure.

The product showed a single glc peak (1-tetralone) and the recovered yield (85%) of 1-tetralone was determined by GC analysis using added tetralin as an internal standard.

Preparation of Hydrocarbons

The hydrocarbons used in this study were obtained in part from the

API hydrocarbon synthesis project. They were synthesized as outlined

below and their purity established by glc and spectral data.

Hydrocarbons .1.§., 22a, 25a and 38a. These were commercially avail-

able and were oxidized without further purification. 57

Indans 26a, 39a and 40a. These were available from earlier acid­ catalyzed reaction (cyclialkylation) of benzene with isoprene.69

Indans 27a, 30a and 31a. These were available as a mixture from acid catalyzed cyclization of a-xylene with isoprene. 70 They were

separated and characterized by earlier workers. 70

Indans 38a and 29a were obtained by the acid-catalyzed reaction 70 between m-xylene and p-xylene with isoprene independently.

Indans 32a and 33a were obtained as a mixture by the acid-catalyzed 71 cyclization of isoprene with 1,2,4-trimethylbenzene (pseudocumene).

Their structures were also established by independent synthetic routes.

Indan 34a was synthesized by the Wolf-Kishner reduction of 34b

itself.

Tetralin 36a was prepared by the hydrogenation of 2-tert-butyl- 72 naphthalene.

Tetralin 37a was synthesized from ethyl-5,6,7,2-tetrahydro-1-naph- 72 thoate as described earlier. -1 1 26b: bp 107 °C (4.7mm); IR (film) 1709 (CO)cm ; H NMR (CDCl3) 6

7.59-7.05 (m,4,ArH), 2.44 (s,2,ArCOCH 2), 1.40 (s,6,gem-CH3); mass spec­ trum m/e, M+ 160(85), 145(60), 130(60), 127(48). -1 1 27b: mp 66-68 °C; IR (KBr) 1708 (CO)cm ; H NMR (CDC13) 8 7.38,

7.22 (2d,2,ArH), 2.60 (2s,6,ArCH3), 2.40 (s,2,ArCOCH2), 1.39 (s,6,gem­ + CH 3); mass spectrum m/e, M 188(40, 173(100), 148(40), 133(20), 69(100). 2,4-DNP mp 215-216 °C. -1 1 28b: mp 57-58 °C; IR (KBr) 1708 (CO)cm ; H NMR (CDC13) 8 7.10,

6.90 (2s,2,ArH), 2.60-2.50 (s,6,ArCH3), 2.40 (s,2,ArCOCH 2), 1.39 + (s,6,gem-CH3 ); mass spectrum m/e, M 188(25), 173(100), 155(10), 128(30), 69(100). 58

2,4-DNP mp 238.5-239.5 °C. -1 1 29b: mp 60-61 °C; IR (KBr) 1715 (CO)cm ; H NMR (CDC13) o 7.18, 7.00 (d,2,ArH), 2.56, 2.26 (s,3,ArCH3), 2.46 (s,2,ArCOCH 2), 1.42 + (s,6,gem-CH3); mass spectrum m/e, M 188(30), 173 (100), 145(20), 115(20), 69(100). 2,4-DNP mp 236-238 °C.

30b: mp 78-80 °C; IR (KBr) 1715 (CO)cm- 1; 1H NMR (CDC13) o 7.46, 7.28 (s,2,ArH), 2.56 (s,2,ArCOCH2), 2.38, 2.30 (s,3,ArCH3), 1.40 + (s,6,gem-CH3); mass spectrum m/e, M 188(20), 173(100), 155(20), 128(10), 69(100). 2,4-DNP mp 261-262 °C. -1 1 31b: mp 55-56 °C; IR (KBr) 1712 (CO)cm ; H NMR (CDCL3) o 7.50,

7.20 (d,2,ArH), 2.60 (s,2,ArCOCHz), 2.40, 2.38 (s,6,ArCH3), 1.54 + (s,6,gem-CH3); mass spectrum m/e, M 188(30), 173(100), 145(50), 128(30), 69(100). 2,4-DNP mp 219-221 °C.

32b: mp 95-96 °C; IR (KBr) 1700 (CO)cm-1; 1H NMR (CDC13) o 7.16 (s,1,ArH), 2.62, 2.58, 2.20 (s,9,ArCH3), 2.40 (s,2,ArCOCH2), 1.40 + (s,6,gem-CH3); mass spectrum m/e, M 202(40), 187(100). 2,4-DNP mp 249-251 °C.

33b: mp 52-53 °C; IR (KBr) 1705 (CO)cm-1; 1H NMR (CDC13) o 6.83 (s,1,ArH), 2.51, 2.35, 2.30 (s,9,ArCH3), 2.46 (s,2,ArCOCH2) 1.38 + (s,6,gem-CH3); mass spectrum m/e, M 202(30), 187(100), 128(40), 115(35). 2,4-DNP mp 236-238 °C. -1 1 36b: bp 109 °C (0.1mm); IR (KBr) 1680 (CO)cm ; H NMR (CDC13) o 7-94-7.80 (m,1,ArH peri to carbonyl), 7.40-7.01 (m,3,ArH), 3.02-2.84 59

(m,2,ArCH2), 2.38-1.69 (m,3,ArCOCHCH2), 1.08 (s,9,tert-butyl); mass spectrum m/e, M+ 202(2), 147(37), 146(100), 145(27), 131(19), 118(19).

2,4-DNP mp 228-230 °C.

36c: mp 68-70 °C; IR(KBr) 1675 (CO)cm-1; lH NMR (CDC13) o 7.98- 7.83 (m,1,ArH peri to carbonyl), 7.48-7.07 (m,3,ArH), 3.08-2.45

(m,3,ArCH2 and ArCOCH), 2.38-1.66 (m,2,ArCOCH and ArCH2CH), 0.98 + (s,9,tert-butyl); mass spectrum m/e, M 202(24), 146(100), 145(37),

117(21), 115(22), 57(47).

2,4-DNP mp 223-224 °C. -1 1 37b: bp 96-98 °C; IR (film) 1675 (CO)cm ; H NMR (CDC13) o 7.90, 7.82 (d of d,1,ArH peri to carbonyl), 7.50, 7.42 (d of d, 1, ArH), 7.13

(t,1 ,ArH), 3.14 (t,2,ArCH2), 2.54 (t,2,ArCH2CH2CH2), 2.06 (p,2,ArCH CH2), 1.42 (s,9,tert-butyl); mass spectrum m/e, M+ 202(28), 188(15), 187(100),

117(13), 115(19), 41(11). -1 1 37c: bp 93-95 °C; IR (film) 1700 (CO)cm ; H NMR (CDC~) o 7.40-

6.86 (m,3,ArH), 2.84-2.54 (overlapping m,4,ArCH2CH 2CH 2), 2.17-1.90 + (p,2,ArCH2CH2), 1.38 (s,9,tert-butyl); mass spectrum m/e, M 202(85), 187(94), 174(100), 159(96), 115(49), 43(35). 38b and 38c: A 1:1 mixture of 38b and 38c was subjected to Kugel-

rohr distillation followed by recrystallization using iso-hexane, to

give 38c mostly. Column chromatography of the mother liquor of neutral

alumina using isohexane afforded 38b.

38b: mp 40.5-41 °C; IR(KBr) 1675 (CO)cm- 1; 1H NMR (CDC1 3) o 7.02

(q,2,ArH), 3.15 (s,2,CH2 at C-5), 2.80 (q,4,CH2 at c1 and c3), 2.58 (t,2,CH at C-8), 2.00 (q,2,CH at C-2), 1.71 (m,4,CH at C-6 and C-7); 2 2 2 mass spectrum m/e, M+ 200(100), 185(62), 175(33), 129(34), 119(32). 1 1 J8c: mp 81-82 °C; IR (KBr) 1670 (CO)cm- ; H NMR (CDC1 3) o 7.82 60

(d,1,ArH at C-10), 7.01 (d,1,ArH at C-9), 2.78 (t,4,Hs at C02 and C-4),

2.58 (t,4,CHz at C-5 and C-8), 2.10 (q,2,CH2 at C-3), 1.96-1 .68 (m,4,CH 2 + at C-6 and C-7); mass spectrum m/e, M 200(100), 172(82), 144(60),

129(44), 114(31).

Synthesis of 41c from 1-tetralone (1b): Commercially available methylmagnesium bromide (175 ml, 3.1 in ether) was stirred in a three- necked flask fitted with a :dropping funnel:, condenser and a nitrogen inlet. 1-Tetralone (0.5 molar, 75 g) was dissolved in 250 ml of anhy- drous ether and added dropwise to the Grignard reagent. Formation of pale yellow salts indicated that the reaction was progressing. Stirring was continued for 5 h. The contents of the flask were then poured into saturated ammonium chloride and the mixture was extracted with ether three times. The combined ether extract was dried (MgS04), filtered, concentrated and was distilled to yield 69 g (85%) of colorless 1-methyl- 1 1,2,3,4-tetrahydro-1-naphthol (41b): mp 85-87 °C; H NMR (CDCl3) 0 8.02

(d,1,ArH at C-8), 7.60 (d,1,ArH at C-4) 7.50 and 7.30 (2t,2,ArCHz), 2.60 + (t,2,ArCCH ), 2.10 (p,ArCH CH), 3.5 (s,1 ,OH); mass spectrum m/e, M 2 2-2 162(24), 146(100), 131(30), 91(25).

Hydrogenation of 41c to 1-methyl-1 7 2 73 74-tetrahydronaphthalene

(41a): A 65 g (0.4 mol) sample of 41b in 600 ml acetic acid was hydro-

genated for 20 h with 2 g of 10% Pd/C catalyst. At the end, product was

filtered to remove the catalyst and the acetic acid was evaporated. The

resulting concentrate was added to ether, extracted with water and

sodium bicarbonate solution respectively. · The organic layer was then

dried (MgS0 4), filtered, concentrated and distilled to give 50 g (85%) 1 of 41a: bp ~Q °Cat 0.3 mm of Hg; H NMR (CDC13) 8.10 (d,1,ArH at C-5),

7.50 (a,1,ArH at C-5), 7.3 {2,m,ArH at C-6 and C-7), 2.90 (t,2,ArCH2), 61

2.80 (m,1,H at C-1), 1.78 (m,4,CH2 at C-2 and C-3) 1.40 (d,3,CH3); mass + spectrum m/e, M 146(100), 131(100), 119(100), 115(70), 91(85), 69(100). -1 1 41b: bp 95 °C (1 mm Hg); IR (film) 1690 (CO)cm ; H NMR (CDCl3) o 8.00 (d,1,ArH at C-8), 7.45 (d,1,ArH at C-4), 2.65 (m,2,ArCOCH), 2.20 2 (m,2,ArCOCH/H/, 1._40_ (cl.,),CH3); mass spectrum m/e, M+ 169(100), 145 ( 70) , 1 32 ( 1 00) , 11 8 ( 60) , 1 05 ( 90) , 69 ( 1 00) •

2,4-DNP mp 204-206 °C.

Aromatization of L1b to 4-methyl-1-naphthol (44): A 25-mL, three- necked, round-bottomed flask fitted with gas inlet and outlet and a reflux condenser served as the reaction vessel. A 5-g sample of 4- methyl-1-tetralone (41c) and 0.5 g of Pd/C were poured into the reaction vessel. A fast flow of helium was used initially to sweep air from the system. The helium flow was then reduced to maintain a slight positive pressure. The flask was lowered into a Wood's metal bath preheated to

70 °C and the bath temperature (by thermocouple probe as a safety mea-

sure) was raised rapidly (15-20 °/min) to 260 °C and was held station-

ary. After being heated for 4 h, the reaction mixture was allowed to

cool under helium atmosphere. Severe bumping due to water formed in the

reaction was lessened by sutmerging the reaction flask into the bath far

enough that the level of the molten metal was approximately 0.5 11 above

that of the liquid in the flask.

The cooled reaction mixture was extracted successively with ether

and chloroform and the solution was filtered through Dicalite. The

filtrate was washed thoroughly with 10% NaOH solution. The alkaline

solution was acidified with cone. HCl acid and extracted with ether.

The extract was washed with water, dried (MgS0 4), filtered and concen­ trated to give crystals of 4-methyl-1-naphthol (44). This was purified 62

1 by sublimation. mp 75-78 °C; H NMR (CDC13) o 8.21 (d,1,ArH at C-8), 7.98 (d,1,ArH on C-4), 7.58 (m,2,ArH at C-2 and C-3), 7.25 (m,2,ArH at

C-6 and C-7), 5.2 (s,1,ArOH), mass spectrum m/e, M+ 158(100), 157(46),

144(35), 115(40), 128(30).

4-Methyl-1-tetralone (41b): bp 95 °C (1 mm of Hg); IR (film) 1690 -1 1 (CO)cm ; H NMR (CDC13) o 8.00 (d,1,Ar-H at C-8); 7.45 (d,1,Ar-H at C-4),

7.25 (m,2,Ar-H at C-6 and C-7), 3.18 (m,1,~ at C-4), 2.65 (m,2,ArCOCH2),

2.20 (m,2,ArCOCH2CH2)_, _!_~40 (d,3,CH3 ); mass spectrum m/e, M+ 160(100), 145(70), 132(100), 118(60), 105(90), 69(100).

2,4-DNP mp 204-206 °C.

3-(2-Acetylphenyl)propionic acid (42): This was isolated from the

reaction mixture produced by Jones oxidation of 41a by extraction with

sodium bicarbonate solution, followed by acidification and extraction -1 with ether to give: mp 68-69,5 °C; IR (KBr) 1720 (CO)cm , 1680 (CO of -1 1 C0 2H)cm ; H NMR (CDC13) o 12.01 (s,1,C02H), 7.9 (d,1 ,Ar~ at C-8),

7.42-?.38 (m,3,Ar~), 2.60 (s,3,CH3), 2.08 (t,4,2CH2); mass spectrum m/e, M+ 192(15), 174(20), 146(100), 132(60).

2,4-DNP mp 140-142 °C.

Hydrogenation of 34 to 1,2,3,4,5,6,7,8-octahydroanthracene (46):

Commercially available anthracene (45), (1.5 moles, 267 g), was dis-

solved in 1 1 of ethyl acetate, and was hydrogenated in the presence of

10 g of 10% Ni on Kieselguhr at 160 °C for 3.5 hat 1600 psi. At the

end, the catalyst was filtered out with Dicalite and ethyl acetate was

evaporated to obtain crystalline 46 in 80% yield. This was recrystal- 1 lized from ethyl acetate to give: mp 69-71 °C; H NMR (CDC1 3) o 6.90 + (s,2,Ar-H), 2.65 (t,8,ArCH2), 1.78 (t,8,ArCH2cH 2); mass spectrum m/e, M 186(100), 158(70), 128(30), 115(20), 69(100). 63

3,4,5,6,7,8-Hexahydroanthracene(2H)-1-one (47): This was synthe­ 1 sized by Jones oxidation of 46: mp 43-44 °C; H NMR (CDC13) 8 7.80 and

7.00 (s,2,ArH), 2.90 (t,2,ArCOCH2), 2.80 (s,4,ArCH2), 2.64 (t,2,ArCH2), + 2.16 (m,2,ArCOCH2CH2), 1.80 (m,4,ArCH2c~2CB2); mass spectrum m/e, M 200(1QQ), 172_(9Q2_L14A(9Q), _132(60), 128(40), 115(40).

Aldol Condensation of 47 to 48 Using Basic Alumina: 10 g (0.05 mol) of 47, and 50 g of basic alumina were suspended in 35 ml of cyclo hexane in a two-necked flask fitted with a nitrogen inlet, condenser and an outlet. This was placed in an ultrasonic tank (251 x 15w x 10h cm) fitted with deionized water, and agitation was applied for 26 h along with heat (80_0 9). At the e:qd, the _reaction product was loaded on a

soxhlet column containing basic alumina and extracted with hexane for 8

h followed by ether for 8 more h. Hexane removed all the unreacted

starting material, while ether brought down the aldol dimer. Removal of 1 ether by evaporation gave 22% of 48: mp 158-16o °C; H NMR (CDC13) 8 7.80-7.90 (s,2,ArH), 7.10-6.90 (d,2,ArH), 5.5 (t,1,ArCOCH), J.8 (t,1,

vinylic proton), 2.70-2.80 (m,12,ArC~2), 1.80 (m,10,ArCH2CH2); mass spectrum m/e, M+ 382(100), 354(45), 267(30), 200(100).

Conversion of 47 or 48 to 1,2,3,4-Tetrahydroanthracene (49) with

KOH/NaOH.

Apparatu3: The reaction vessel was a 25-ml, one-necked, flat-

bottomed, stainless steel flask surmounted by a water-cooled, straight-

bore glass condenser. One end of the condenser was a ball joint fitted

with a Teflon O ring that provides a seal with the flask. The other end

is threaded and fitted with a screw cap bearing a 1.2511 -o.d., thin-

walled stainless steel tube which extends ca. one-third the way into the

flask, The tube, which provided a helium inlet, was sealed to the screw 64 cap with a silicone rubber g~sket. An extra side arm of the condenser located above the water jacket acted as the helium outlet. The inlet and the outlet were fitted with Tygon tubing. The end of the latter tube was immersed in water so that gas flow could be observed. Heating is accomplished with a heating mantle held at 220 °C (measured with a thermocouple probe).

Procedure: A 10-g sample (0.05 mol) of 47, 1.6 g of KOH pellets and 1.6 g of NaOH pellets were added to the flask and the assembled system was purged for several minutes with a fast flow of helium. The flow was lessened to maintain a slight positive pressure and the flask is lowered into a preheated heating mantle. After 3 h of heating (220

°C), the reaction mixture is allowed to cool under helium. Then the reaction mixture was dissolved in ether and extracted with NaHC0 3 solu­ tion, dried (MgS0 4), filtered and rotary-evaporated. The solid residue obtained was loaded on a soxhlet column with basic alumina and was extracted with n-hexane to obtain white, crystalline 49 in 75% yield: 1 mp 103-105 °C. H NMR (CDC13) o 7.65 (m,2,ArH), 7.48 (s,2,ArH), 7.38 + (m,2,ArH), J.O (t,4,ArC~2), 1.84 (t,4,ArCH2CH2); mass spectrum m/e M 182(100), 181(30), 154(45), 141(40), 101(30).

Chromium Trioxide Consumed and Acetic Acid Formed During Blank

Runs. Samples of acetone (50 mL, 1 .17 mol) were stirred with 10 mL of

Jones reagent for 4, 8, and 12 h, under conditions typical of those used

to oxidize hydrocarbons. At the end, the excess Jones reagent was

destroyed by adding isopropyl alcohol and steam was passed through the

mixture. Several 100-mL distillation fractions were collected and ti-

trated with 0.1N NaOH to the phenolphthalein end point. These data are

found in Table III. 65

The amount of chromium trioxide consumed for the same oxidation was also determined by repeating the reaction for 4, 8, and 12 h under identical experimental conditions and rotary-evaporating the remaining acetone. The residue was diluted to 1000 mL and several 50-mL portions were titrated with standardized sodium thiosulfate solution after the addition of potassium iodide and 1% starch solution for end point deter­ mination. 51 Again, the results are shown in Table IV and V.

Deuteration of 3,3,5,6-Tetramethyl-1-indanone (30b). Indanone JOb

(2 g, 10.6 mmol) was dissolved in 20 mL of dioxane, and was refluxed for

24 h with 0.3 g of anhydrous sodium methoxide under nitrogen atmosphere.

17 mL of deuterium oxide was added and reflux was continued for an additional 24 h under nitrogen atmosphere. After this, the solution was

cooled to room temperature and poured into slightly acidified water and

the organic material extracted with water. The ethereal solution was

washed with saturated NaCl, dried (MgS0 4) and the solvent evaporated. The residue was purified by recrystallization from n-hexane to give 1.80 g 1 13 (90%) of 3,3,5,6-Tetramethyl-2,2-d2-1-indanone. Hand C spectra confirmed complete deuteration at the expected position. BIBLIOGRAPHY

1. Wiberg, K. B. "Oxidation in Organic Chemistry, 11 Part A, Academic Press, New York, N.Y. 1965. 2. Friedel, C.; Balsohn, M. Bull. Soc. Chim. France.(2) 1879, 32, 615. 3. Slack, R.; Waters, W. A. J. Chem. Soc. 1948, 1666. 4. Friedman, L.; Fishel, D. L.; Schechter, H.J. Org. Chem. 1965, 30, 1453. 5. Burnham, J. W.; Duncan, W. P.; Eisenbraun, E. J.; Keen, G. W.; Hamming, M. C. J. Org. Chem. 1973, 39, 1416. 6. Fieser, L. F.; Campbell, W. P.; Fry, E. M.; Gates, M. D. J. Am. Chem. Soc. 1939, 61, 3216. ?. Brademberger, S. G.; Mass, L. W.; Dvoretzky, I. J. Am. Chem. Soc. 1939, .§]_, 2316. 8. Wiberg, K. B.; Evans, R. J. Tetrahedron 1960, ~, 313. 9. Wiberg, K. B.; Eisenthal, R. Tetrahedron 1964, 20, 1151. 10. Recek, J. Tetrahedron Lett. 1962, ~, 125. 11. Lee, H.; Harvey, R. G. J. Org. Chem. 1983, 48, 749. 12. Bowden, K.; Heilbron, I. M.; Jones, E. R.H.; Weedon, B. C. L. J. Chem. Soc. 1946, 36.

13. Braude, E. A.; Jones, E. R.H.; Soundheimer, F.; Toogood, J.B. J. Chem. Soc. 1949, 607. 14. Eisenbraun, E. J. Org. Synthesis 1973, Coll. V, 310.

15. Duncan, W. P.; Burnham, J. W.; Eisenbraun, E. J.; Keen, G. W. Syn. Commun. 1973, 1, 89. 16. Liotta, D.; Arbiser, J.; Short, J. W.; Saindane, M. J. Org. Chem. 1983, 48, 2932. 17. Bal, B. S.; Kochhar, K. S.; Pinnick, H. W. J. Org. Chem. 1981, 46, 1492.

66 67

18. (a) Lauterbur, P. C. J. Am. Chem. Soc. 1961, 83, 1838; (b) Burke, J. J.; Lauterbur, P. C. ibid. 1964, 86, 2984.~

19. Levy, G. C.; Lichter, R. L.; Nelson, G. L. "Carbon-13 Nuclear Mag­ netic Resonance Spectroscopy," (2nd Ed.), Wiley-Interscience New York, 1980. 20. (a) Grant, D. M.; Paul, E.G. J. Am. Chem. Soc. 1963, 85, 1901; (b) Grant, D. M.; Paul, E.G. ibid. 1964, 86, 2984. 21. (a) Woolfenden, W.R.; Grant, D. M. J. Am. Chem. Soc. 1966, 88, 1496.; (b) Jones, A. J.; Grant, D. M. Chem. Commun. 1968, 1670. 22. (a) Jones, A. J.; Alger, T. D.; Grant, D. M.; Litchman, W. M. J. Am. Chem. Soc. 1970, 92, 2386.; (b) Jones, A. J.; Gardner, P. D.; Grant, D. M.; Litchman, W: M.; Bockelheide, V. ibid. 1970, 92, 2395. 23. (a) Spiesecke, H.; Schneider, W. G. J. Chem. Phys. 1961, 35, 722; (b) Dalling, D. K.; Grant, D. M. J. Am. Chem. Soc. 1967, 89, 6612.

24. Palaniswamy, V. P., Ph.D. Thesis, Oklahoma State University, 1981. 25. Wehrli, R. W.; Wirthlin, T. "Interpretation of Carbon-13 NMR Spectra", Heyden, Philadelphia, 1978. 26. Ernst, L. J. Magn. Reson. 1976, 22, 279. 27. Kitching, W.; Bullpitt, M.; Gartshore, D.; Adcock, W.; Kohr, T. C.; Doddrell, D.; Rae, I. D. J. Org. Chem. 1977, 42, 2411. 28. Muller, G.; Philipsborn, W. V. Helv. Chim. Acta. 1973, 56, 2680. 29. Levy, G. C. Acc. Chem. Res. 1973, ,£, 161. 30. Echols, R. E.; Levy, G. C. J. Org. Chem. 1974, 39, 1321. 31. Breitmaier, E.; Spohn, K.; Berger, S. Angew. Chem. Int. Ed. Engl. 1 97 5 , 14 , 1 44. 32. Wright, D. A.; Axelson, D. E.; Levy, G. C. "Physical Chemical Applications of Carbon-13 Spin Relaxation Measurements", in Topics in Carbon-13 NMR Spectroscopy, Vol. 3, Levy, G. C. (Eds) Wiley Interscience, New York, 2979, Chapter 2. 33. Wilson, N. K.; Stothers, J.B. "Stereochemical Aspects of Carbon-13 NMR Spectroscopy," In Topics in Stereochemistry, Vol. 8, Allinger, N. L.; Eliel, E. L. (Eds), Interscience, New York, 1974, Chapter 1.

34. Ref. 25, page 8. 35. Lyerla, J. R.; Grant, D. M.; Bertrand, R. D. J. Phys. Chem. 1971, 75, 3967. 68

36. Alger, T. D.; Hanill, W. C.; Pllgmire, R. J.; Grant, D. M.; Silcox, G.D.; Solum, M. J. Phys. Chem. 1980, 84, 632.

37. Wehrli, F. W. "Organic Structure Assignments Using C Spin Relaxation Data", in Topics in Carbon-13 NMR Spectroscopy, Vol. 2, Levy, G. C. (Ed.), Wiley Interscience, New York, 1974, Chapter 1.

38. Wehrli, F. W. Advan. Mol. Mol. Relax. Processes 1974, ~, 139.

39. A high-speed mechanical stirrer-with a multi-blade paddle was found to be adequate. Stirring with a Teflon-covered magnetic stirring bar gave approximately the same yields.- However, it was necessary to use a powerful magnetic stirrer. This-application required a heavy-wall flask since the stirring magnet is capable of breaking the wall of a conventional flask.

40. The author thanks Drs. R. C. Bansal, J. R. Mattox and C. F. Browne for providing these hydrocarbons.

41. Burnham, J. W. Ph. D.Thesis, Oklahoma State University, 1973.

42. Vuppalapaty, P. Ph.D. Thesis, Oklahoma State University, 1979.

43. (a) Mares, F.; Recek, J. Coll. Czech. Chem. Commun. 1961, 26, 2370; (b) Rocek, J. ibid. 1957, 22, 1509.; (c) Rocek, J.; Mares, F. ibid. 1959~ ~4~ 2_741. 44. Fieser, L. F.; Szmuszkovicz, S. M. J. Chere. Soc. 1948, 70, 3352.

45. Springer, J.M.; Hinman, C~ W.; Eisenbraun, E. J.; Flanagan, P. W.; Hamming, M. C.; Linder, D. E. J. Org. Chem. 1971, 36, 686.

46. Cowan, K. D.; Eisenbraun, E. J. Chem. and Ind. 1976, ~, 957.

47. Author thanks Roy E. Pickering for providing samples of 46 by hydrogenation of 45.

48. Agranat, I.; Shih, Yu. S. Synthesis 1974, 865.

49. Springer, J.M.; Hinman, C. W.; Eisenbraun, E. J.; Flanagan, P. W.; Hamming, M. C. J. Org. Chem. 1970, 35, 1260.

50. While we have no evidence that acetone undergoes dimerization, the Jones reagent rapidly attacks 4-methyl-3-penten-2-one to deposit salts and give a green color.

51. Eisenbraun, E. J.; McElvain, S. M.; Aycock, B. F. J. Am. Chem. Soc. 1954, 76, 607.

52. See ref. 12.

53. Brown, H. C.; Grag, C. P.; Liu, K. T. J. Org. Chem. 1971, 36, 387. 69

54. Salts were not deposited even though color change occurred to blue­ green.

55. Percent yield was estimated on the amount of starting material recovered.

56. Methanesulfonic acid and trifluoroacetic acid were substituted, 2 moles for one mole of sulfuric acid. ~therwise, the oxidation procedure remained the same.

57. Phosphoric acid, 85% was substituted (2 moles for J moles of sul­ furic acid). The oxidation procedure remained the same except that water was omitted during preparation of the reagent.

58. For earlier use of silica gel in chromic acid oxidation of primary and secondary alcohols see Santaniello, E.; Ponti, F.; Manzocchi, A. Synthesis 1978, 534.

59. Collins, J.C.; Hess, W.W.; Frank, F. J. Tetrahedron Lett. 1968, JO, 3363. 60. (a) Corey, E. J.; Suggs, J. w. Tetrahedron Lett. 1975, 2.l, 2647.; (b) Corey, E. J.; Ensley, H. E.; Suggs, J. w. J. Org. Chem. 1976, 41, 580.

61. Guziec, F. s.; Luzzio, F. A. Synthesis 1980, .2' 691. 62. Lalaneette, J.M.; Rollin, G.; Dums, P. Can. J. Chem. 1972, 50, 3058.

6J. Anantakrishnan, S. V.; Jayaraman, H. Indian J. Chem. 1964, ~, 146.

64. Alfa Catalog 1983, 39.

65. (a) Rocek, J.; Sorm, F. Coll. Czech. Chem. Commun. 1955, 20, 1009.; (b) Rocek, J. ibid. 1955, 20, 1249.

66. Montell, E. L.; Lauer, D.; Maciel, G. E. J. Phys. Chem. 1973, 77, 1865.

67. Eisenbraun, E. J.; Harms, W. M.; Palaniswamy, V.; Chen, H. H.; Porcaro, P. J.; Wood, T. F.; Chien, M. J. Org. Chem. 1982, 47, 342.

68. Johnson, L. F.; Jankowski, W. C. "Carbon-13 NMR Spectra, 11 Wiley Interscience, 1972.

69. Eisenbraun, E. J.; Harms, W. M.; Burnham, J. W.; Dermer, O. C.; Laramy, R. E.; Hamming, M. C.; Keen, G. W.; Flanagan, P. W. J. Org. Chem. 1977, 42, 1967.

70. Eisenbraun, E. J.; Mattox, J. R.; Bansal, R. C.; Wilhelm, J.M. A.; Flanagan, P. W. K.; Carel, A. B.; Laramy, R. E.; Hamming, M. C. J. Org. Chem. 1968, 33, 2000. 70

71. Bansal, R. C.; Mattox, J. R.; Eisenbraun, E. J.; Flanagan, P. W. K.; Carel, A. B.; J. Org. Chem. 1966, 1.l, 2716. 72. Burnham, J. W.; Duncan, W. P.; Eisenbraun, E. J.; Keen, G. W.; Hamming, M. C. Org. Prep. Proced. Int. 1973, 2, 285. APPENDIX A

GLOSSARY OF STRUCTURES

71 72

la lb 2

~H ~3

3 4 Sa

GHO I ©@ Sb 6a 6b

rc5'(()1

Lg,l~CH~ CH 7a 2 3 8 73

0 I! 9 6C-C6H5 0 @r 9 10 11

~J3 ~2H5 ~C3H7

CH 3

12 13 14 fidH3 1srrs i-C3H7 H3 @j H3 ~. 3 15 16 17

18 19 20 74

21 22a 22b

23a 23b 24a

0 @}:::@

24b 25a 25b

@Q I 26a 26b 27a 75

¢ ~ 27b 28a 28b

29a 29b 30a

0

30b w30c 3la

3lb 32a 32b 76

33a 33b 34a

~o

34a 34b 34c

35a 35b 35c

0 @6>< 36a 36b 36c 77

0

37a ~37b 37c

38a 38b 38c

0

39a ~39b . 39c y05 0 40a Ds9 40c 78

41a 4lb

42 43 44

(§:@@ 45 46 47

48 49 SOa 79 @o ~ I 50b 51 52 APPENDIX B

SELECTED SPECTRA

80 ppm 180 160 11+0 120 100 80 60. 1+0 20 O l)C 1 11 1 so?o;;:; T ·::1. >> :J,,.~'.oo\::.: :\ ;::'. .( '.\ y i !~,o~' lf '.ll: IW :1,11 ill 1'[ !! 1\~l~:0 1fll I 1111· :111 I II i~o:ci 1 1111rn1 ill '!!If !11!1! t ! 111,· f!ll. .,!lrlr'·,'; t1;i 2s.oo\ \ :: ; ~ ~- ·7}~0.00:;, t \ ::: :;:: ;::- ~l ~oot f.,:µ s: 1;W ~4 ~111' ,ill ·1·1~:~~r,')11 ! ['I' ill!I) [ r'\ ·,' -~~-~ 11l t'. : Jg,: iji~,, µr f1~ 1 100 ol ::: ·: ·::. · :: · .eoo .. ·: :;:: :::· ::: ·::· ::: :1600 1 : :' :i .1:i ·lq ·. I. 11ioo1 1 1 • 1111 • I . 2001 1·· ·1 i:11 1!jl l!';jo 1 • : ::: ·::: :::· .. :::. ·:: I • !: :::: ;:;: i::' ·::: ·::: ::::: . .= i:[: :·:1 ,v ;Ei1 h1· : 1· I ..• •:I I :tt I'' [! 1J1'· I' .•. 1,i!. !:i :•r, 1,,1· !: 1' i. 'rl I soo_7 :-;~- .:.. ~- - ~ ~ _!tiOO~~ c;,.. ~ ~-~.µ300.:.-++; -~ ~ :-8 µi,'.; I, 1·12001, 1 P·1·1 ~ L.,·rr': I 1·1: r·tlOOl iP -8 tr'h r, i· rr!· 411 fl ~o fr· 111 I : I I . : . : : : . : : : : . . . . : . : . . : : J:: : : . : • : . : : : ! : .. : : : . ! ; : : I,! ! 1·1 ! !! :J: I .! ! '!' I . : I· I I I !11 i I! II i : i: ! ' I • i :I . ! I : " ··•· ·•·• .... ·· · •·· •·• ·" ...... ••• "" .... ••• ··•· .. ,. ·- ·-· •r'' .J ''I ,. .. ''" ,J ... I.I If '" •·I J '!''II'"" -• • !' ·f· • •· · fl1 ii'1 I J ' : :.: :. ·: ·· : J , · ··· · : : · .: :.: :." ·: .:: : .. ;:· .:.; '1 · : ;;.· ,: 1: 1 :!· .. 11: i'I l ,r: .. d !!:' ::1 :1 •.• :. :.·· ; , I : : .. ... • ...... ••...•. , ...... ij;:: II •. t, ,1:1 ...... ·ii, ··1· • ·Iii. m· ...... , ...... !. ·I· .. !.;' .. .. ··:-: ---:-:· ---:-7" ·~- - -- - ·-· ~ - -·~ :7. ""7 ~ + :+r- :'.':'~~ ~ t:+-:T '"1·1·:; :1 iJ+1 r,i-1 r:-:: :--1,i ;h; +t tF ;;It 'I. f :-:-rj ":-:- ~: ;;:-f -~f i+-1·: ·77: ~j: :l,i/· :-:-1·1; .. :.: ::: ... :. .. .:. :. ..: ....: .. :::: .::: .::. :::; n:l :ii::::; .J !/ ;;;: (. ! )I t!i: 1.ti [;11 :,ii ::rl' .i'.: :i:111 1 : 11 1 .!ii !ii: :u '.1i1 t! :i 1·w ii : i 11, 1 11 1 i::: tttt,:: 7:fi~ ·:::i+f :\:: :::: :::: +,:! H:1lti11;:4f ,:.11 1° +st:!!!> :!, -+~:;::. . I: . : : ::· 1I'! 'I : : .. : I:. \4:-. ' : ! l : : Ii , , . ' : I:, : •I' . , : ' ... ; ... ,· . ~,+,:+.''II :q . ; I' I : t. j : :; : ' : ; ; ' *i:111 ; I' 1· ... , ·I• ., .. . l • ...... I . ,I ...... ·-· ..•...... 1.. ·-· ...... ·1·11, .. ,.•. 1·1· .. ·I· . 11· 1 1 1·1 . .· : . .::. 'i: ::'. :::: . :i ::,: :.; -:. . . '.: :ii : iii:!; iP ill 1; I'' I ·1:: ::i= :t l1j ii, T :: il:j i!: ·::' :! I'· ! ii I !! ~ ~ ·--:· ---:· -- -·· ------:- · ~ :-t: :7'~ '.!t·,: ij'7; ~ t:·~fi :it 1-"1? :m :t; ~ i]l ·,t rtri ·1:1 -:..1i ·t Y: ·f-7.:fT :~: ~ -f -,: ~M \ ' : . ' ; ; : ' : j';; : · 1 II. .j I : ' •' ; ; ' '•'I ; I . ! I; : ; " '1· 1 ;1.1' I! I ! ; I I 'I I ! , : '; ' ; I : I'' .I': 'j; . '. : ; 'r;; i' 'I ...... •. .•. ·-· .... ·-· 1-· ,1 I . I' .,,, .•..•.•.• I. .. l ''J ., .. 1f• ,ll' ·111 1 ,. ' .. "I ,... 'J, .. ·r1· I"' , ... 'I'1 ·r·· .. lj . ", :...... :: ::: ·::; ;;:! '!;: :.,· :'i; ·:: i.: !i: ·II ·1·.i ji:: ,, :!,: Ii !11 ::: I i: 'I !Ill H. ;;:. II ::!: '1 : :! .. :!; :, ii :111 1 ~ ;_. ·--:- - ·- ~ ..:...... '"::..:.. 7: "7~ :-:-~ :7:; 1+.: :f ·:: :-··j-f ~fl!µ :f:-: :,:-: ft i: :::: ·{ .. : ~ 1 ::;1 ~! f: ~ i: ·::: ~~ ::;; ::. ti '.:·: 1! 1··/ ·1 1! .,,, .. , . ' ' 'I lj· ·I ' ., ...... ' .,. " 1·• .,I. .. ' ...... ' ...... • • I. ,...... • 1· . 'l , .... . , ...... ·•·I· · 1· • • • . , • • ·w . , I , I • , . • • • • . • • • • • . • I. • 11· 1 1 ;t., -~ ~: ~; ;+ ::: :;: ~-- ·::i ::' ?-~~: :i; ? :;r t+ ;:~ iii1 ! rm 4H 1~1·1 :,.: -,!r: i}: · 111 ., 1,i :; Jfi 4 :!f: HH ~r1 1111( ~ ? 1 ~ ~iii ;iii\+ 1 1 : : •. : : : . · : . : .. ~ : .. : .. · · : : : 1. . · . . : , : · : : , . r1 , 1: , , : : ; , · · .. • . : : 1I .: ! : i : : : : . 1: : ~: i : ! : : : : . : • , : 1 i , :

1 1 1 1 1 1 :f 1::· ;::'. ;: :::; :::· :? ;: ; ;'.: ;ib :Ts f in,'.il 41 ::: T'.,~!,: f !ll-1 lr-il'1rfiil:-, t'.1fl' 1! il. : ~1· . :Ii t! Wi .~ flii ilit ~[ ;u; 1:.1 \ij:ij /ii ••• : : I. I. I. : . : . . : : . : I • : ' I I • • • • : • I ~IiI I ; . : • . • 1 ! : i. I·: *:1 ·: . : : . : •: ii ; I 11 I , 1, . ti II 11 . I. • I~ . ."- t!11!i.. .; I· 'II lY; : II ! fl' .... :·!· ::1. ··:: ::· ·:·· ··:: ·:, ;~.:~·,· ...... ·::' :;·!,·;;; ::;,· ,;:: ,·::· ::l·; :1·11 ;:I lii: :, .. •l!l' :111111,i,·7:,: 1'i1'·lf111 ,~,P :117 :i/7 'p: !j! ;,;1; :t:!: d. ~~ I'. '. ; '. • '.I. I I I I ' 'I:. , I . : : !. .. ! : . : 1 . . ; . . i; I . :1 'l • '~ ·!I : I: . : . q I.. t ; 11, I : : II I . . 'I' ! ,l . [ I I. I i! I, I.; ·II: : I: j 11 [' j~ ::, :--;-i: ,::1 1 ·1 ·:;: :::· :1 1 : :j:- ;T·,. ,·1· -:- ::· --i'~--:-:--: :-:-:-- :; '."'.':" --:i ;:; ~~n ·1 :j; t; 1ii 11, 11rl ;r1 iii: ;11: i'!I ,·ri; ·i:; ii,i "'111 :-;;: ;Ij JT. 7:; :ii. :,·; 1·w · :ii: • : • I • • I • • : ; : ; : : . • : • • I : • • I I i .. I .. • I • • I ; I I I I 1 •• ; I I ; i ' : I I 1 !1 · I • ( : • • : ~ • • i : . ; . I . I • : .' : • .. I I. ! l '. I : I ' . . : I PI ro· ·::· ·.:, ·:· ::;· ·::· ::· 8 ··; :;:· ··:; i:·,-~ :::· ::·! ·•r 6 !;· · .. :lq i:~ s ;!: . ' ·di. ·'i. 1· If; .. 1, :; 3 :·: .,·· ,!r i:12 :'.1 ·::· .·:1 ::: I:. :::· .. ; .. · ff .. t:!! '·: ~. i;' ·::.':'I ! .:!: 'ii! :I! 1·1l! ·ii· 1d; !11,,.!!l !:!l 'Iii,=: i 11: i!!1 :1:1, !!,., l1ill: :;!i i::1 ;:: : ;: iii :. Ii:! :F :::1 :11 ,:, :::: !:: ::( ~ :!! :;.

1 . H NNR of 4-Methyl-l-tetr.:ilone (41b) Spectrum 7. 00 @¢ ...... 4lb ppm l 80 160 11+0 120 100 80 60 l+O 20 O l3C 1 I .. ·: t ·:. ·:. II ; . ·.: . :I :; .. : .::· ! -p .. ::1• ·.1· 1·:l 1[il :i 111 ·11··.IIJI I 11'' I'' 1~11111 111,1 'I II 11:111111 :1111111111111111:111 j I 1 1 :;::: t t - ~- - ~ ::::: _;:_ ••.. ;i \J L1::::, i:[: !ii t ): :il Il. :::: lii 11 Ii !1 ! i ':.': ll lil! !Ji! !_1 i :1 11/j1~1.: 1.l,I 1 1 ".,,1 : •• •··· . . . . • i'''t <+ : ·•• • ·•· :1,,,.'. !\I~! !L: 1:i ;1l11i ! 114.~·~1f l [ 11 ·l, r lJ r, l2~01 pi 1:fl 1:t11'/j :f!i !fl! 1 !10 ! ,/1 r~~l 1 1 soo _ .. :.. .:...... ;.: __ :__: . ....:.: _]400·_ :-~ :l.:.:....:.:.. ~ ....,;.._~..:.;300_~~ .:.:..i lL U!J 1lh11 l IJ200J I ] LI \! iJ11 ! I:!\ 1[100 I (~j_ t~! ;I l1 J ;lij Uo (1 11) . :: . . : : . -:: ;:: : : . :' ·;, :! 'i;; '1'!! ,,,,·, 1 ! f11! 11:11 i r·11 1!1 1r1 l I 111 'ill !i '1''1 ! 1d 1/I: :IT, JJ 1 11 ti! • •• I' ,, • •• • I .. , ... ll.' ·fll . 111 I 11 · I 'll I' 1·1 ' I I •. ·; ... " ...... ·- ·- ., •• - I ...... ". j Ir " . I 'l 'ii' .. . ••.• .• . • . r '.1 I ; . . .. . : I I • ' :.'. .. : • I ••• : ,;,; '.I : 1 :·., 1: 1· ! '!' . ' d' 1·,1,· I ,I l .1: .. ::t ,I,. •. : 1'' I ' : I I ! : . , ·. . : : ; ' ! , ' I' •:, ; : 'I'. 11;: t· I I[: I ':;' . 'ti I : 'I i . I ; I! 11 '', ; : , . I: . I ",; · : : , j ! I '" 1 · ; i1·j t-,r,1 1:i~1 :-:-: -~; :.:.iii ···· -: --:· ··:· --· ·-·· --· --· -- -· ·:-:· ·::· -:· -:- ~ ~r ·;:7: ~ ~ T ·-,11 :t r:;: :lij itri ·p rr:; :il ! i,·11 ~ ---: · r1 ;rj-:, ·,-j: : r· :Jf' . :.: .. • ...... :. ·::: :.: ... ,;;: )!:; :1'. .::: . ..! !:!. ,;. :, . '1:1 !!:; I'" !r/; ii /'.fl! 1.: p: ii 11 11 .:i! '; .;r.} ,/:: ;J.1 '.:Ii '·ii /j I 1 1 -i--'- : ._;.",') bl::: ~:,t 7~(::·~~+I:;::::::: w,\r.l!lt ~r~,ri ~1tf ~l:f,; 1j I~1 1~1:.*,: ~ / :;l: { / :;: ~'.:- ~l!lfli ~,~rl --+- --- ·:·1 .1:. ·-: T :,1 ~· ; iii! Ii f 1, , -i:: -·l~j· 1·: ... : ...... :.· -- ::;: IH\ :·. ["Iii r·,,· I_[:· :,1'· ;J :J· .. ·:t" ·;:· ·:,•; 1·: : i ; •. · .... ·:, :1 ,:1: . I ,. , ·, ,;ti: II •·1 1· I I i·!I J" :. : I lljl I I : :1::,; 11 :: .: I' i[ · ; -- -· --'--· - - -- - ~ ~ "'7 ~ ::?,· ~~ ~ ~ -~ T:i: ~1 ~,:: i1rn1:t.- ~·,r mi 1:; rtn ~ It f.,, i -:-i: -f-f;tii· :~ f.- --~ ·;: --1:-, \ . . .. · : '1·;· :·1 ·ii .ii . •· ·:· .:·1 · I ., : : ; ·: I :1., !'I;.; ' I :,! . :;1 :1·· !' 'j, .. .,: i:,J ' . " ...... ·- -- ·-· ·-· •.. ti I 11 .,., ...... l. .. J ' 1 1 ''" l,f, r1j·. f• 111· · " 1·1 ' "'I ... fl' r·" .... " " I"' : . : : .. . : .. :j 11.' I '. '. . : ' ; I: I: lj . · 1' '':: J . l ; I'il " •. I: ' : I 'I· : '; i : • '. ' . : • : 'l. . ' I I I'; . . .·: ,; . ,I·:·. ,II' :· ·.: .·::. :· u.u . I::· 1! ::: !1 t ,. I ·;11 •,II :11. I . ·i.! .:!· :1, .·:··::,,I' .!, 'li -- ·-,-:------~ ·---; -- 7::: -;--:-i ~:-: :7:• :.· 3,-:-: :--'::° .,·11: :: ~:.:;:':-,I ·;:1 ·.. : 7, t~lj; ·, ;--· -;.t .. :!i: :if;·:::~·:::·:. -~;I::': · ' . · · · · · : . · . . .. ; . ! I! ·: , 'I : ' I. ·:: · · ' It II ! ': ! 'I: I II ,1 , j' ! I! ·; ' ;'t' l ti : :: l ; ! : ' I, ' ; I: ; ; ; : '.I I ...... - ...... -· .. ·-· ·-- -··· ·-·· ,.,, .!. ... J...... I. II l [['1 Ill ,·. ij ·· 1·1·· ., ' I l 'i 'I' . "'I...... If, .. : . ·. . ., .: . :. !:: ; .. :.: . ·, ::: ':: l:1'1 ·: ::: :::. ';iii· i1 i11i ,' :I 1·1'!1 '!1' ::11· Iii . : . i1':1 :1':I .!,;1' ,.:' ::1: :I 11: i\1: : . . . . •. •• .. . .•••. ,. • ' • • • • . • ',1 ''l . . . '. ., I. ' ' .•• I • •• I I •• 1 · 1' ·- --· -- ·- ·- -- - ·- ·- - - --· ------,.;.;.. - -e-- -~ .... : . ••- ., [ "fj" . I . I' .. • ·- ' • •• . I , . -- Lr- - ,...... ·• • ·1 , ·• ' • .·· _: . . . . : .... , ' . , ·. ::: .:: ·:, ·... · .,·;: .jjlr,'; :'!i Ii! : 1: .J·, 1·111,:. j!i :I I lj:; . '.: :11:. :: 1.: ::!: :Iii I , :•1] :1: . ,1 , ...... ,.,' . . .. ,. . . • • .11:, 1L, 1• J' 11• 1• i 1·· . 1 , • ·!· 1.. ..••. ,, .... r 1 1, . . :. ,': :: i: :·· ::·· .- : .... -·- I" 1:i ;~:: -~: ;;;: jt;; if!:~;: ::; ): :ii: 1n1 ! I !IF i1ii iJj; ;Hn· 1(1 :: it; 1' i;l: .. i ::;: r]:: :::: qt:::: ·r:il '[fi ·-- :~- ~- -+ ;-; :.___ ---:-'77 ~ ~:-! ~ --:-!f~ ;r ·fi-:---ri ~ ~ riTi ii ii l:i rfit trri ;, ffi, .. ·~ ·ri ;-Jr ~- ~ ~rr. ;~~ :!-;; :-i-r~ !"; ·.11;. r1 ;~·1 1 ·;· •. "; ·' ...... ,, •••. ~:' , •• '". '·,: ·I. :. ·.,,. ii ,II ··:Jlfl[fl I :1 ,; 1 :,:1r .. ,! I ,,: ::11· 111:·1· 11r!i1:I: ,11 ·. ;:: ::i. ... - ·::· ·:· ·:· ·:: .. :::; 1:1·: .··: "'.' ::fi 1:;1 :!1'! ::ij i'ji I': '11:1 I, l:: !1·: !!1:'!Jli 'II 1;: i:'.: !:1l :111111! ·,1 :'1,: :t ·,; ·;!.1 1!: ; : :f:l :II I I 1 .. ·:1 ·. · : 1 · · : 1:1 1:. · .. · .:1. :1!JI r , 1·, · 1 : :. ! ![ !'I 1!!1 :·1. 1 [· ·1 11.I .1· il • i! 1 ·, 1 !,· 1,1, , 1. i!. lL ·1:i · Ii[· -·------· ·- - -i------r·------i· ..., .. ·11 ··•· .. ·1 • T r ·tr 'f'" -~· ... f ' ·-· ·- -l· ·1 • - - --r ·,· ---'--·•· -!- - - •··· .•• ·• ': ;· :. :·· 'i: :: ;,: ! :::1 . :;I ·: : 'j ! J;:! ·!1 '·1 .::,: ;· 111: JI i,,11 I' lj: di; ·l' 11!1 !:i :i:; I! ;,l'j; i1j 1':. 'Ji'. ,II ,·:, Ill; :1: 11! ·1·11 !! '' I, 1 ' '• , • 1,1 ' ' 'I ' !' "I ,, l I I lj I I t• I rl• •• 1]• •II it ·19 •· ..•.• , .... a_ ...... ··• 7 -- ·-· ·- ''I 6 l' . ·•·1 I 5. . . I''['' II -3 , ... I' I2.. •• .. . .. , ··• 1 ..I' ·r·,, ", . ' - ro ..... 1 :r' . 4 . .. 1 1-· .. 1 P'I !:II ' : ' '. .;i ·.· i :.· ··: Iii jl :;:, 1:!: 111,1 i1! !'i! :11' 1, 1:· ; :: r·1i 1 : ;1 1'111 I I,: 1! ! 1• 11·!, ;:: .· '. 1·, :: 1 1': i: ::1 ';: 1 i·l ·.. 1.: ,::O1 ,!. H , ,. . 1 1 .. . 1 , . 1 , ,,. 1 1 , .. , •,,II,""1 -I•.. 1,1 1 " , ,, !I, '" , ,,, ·• · , , . , · . . .. ,, ... ,,

1tJ NMR of l-Methyl-1,2,3,4-tetrahydro-l-naphthol (4lc) Spectrum 8. co N ppm 180 160 lliO 120 100 BO 60 liO 20 O l3C

I . ": "; : t ...... II . .. .. :I ...... ' II .. ·11· "I' l':l 11· ., 1 I[' 11·.111"1 1111 . ~11 111 ID:I ·,~111111'1 ll''ll'. '11!1 'I' I ii II1 111· : \:· ::: :::: :: : ::: :·:: 14000 : : · :: :: :1: :: :,:: :3000 .:.::1 1!i J:.: ii '1. 1 I 1200·0·· I 1100.. 0" 11 \I : 1 · I lo 1 I 5000 ' " ...... 1 • ...... ••••• "'I "11 f". I' I I I!!'. I I l I I . . . . t ' I 2s0 :20'00 : ::- 1soo ;j 00! Y :: ::: :: : : i:!: :; :ii:? i !ii::!·: !Ii i !lf Ui 10'061 11 i :, ! I lsoo I .. , ill i ifi': Ii1 o 11· 1 11 10'0 o! :T "Ir:~:;·~ \oo: :0 ::;: 7 ~J T 7 :1600 [ifi ::Tl itm-.1: !!. 1 I ·114o'cil l 1 [ l 1111' Ii !ii [ I 2001·111 !1i·1r 11·1 i-[ f 1·,· 'ffi 1 r1\; 1!1· .:: '." ... • . ·:· .... I I· ...... ,1 .••• 1•••..• I.. . l 1 · I I I'' l ,. ·I 11 I I 1 ''!' 11 1 500. ::: ::: ::: : i:: -:: Ii.co::::·: :;i: ::: .:. : :::: :,300< ::: : :: 11;: :ill ill i l 11200 I : l I 1 :L; Ii I ·1100 1jii ':;i rm'jl I 1! iii! 110 ij t'ii ::~ T" -~ ~:· .-:.. ~ ~:..: .. : ~ ;~ ;~ -~ -j- ~~- ~'?! ;~ t~ :,.,; ii': j I f,11 'l'I rl i rt,,t rm c.1't 11 Ir ll II :111 rr r,::l ; ,irt 1'· ·1rf: ;.ift !' ~I . r Ii • • • • • • • • . • : : • • • • • : ; ' • ' : : ' • • : : • • : '. : '. • I I l : • I : ' • : • : ' • • 11 . . : I ; ! I ! : . l t : : . I !l ' I . 1, ! I :·:'. :·:· ·:·· .. :: .. . :· ...... , ...... ~ ·- ·- ·r" .1 I . ·1 ...... J ... ·1 I 11 .... I I .,. ·11· .... : •.•. r· .11 ••.. 'rl l . . I :. ·::. '."...... ':'· :. : :.: :: : · .. ;: : ... :· ;,;: '.1,! : ;·., .;:: 1·. ::· .. ,I'. ·1· 11,: .,: i::· :::1 :1.: !;: !," ... : .::' ·11! ,! : --1· ;:· :: ~- ·-· :~ ~- -- -- ·t :,:f St ".: t:1/f: ~,'1:\ \l~', ll,~jl1-1:n:: -1\1· f-,'tli,r·.:ii :IS lf~ ;;111ll t·,:I; +,: :::: '1:HL,~j:: t1+ H-,\r,\( f1lt111;-,:11,i • :t:,. ::. ::'.••••. , .,, ..•.• I .•. ' • '.. ,l .• I I ~ ~ + !' . IJ .. 1, ., ·1·· ·1· l' .. 'I l •. I ' ...... : ...... ·-·· ·-·· __ ..... •1· ··-r lj'' ... 'f i·f . .. .. I . f .•.• , .. ·r'. . ... ' ... I :.I . 1 1 : 1 irr}> [~; :- : :::: -~ ~ -:-f- --~ -- ·; -- ~~ 2: ;µ; ii( +i ~ :;/;~ H:.,? ¥1 tP +1:t t-1·1' 1i ·1H /4r ::i: :,::;: 4/-1:!i ~+ ::;: 0 1 I +1 ""' _IL, L-l-6.il ...,:...... :; ;.· :::: 11: '. .: ·:·. ,: :it:::!· I: :.t 111: 1'·! ! 111 .i; j't~ :. : .t.; r::: ·:.· : ;; . 1; :11! ·1 :, '.; '.l'l; 1 I 11;,0i-"Ul,.llJ I - - 1 ...... ·-··I ..... --· .1 •. ·-· ••..... , ·1· Ir! ,··· ,·. l I 1·1 . •. • . 11• ·•· .t .. .. l...... r· . I ... , . . . •. ::- :::: . :i ;i1: ::; :: ; : :: :::i : ii r'··; IJ! "I ti 1!' . ;. l :1 1l1i il1 jj: :( i!:i 'il :: .. :I: :i ; : ii Iii: 1 : ~ ··:' -- ·- - : -- - : - ~ ~ 7- ~~!I if"+: 7: ~'7 7:"i :ri1 :r ·1·1rt tt;I: >,·I ftr '.I~ :Ii ·1·11 1 ·1s1'!f ·:1: T: ::;: ~ :T.: f- ·f. -~.~:!:fr .. : : : . : ' . . : : : . . : . . ; : '. . l : 1 ; ; : ' ; I . : : I • • '. : • ; : ' i I '. ! : : : : I I • • : , • 1 · 1: ; ~ I : I : ; : '. • : : I '. • : . l . : : i : . : . . : . I : : ; : ; : ... :,· ·:· ...... -- ...... --· .... --· 1--· .i I. ll ••.•.••....•.• 1.1\:1 ··1 ••... ul· 11jl ., -r . . I'. . Tl .... ··1 + 1i· --·- ...... : ...... · .·. · · · · ·. : .. :: .:: ::: ·:: ;;:!Ii;:'!: :::: :: i::· !:;·ulJ :1·:i ii!I lj :!,: tj: !.l· \ :1: lt ·r j ;I: ii!; t1 :::: '1: '.::: .:!; :1 Iii :u: 1 1 7. __ : .. :: :: \(' ! ·i:; 0 I/}: 0 ::ii:~. 'tt :ii1 i l[ rr,i(i nt,· f1-:-:--:- '7. --:7" --:7"'7:-- ·;7; ·i:-- : ; ,;-; ·rH ·ri·: ; ;ri-· :· : ',I ...l;l :· ·-:-: 1·· --· ~-: : .: ·1 . ;;· .,1. ~ ~ ~ 1 :. : ::i:: ::- ::- :- .:. . :. . ::; :.: ·: :.:: ,:;· :1: ·::: :, : : !1:·: !I, i ~·i:, lil! 1il' :f,: :! ii: ·: :I ":' :i: :::: :::: '/ !:: :;:: :' : ,. ;11: :::: ,.:: i::. :::: ::\: :::: :,:· ,:·: ·:: ·:· ::: \ :;:: ;::· ·:-:: ';:: pi: ii:':::: ::: :::: iii; 'ill i 1·-I t11 1tn ·11; di!· :, ,1i ,; , 1:p ,=· ;: : ·:;: :r:· ·j:; :::: r :: ::i: :·i: 1 1 1 1 +~+ <~: f: f ++-; .'.: fr ::::-+. \:,M ::;: 8i .:::+.\~Hi i tit ,:·1 f, lrti ~ :,t ~j I ii hl itf t ~H dr rfr in1 im i1ii ·,r! . :+r1 fr1: ::: :::: ;:J: :;:: ;:; i:. _;: ::: ··!~ ·.: :;! ::: . :: :.' :! :!·: ::, ::. :.:.•I: l: : 1 ! !11. , ·,, ·iµ+~: ~: , '. ; . : .. :•::: .· :.,. ;~;· ;I; f :: d: ii! ' . . ' ...... • . . I .. ' I' 1· . . . I, 11 'I lj . jl ·1 I I 1ii' ·.... I I 1 '1 I I 111111 : I1, 1!11' :111 1I I I,.. I ! : 1111'I· 'I ·I.· . , , . 1· 1.. l' · 1[ .. '. 11 .. 1 1 1 1 0 .::. +~ :+ f :~ ~~ +2- S;:\ F :i ~-+ :1t ii:¥, ;[f h1f'r :if;;) f1, JHrr 1111·, h1: ,,lfi dli (11 rM Hf; ii 1l :1' r L;! ·f1i 1r~ wi1'· ~H )~· ::,; l:w ·1·1!,. \ lr ro·: :.:: ::,19 ~-- !!: :i: ·.:~: 6 .:.:: :~; :,:: '.!( 1l:'. -~- :!~i .!T:6 1:: !: ;;,:,, llil s'.1i; :111 :II fi;' 1:1 ! : I :~3 :'.: •1•:: : 11' :!1' ::1 .i:' :::: '.:. !j: :!:: •:1: ,l:. . :1. 'I ...... ' .. ,...... ·I ...... 1· ...... "I' !I ··1 1·:1·1 ., ,. ... 1 · .. 14 ·!I!II I 1· ·1 .... ·I 1· 2 ··1 1·· ·• ... 1 . . ,,. . 'IO 11 ~ H P... '1:11 ::;·.. 1·:: .:1. :·., :1 .:;: ·;:, i111 ,.,,•1 :;,; 11.: 1,1·•·11, ,: I' !'1 I;:· 1''! : It, '•1'I i1 1:1,li i :: ,·1· .: , ,·:. 1•· .::1 :: , 1:1 :::. 1.: ::. I; ... . · · · ,I•· .. 1 · , ... , · .. , ... •· • • .... "" ift1"'' • " ·• ,·Ii':• I I, It ·'It ,11 1····" ...;:: , •· • •" ·' •· ·•· • ··· ...... ,,.

1H NMR of 3-(2-Acetylphenyl) propionic acid (~) Spectrum 9. 13 ppm l 80 160 lltO 120 100 80 60 ltO 20 O c 50~0 ::: ·;: : l . ::: :::Iii II : : : ·:: ::T ::: :::" ::::: 3~1 : :!!: ::Ji 11:' l1'il :11 111' l::.llrl'I II '1 II' [ 11,111111 11r1:1 '111 '1 II l[Ji di! !ii' 11111 l'J fl l'IJ' 1 2s'ool n\ T : : : . : :. ··:: :;:,::: \ /:YT\ y tis:: 11 }! :lL :ill :li lii ~~·6:1 u, 11 I :U ![!! I 11:0°0° I' I! lifl Jill \11! illi ·:: 0 Ii l: 0 1 1 10'00:1 :T ::· :.:: ~ ~ ·7:: \oo '.:: :::: 7 ·::: :::: 7,;1600 f ifi :11 lj:i !fl: i/J l I ·111i'o'ci1· J 1 :11 !j [·11! ;n: [ ,r 206j-l 1; l1[[ ·, !1'1 ~--, r,11 iff1 '. f110 I lJf1: .. :::. :::: :::_ .. ::: ··: i . 1: :::: :::: ::: .. ::: .::: .:.:::: • : ::;1 :::i •. (: ·::. i:. ! : .... :, I: \ ' iH111J i . Y :! .. i1 I_ i ::I , I· ·11 I 500 ~ :~:: .:~: ..:.:_ .:__ ~ _j '.j400~ ~~ ~i ~.: : :::: j300°~2 '.J lL ill Ul i l ~· 20011 . l ! ! I Jj_il I; 'JI 11100 I !jl'. ll ;11[. r ,q[ ~:1 I .!o . ut .. :1: : :_ . . : :: ::· ::: :: .: : :· ·:. ::! ,: ;:: :1·!i i11·l1 i ! 11: :1:11, i i II in ii: 11 11 111 ,,11 ;r; :,T !rr1·i . 111,: :I . / 1: i I 111 · "' · · · " · ·• '" ·· •' · ·· • •, I, ·t• ... , ·•, ·fl! • · ,I • ,I!., ti.!!.· r • -1, 1 1, J ... :··· .... ···: ...... -·· ...... , .... ··-· .... ·- ··-· T' -II' 'I .... -··· ,J .... , 1 i 1·· .. Ji 1·1· ·11· ...... ··1· .1. 'I. ·ir '' •• 1 :. : :: .. : : . I . . ... : : .: . . . :: : ;: : ; : :: : .: :: : :, :: ,· 11 ! ; : : I I;:: 'ii: 1 • I : : ,· I : • 1 · : I '1-111· 'I 1 1' ! I '1' : : : : : '.. ! : I : ! :: ! i. !;i: : I: • ; : i Iii II : • ; .. :. -~- ~: ··< ·-- ·-·· -~-1·-· -- --· ~- :~'. -:- ~~ 0 ~f. :/ :::; -~ ~ ~ :-11': ij:tl d:j :1·1:1· r;-;: 1-1·,j it:i f"i i:; ;,1: r·,·t: ~:ri (: :t~ ij~-j:i :,~: ?1'i :;j:1: [: :·,r1· ?11; 1 . :.: : _· ...... : .. ·::: : ...... ,;:: /!:: .:;; .::: .. :.! !:!. :'. .. !, I :1: !!:; l1·· !,;! :ti1 ::!! ;;: ,: :j j : 11 .:!! 1i:: P; ., 1 : :; ;l.! :: : i ; :.,· JI ' -- -~ -:-!-· --- - ·- -- -,- ~ .::: .~.J: :::: l:µt 44~ ~{:i +.- ~ ;,J l: : !1::: ~1:'l1'U jj i:!l -tr:, \ Ll1.l1· lH \ :: : / ~/ (? .:: ~ :; +1} . . .· · .! · ;: :.· :::: ii· '!j: :1:'. ::. ! .:: ::i

1tt NMR of 4-Methyl-1-naphthol (44) Spectrum 10. ...

0 13c NMR of 4-Methyl-l-tetralone (4lb) Spectv.um 11.

~4lb ppm '" 160 "' "' 100 " " .. 20 ' 13c so~o\ ::: :;: :•.1 ):r·:\ :? l,,~'oo: :: : \. ::i:t1soo:ii1ih:tll:!ITHi111, 11~·,1111,! I [:11i.r:1 iooj 11ii.iii,i:li 11(iif1·1r·~o l1j'i •. ::: ··:: ••:· : . ::: ::: .1 • !: :;:: ;:;: ;:: ··=: ·::: :•::: ..: i:i: :::1 i·r: ;ni tr, : 1· i .. ·11 ': 111' ·I· ,11, i, ... ,di::,. •1'11 ' ,1·1 :, 1· . 1,, !:00.~ :;;.. ~:. -~: ::..:; ~ ~ .J1tOO~:.; ?: ::: ~ "7 :·:: )300~~ ;µi :-f ~!f; f·,·,1 II I 112· i., 1 ! ! I if ~~HI r:rj 11001 tµ +.-1' r .· r'l r 1: ~fl Jo 11ti) ·:. :::_ :: : : : : . : :: :::: 1:: :: ·:; :•• ::i :: :•:: :· t;: :Id' I' : !!! ·: ! .! ! 11· .j:: I· I I I'' !II II!: :11 :[: . [ 11 i :. 1. ll ! '11 ...... · · ...... ··· ··· .... ··,· ...... ··•· ·- ·-· ·r·· -l I · ·1 , ••. ·•· ,1 .. · ·1 I 11 · ·, ··I •1 ·11· ·1·· ·r·•1 · 1· ·! f 1. ·11 • • I I '.!. ::: •;•. :· •:. : I : :. : ·: ·:: ·:: : .. : ::: ;::: ;;:: :\; ::· ::: ii:•::,, i ;1 it\ ·!; !''! :;i·, ··1: :!: iil1. ,!1l •::! !::' ::: :/ .1: ::l: :1i ::!'. ii I.:.: .::. 7.· ..:...:- "-:' ·- '"'.':· ·-:-1·~ _;-:- -=-:- ::-:-: ~~ ;~ ~ :+t: ~8 7.: ;-:+- T :---11': i :1 j,b :i r,77 :jrj ;iii ·-1·:; in: ;i Ir,· I :~rt~::-:::;: ;::i :~:: ~,::-~;;ii:: ;Iii l:+I· 1 . :: :.: :: .. : · .• .:. ... _ .... :::. :;:: .::: .::. '.ii; t: :!l: ?: .:J !I~::: !1 ! )i 1~J :!! ill! 111 1:fl" :1~ p:l ,:j· I j 11 :!11 ;i.:: !lil '. 1lji J1 li.l :!11 [1: : 1. jl .l --~~- __ _ -~ _i l<.l '\: L 1;::J[2J_'. ;:!: H:: Hii ~\ u.l 1 111: . ~ . . ~ . ~ . I ...... fi·1!it:::: ~I ..•... : :::;·•1 ...... ,. :T.T .... l.• ;fr.II... ·1·1 >:!"r.' &1·· :..·11 .t2J:.;,, ,., 'I ill1·· 'T /T •:,; ~i 1 .. : :.:· .: ... : ...... ; •.... : .. :. -~: ·:.:. '.,;. :.:: .::. '. 1:,! .!:. :!I. ,;:: .: •. :::: :1: 1' 1·1·ii i·. :111 ;~, :!:: :: . 1· , , :!,, :: ::;: ::· .::: :: .. :.: :!: :::: :q. : :, • :· ; :: :: ::. • : 1 .:: i·:: 111· < ::; , .T :T ::j! :=:: ::: it '.,:i i 1,· . !! I:!,; :g ilJ. i !i :!ji I lil :lil :i !W ii: ·!:i !/ •!j! t :qi! i\1: ::- -:· "'? :: ::: 7 ·777 ::-:- : 7' ~::. :i-:-:--: : 7;;: ::':~:".;-~;~I·;: :rn, :Ii :•i"j : I ill'i :1:1 ·,,,1:j·;11V ·111: -1,·1 ;, i,:: T :r: ;!'i: :i1i ij: :lij :!Ii : :·: :;1 ... ; ,.:· ,;' .. · ::. . :. ,1:; :.~· ::. : ·::· :1 •.. > .. :: ;:.:: ;: • : . I Jt : . '11 :I, I : •• ;! : ! ·1 ! :: 11:: ;I'. :~!i :!:: : .. :. ! I I ljl:

~+ !\:: :i:: µ; :::: >:? '.} +r 1T:{~ :~,':iii f ~! ::'.: T: tt-l1)tl l11'~ ,f.i, ! ,r ,.·11.i,;w'r ·'mi;1, ~~ ~·.,1!1 t I 11!t:I' 1· ,j; ;m (,',i itt!lrn~i,: ;.,i.,iri i'i lt:1'11 [ffjf,: . : : : : :• · I '! '.:: *:: : I ; ' .. : .. : .1 I t : I. I I -I I i : :1; :: . : :. : . ;: . .:i . :: : ;I,: l~J .: : :. :. •I : 1: ' I . . :· I II : . I '. : . ! .... ;:l: :: ; :::• :•:: :;;· ·:r '::· ·::i :::'. I:!: I i: :.. ·::: 1:j! :,;i ::11 :iii II!:: 'li! :[ I I i; I .; !i! I .!. i!!~ :., : Ii ;: :;'.; : . ·:_ i!r: ,~: . : !1 !...... 11 •. ,_...... ic· ,.;. ·-· . : . • ... :1.rc-:1.r:-ri ,,. ~ !T!1 .. ,,,, 'ff .;:· .M •. I! . 1.:1:. ·11· :1::. ,, . ·:·,: .... ·-:·::-- . -:·'~:--·-, ... · r.- :.1·- :.i:. . . ·1·, i!-:J ·~1· :,1 :~~~ :··· ·ir11· rll :,•i,· ·1r~: it,,·r: ··1': 'j r·11.1·r-: -,,1': ·,· I :;1: ··,11· ·,r:· :,·7: -~~ ·!:: :-,.· ·:,· :·11" ·11·1· ·:,· . . . ': : : ; ,· : .. : i:: . ; : : : : . : : Ii: I !: : . ;i I' . : ': : . : : i. ,· , ·,:. ! I! : 1 1' 1: :i i:; : 111· l 1111' 11· ,· i . I . ! ; ! : I:! . ,· ii II: .. 1':. : •! ! : ! ! i ,·: i I!. : : !I· : ': 1. l 1,: ' :' ! !I ;: 0 11 ro..·• ...... ··· .... ·····a-·········· 1·'1 .. ·· ··-· ··· · ,s··· · 111--s· · · · ... · · ·1 ... 3 ....·1·· "2··1 · .. ···, .... 1·•I T' .. · '· 1 111 P·, ,,•ii :::·9 .·: ::: : i: '> .. :1 ·:;; ::•;li1ii ,.,ji :;;; 'i!:" !111 .. ii! :i 1 : 111• 1!: 1· i!: 1·,·1 .I : 1' !... ,: i111.•:. ,·1:. ;:i: :: :·1'·1 : 1 1•:! Ii:: :::1 ::i i:1 :::: i.! :!: ;! ... • , , . , 1 . 11, , .. • . 1 • • , . • , 1,. i I• . • .. .. 1· • II ii,," I1 " ·, , I 1 • • " • • •" " 11, , ;t • · • . • · , . " ., •, · · ·.. .. , .. . • · ...... •.

13c NMR of 1-Methyl-l,2,3,4-tetrahydro-1-naphthol (41c} @OOH Spectrum 12. 00 O" 41c ppm l eo 160 lltO 120 100 eo 13 I . . . l " 60 40 20 0 ""I " .. . 1 1 111 1 1 1 c so.oo i:: !. : .: ... : .. :: !1io.oo: .:.· () ( / / : 3~0~ %)i li: ;Ii! ;1 1 TT ~~ [111111 '! !111 Iii! ~1.·1 I !I ill 'II[: l!lllllllliliT n1 '!I 1·~~ 1 2soo. : , . ·: :.: : .. :• .. :·'. :;:: i111r1 ·j: I[' .. I I 1: I 111 ooo 'l j ! :i!\:11111 o ,ill • ··;···7·:-·------:-:-:2000:_;_~~-~~1:.;.:..:lSOO :.11 ·'·'! ·!•!I! 10 01 ·~ ·: I 1 . [ Iii II :1 I~ 1 1 ' ' 100 0 ' : :. ' ' . :; .: :.: ::. : . ' I Ti ·:i-; p·· ir:: r I l r1 I:! 'l' 500 . ., I' ' I . 11 10 f I sOo ••• :• : . • : ,'?°!; .:: +;: : ·: .••. ii'?' I !.;, :•: .!;: .lji ,I I 11,0 ' 'I JI : ,·I I i 1'ii1·fi I 2001111 i L[[ 1.1 i 1·r [ Ii i[fl It: 10 Ii 1 - 7i:· ···· ·:· --- :... _J1ioo·-: :~;. - _;300'.: -~ [L_ Ui.l Ul1 ' IJ20 [ 1 i j I 1:L: 11! 1 100 I 11[: !i1' : l1 f 1111 : II ,· '!' ill .. ~ . ~ . .. I . ~ . ~ . •·. ~.., .. "I' 'In r l l H- ·n -·n t 1· T [ . ..,...... :.. 't' . I Jl O 1! 1 1 ( ··1· :··. : . : , ·- .. : .. :.. :: ...... ::. :...... :'...... ::• _:: . \ v 11I 11 .. 1 .._q! 1i)i· ' !11,·•·I I 1111i 1.11., ,. 1 I ·1·,1 ·1r·:1,1m-:11'11 ... • • -1·: Ij' r i'f:I :1,1.,, r I i, 1 , 1Ii ------· ------.: . . : il-.~-c:_.J.•... ' . I' ~:· ~:·. -i1'l' -!·11'1 :1 11-... 1 :1·1 I,!/ . ,Ii i['1I I I''r: I ·•'.,! 1···,; ;.,::. =,·1:. . ,1: : i,1.I ,· r·j: '•t 1 ; I I · • , . l .-- --· ·-:-·. --.:: - --:-. -,:: 1:1. i:: ::: : 1·: ' 11· f'tr • ii7! l r.: ;-1r1 jt,; -~ m· 'i.1.:., ~,: !...:-- ~ . .:.. I.:.. ~,l . .:..: : .. :1·1 ::l: .. ' . [ ...... ,:· ... ·:· ·::: .I·::: 7~ !~!; .:;. :. '. 11:I '.11'1 1(1! q:) :,·r II ,i !11; 11!!1 111·: ·ij'; /-1:11' ' ' . . ' ::!:'''. ::; ., : '. 'I I':!:'. ' .. ' u:;'I' ' t ·r· ...,ll\ I ; . !I ' I ...:;! , I .. 't • ·r ' ;,';i' .. iii:,J . ' 1!Ill .: r, ' -- - -- . ------'--- - - ~ . ' .. ..:..:.:. ill: ·T,__.:: .:..L': :~ I"·::, I:. :,,i i(:t I· I :. I,,,,' 11,, ·:;:" ',;1 J: :p: !lj! ::: :1: ··1, ,I I I 4 ' ""' . '\.,\. I .. ! ; :':: !Iii! :Tl! .::i ,:! ;77" :: t: 0 ·rji f.\' ~tr~ ~1-i ]:1~ +- ,:: ::: ., .: :·:· J,f ~:; I+ .,.., • • • •' .. . . • ·I·· ...... "· ,.. ,,. ~,.: . 'I ·f' -w... 1 .11 :I !·· i 1111 "II :,1 i[i· , .. p: .:. :· ~l· ~.,1 ii, y ··- -- ·- .. -- --· ------: .. ;,il ::'I j_ ,::1 LJ. : j i ·q: :1f1l l1il ~ ~I~ _/i ~ :![! ,ii- i;lll !ii! f \i lt I Ii -u i( :( tj ;} t' 7ill 1 1 1;11· :-:-r-:,. :, :: :· ,: .! : J; 1,1-: -Ti: r~tr -,,~ 0fi 1·1 ! :1:, ·t I :~s- -f ~ -:~, \:=: . . : . -· .:.. . --~ t :. 1 11 ·:I 1 t , , , , I ! l f J t I •• • • ••• ,,. • •• • t J • lj I t 'I I • ft~J I '• I f \' ,I ''' J,. II I I 1 ~ 1 I 1 1 ------_;_ _j~ '.~. J1 :~ :/ ::: i: 11: !!l ,'d ii!: f : [!.! 111 i!1 1 [l: i 11 lj ii( ·1:t1 Li'. .rj: li: 'ii: : 1 ·1·1:I: :l:! . . . . . • ~. ~ . : •. "T - --·~·"" """' . . ~- .;,, ....:::I,,. "'· •. :C! "' ... ·-" •. ' .. , •., •. " d. . . • I 1 1 • • • :. •• • • • ...... : .: •• : • •• :1:) i !11 I 1·: •. :1: 7."" ~: --:r. 1 ·ii .:' i .::. :::I II''·'. :[l ,,1 1-: :! 1·1 · :i :-r:· :rT ·r --:-! :. : : . ' •. • I : : . i': ;;: .. I ::l :i: :::1· ::· ;:;· :~i' -~·. : ,·,·it : i·: 11 I; 11·:-! :1: .. If. ::: :~~. ::: i'.:: .::: '..: :l' ; i:i ·j i ·:- -- ·--:- ·: · - __;_ ~ ---- - :- :...:.:,__:... ~ - .: .11 -~-_:I:_;_ ~ ::1.... :! '.i .• !!: ·,.; ii 1~. ,1!1 :;!1 ! 1 l1!I :. i,: iP 1:i:; .!;i 1:,: ·ii·1 :1; i;! i[j: . ·.1 ·• . · . : • ... • • .:. :: ::, : • • ;· 1 ~· ~~ ·• -l-! :t..: :.w -i • ..:..: :;+: .: '.-: 11 jii , ~ i ir1 1n - --r-:-·,:: ; 1 ~ ::!j · : :·:. ·: · ··· ··- .:. --. 7':' ::~: ::: ·;· · · .( :t:. --·· .. : ,_::!:::.::'.I 11:I !, i': ·,;: l'! :j!· i!'.: :f \j:i ·ii :;: :: '1:: '!: i;!: :II: 11:, ·i'I ::1: : .. :: 1' ·.. . . ' I::· I. " : I ,·11 11: . ·; ,: : :. Ill !1jl 1 ! rr: ,: 1,·- ,, 1· ! :,·! 'r: .. !:i1 -·- :: .. !:: :I;: .:!~ :.:: : :: : I I 1;1. - ·-· ·-· ·+ . ,_ - ' "" ... :~ ·•. :'.! ., ,...... ' i' ,.. I I •'I ,,. ··I ( . ··1 "· n ..• ,.. ,. r ..... ·1; 1 1 ;:. 2~J.. J :/I } s- \ n I~"~ .~ ifr: r:.1 s im jl if Jl;ui m1 ;U. mi m: 1ili'i ' ITdt: ili lli' ITT' ®ifil i1 :11 1ir'1 i ... ~· ··•· -- ·-· ··- .1. -, -: ... p- m _ -·· +a:1 :~ r~ !t• 1.. '{ ,11 T1 ,r:1 ;i. !1t 111 JI", ·i:r 111, 1 , , 111 ;1° ·,,. t",: " 'ii' ,.<. ' I f · j 1 rrr~· :'i1 .-:'~ ·: ) 1 ::I: ::,1! ;;:,, ii) ilf,i4 1li1i ·r I r1i .J:: ~ i ::! ill 7) ::; 'd l[/J:: ?H :ffl i1li ill; (!Ii 1:\!!i :,ill 1r1,iJ!i rt;[!: ;ii';; ;t!: ii(1 iii!,; .__ _ _._.J..,;.;...... ,..-i--l-.:...J..;.·:.:.·: L..:.....L-:.L· ;_;.J.' · ' i · 1 1 • : ' 1 : , · 1 ! · : 1 · I 1 : 1, 11 · 1ll I ii: I ii 11. ! r1 1 '. . : , i I 1: · 1 ; · : . : 1 1i . : 1 i ·: 1! :. i '!! : j : : : · 1: : · '. ~ : !, .II

13c NMR of 3-(2-Acetylphenyl)propionic acid (42)., Spectrum 13.

(/J -.J ppm l 80 160 lliO 120 100 80 60 liO 20 0 l3C

1 1 11 1 11 50?0:) .j'. .. ;" :.... ::11~~:oo'. ... : ). /.::;. :: ~:: 3~'.o~· ;[!i :11i !1'f' :J,i\ 11:1 1[1111:~~:~·;I ijl 11 1 ll'ii :1111111: I f o'.o'J l ;111rnl 1lli \II ~!l!!!'r'' lw~· .1111· 25,00,1 :\ .;. ·- _:_ -· - l~OOr :/; ..;~; :1,1,, 11111.,10,~0[ l,,:lj 111 [ 11 I 11-,:; ,l lj[Jl:[· ·1W1·11 [It.Ill 1[·1'; ji1'·1 11·! ;20,00: -~ ~ 4-.;.: ~ ..:.. ~r }.'. rlr'; [1500, ,,fl1 r!~[~ 100 o ·: ·. · : 'eoo ·.. :: .. ::· .:· :·: · 1600 1 ·'1 "'i 1,:, :111' I 1~0011 1 1 'l' I I , I 2001 J' , !I r i 11 1 ! lo I soo < ::· ": .. < ··. :.. a/ :::: ;J < ··:· .::. . :loo': )! .-:1 t ;ijJ :1j i \. lJ2oci Ji 11. 111! !!: !11\ il1 !!100 I 1l -L1 :ti1' .I l1 1i :;1)· 10 1[11 1 1 1 1 1 .- :~:· ·:-- ·:· -- .... ~ .. : ~ ·7 f: -- ~: .. ~:. - ~ -~ ;~ :M 111.,1·1 i fi!: '!.111 ! !Iii ji1ff,. jm LJi, I 1 II :11l lftfi1 : n n,111111,i i1 !1' ,· ·1·: ! ff 111· • .. • · - - - · ...... --- ••· ... · · ••· • ·•· ••• ·- "" · • 1 ...... ,. .. · I 1 1 •· •• ·r· 11· •• · •· • 1· 1 r • · , : : · . , , • . · ;. · , .: .:.; '!. :· ' 1 i. I I·:· . ,I ll'I I l 1\f .,' t:· ;'I J .. , ! I , •,1''; · • .· . .. . :;" :.' 1; .: ; : !I'; :i;: ( 11:1 ·:;·. :iii !I:;· ii. I' I·•.:· :·; 1: ,I,",; ·I··:. ·11 !" 1 ·T:: 1( 1 1; ··:il 1i!i : 1 :111· 1·,~II. ---· ··· ·-- ·--: ---- ··-· - --· -~ -~ ~ ~; -- :;r: TT; IT.! T!i 1 !::1111' ;:;; :·In :rn D :1 1 il·p ·fn :·'. T1··1 :·1·:I ;-:·1; T1·: n1r ...... : ... . : .. : ;I· .:.; .~ .: ... : .. '.,. jl: :.:, I'" .1;. : fj r·r· 1.! 1 .: I I 11 .!!. p:. if!, [ ' .: I ' . : II 1' . :: : .. !:::t, '·:!.':: ,· .. ::!J:.:1!::;1:j:.:11:1·:: 1:. ,,11,: ::i·:· ·1.::·1!:: 1i' •::~'! ·ii:',' -- -~ -:· ------,- __:__ -f ~'7 ;, i~ J~';:i -t. ;7"~ "7 tf :--l·.:·y itt ;r.l: f.ll. ttf~f' ~ 1-rt:~~~i:-; f ~1;: ~ 7 ..:....!· :1 ti~: I .• ', . : : I' 1,1·: . ·:·. , .. :!t: 1· I. :.11 11!' ·1' I ;;11 ·l·, "'1·! ,1 1111 -:JI :·11 ". I: :: ·, . 1:1 ·111 ,11; 1 - --- · · .. · · ··· ": ·.· -.- ·· i ·· ··. ::-, •:· -:· ·,:- ·i, 1 i. :j ;r! !'ii ·11 ;,I lil'j ·[:· :,j. i] [ r'I · ·!,· :.:· ·;!: ··1:j· T :·: :·,: [' 1 : 1· ·I: : •• ·.. ., : • :.: .. , • :; ··1·1 : 11 1 1 · , ,, ·. :1 • 1 11 1 1 1 :1:·!+.!:: 1 • '11 : • • •t .C 1, I " I • • • u:·I • ,. , I • 1 , ~ , t , , j • , j:1- , , , , , Jt·I :· • :, l I I • 1 1 11 1 ------·- - ~ ~:-: · 1.\ ~:r/~ ::'Tt:TJ:1. ;r 1ir -L:~1'1: ·1::1~. 1-1:: nfi 11 !! ·1"'11: ·TT?~,·: :1·! ·; 1:·~ -~ T ~:: rr1; ...... ··- --- .••. .. I . 11· .,., •..••• ,...... 1 'I ,,.. ' I t' 1·1· 1' 'II' ' 1· ·1·1 ..... I ... I ...... 1 , .. I . . : : . : . : . I i ' I . • . . I ' : . : i : : i : !; : ii j'. : i i 1: : i I ;! ' i 111' !! I : . ) i : i I I ; I ; ;! . : j! I : :! I ' : '.:: • ' : !: 'i! i ;l1' i __ -- -- __ ---; ..:.... ~--:-- ~ :...:.. - :. +-- ~.;.;. ~L_;_. -:-;-t-~t . ;.. + - . ~ ·i. ~ ..:Tl :~i..: i · ;:-! ~ :r.· :+. 7T ~- :....:... ·.!.r. '.f -~i : .. : ...... 1 . I , . .. 1·1 · ii I' I I ·jl· ,., .. 1.,1 11, 1 ·11·1 ''j ...... !,...... ,. "i' 1 · : · · . . . · , : · : , · I 1 I · : : · • ! 1 , • : • • • 1 I ' ! , • i. · , 1 t , : : ! ! : l : : . . ' . I · ; : . ? >j 1 1 I' · ~ 1 - · :· ·: . - :: : --i ·: : ·:~ 1(~: :~ ::: .. :: \ <1i -- ::f 1 ;I! 1111 '. . 1:, :I .1 , ·1, -r1<; : 1 111: ·1 i1;!1.: :·,Tl ,;1 1::: :1 ·: :·li i- n· '\ 1 1r:,t 1 1 l ·:n r 1 11·: i\l . T ·i · . 11· ·,:: if : , 1 1 1: ·-- -·· -~ ~ -- .:.... - ~- -- ~ ~ ~ ~ ~ ~ · -~ -f. ~ ~ ~-:

13c NMR of 4-Methyl-1-naphthol (~) Spectrum 14.

(X) (X) ~CH 44 3 VITA )--'

Radhika Rangarajan

Candidate for the Degree of

Doctor of Philosophy

Thesis: CHROMIC ACID OXIDATION OF HYDROCARBONS AT THE BENZYLIC POSITION USING THE JONES REAGENT AND C-13 NMR STUDY OF GEM-DIMETHYL­ INDANS AND -INDANONES

Major Field: Chemistry

Biographical:

Personal Data: The author was born in Chidambaram, India on Jan­ uary 29, 1959, to Seshadhri Rangarajan and Shantha Rangarajan.

-··- Education: The author graduated from the Government Girls' High School, Chidambaram, India, in 1975; received the Bachelor of Science Degree in Chemistry from Annamalai University, Annamalai Nagar, India, in 1979; completed requirements for the Doctor of Philosophy Degree in Chemistry at Oklahoma State University, Stillwater, Oklahoma, in December, 1984.

Professional Experience: Graduate Teaching Assistant in the Department of Chemistry, Oklahoma State University, Stillwater, September, 1980 - May, f983; Graduate Research Assistant, Department of Energy, Oklahoma State University, Stillwater, Summer, 1983; Graduate Teaching Assistant, Department of Chemistry, Oklahoma State University, Stillwater, September, 1983 - May, 1984; Graduate Research Assistant, Dow Chemical Company and Department of Energy, Summer, 1984; Graduate Teaching Assistant, Chemistry Department, Oklahoma State University, September, 1984 - December, 1984.