Forest Site Disturbances and Seedling Emergence in Kalinzu Forest, Uganda

Total Page:16

File Type:pdf, Size:1020Kb

Forest Site Disturbances and Seedling Emergence in Kalinzu Forest, Uganda MUHANGUZI et al. 91 Tropical Ecology 46(1): 91-98, 2005 ISSN 0564-3295 © International Society for Tropical Ecology Forest site disturbances and seedling emergence in Kalinzu Forest, Uganda HOSEA D.R MUHANGUZI1, JOSEPH OBUA2∗, HANNINGTON OREYM-ORIGA3 & OLE R. VETAAS4 1Department of Science & Technical Education, Makerere University P.O. Box 7062, Kampala, Uganda; 2 Department of Forest Biology & Ecosystems Management, Makerere University P.O Box 7062 Kampala, Uganda; 3Department of Botany, Makerere University, University P.O. Box 7062, Kampala, Uganda; 4Centre for Development Studies, Bergen University, Stomgt. 54, N-5007, Bergen, Norway Abstract: The influence of forest site manipulations (loosening soil, weeding and removing topsoil) and forest light environment on emergence of seedlings of selected pioneer, canopy and understorey tree species were assessed in Kalinzu Forest in areas with different management histories. The species were Craterispermum laurinum, Funtumia africana, Musanga leo- errerae, Parinari excelsa, Strombosia scheffleri and Trema orientalis. Most seedlings (> 38 %) emerged where the soil was loosened and least (< 10 %) in the undisturbed plots. With the exception of the pioneer species (T. orientalis and M. orientalis), seedlings of other species emerged in all the manipulated plots. Seedlings of the pioneer species only emerged in plots with light intensity ≥90 % while those of the canopy and sub-canopy species (P. excelsa, F. africana and S. scheffleri) emerged in plots where light intensity ranged from 6 % to 100 %. Resumen: Se evaluó la influencia de las manipulaciones locales del bosque (aflojamiento del suelo, desyerbe y remoción del suelo superficial) y del ambiente lumínico del bosque sobre la emergencia de plántulas de una selección de especies arbóreas pioneras, de dosel y de sotobosque en el Bosque Kalinzu, en áreas con diferentes historias de manejo. Las especies fueron Musanga leo-errerae, Trema orientalis, Funtumia africana, Strombosia scheffleri, Parinari excelsa y Craterispermum laurinum. La emergencia de plántulas alcanzó su máximo (> 38%) donde el suelo fue aflojado y su mínimo (< 10 %) en las parcelas sin disturbio. A excepción de las especies pioneras (T. orientalis y M. orientalis), las plántulas de otras especies emergieron en todas las parcelas manipuladas. Las plántulas de las especies pioneras sólo emergieron en parcelas con una intensidad luminosa ≥ 90%, mientras que las de especies del dosel y del subdosel (P. excelsa, F. africana y S. scheffleri) emergieron en parcelas donde la intensidad de la luz fluctuó de 6% a 100%. Resumo: A influência das manipulações da estação florestal (revolvimento do solo, monda de ervas e remoção da camada superior do solo) e o ambiente luminoso da floresta na emergência das plântulas de pioneiras seleccionadas, o copado e as espécies de árvores no sub bosque foram determinadas em áreas com diferentes histórias de manejo na Floresta de Kalinzu. As espécies foram a Musanga leo-errerae, Trema orientalis, Funtumia africana, Strombosia scheffleri, Parinari excelsa e Craterispermum laurinum. A maior parte das plântulas (>38%) emergiram quando o solo foi revolto e foi menor (<10%) nas parcelas não disturbadas. Com excepção das espécies pioneiras (T. orientalis e M. orientalis), as plântulas das outras espécies emergiram em todas as parcelas manipuladas. As plântulas das espécies pioneiras só emergiram nas parcelas com intensidade luminosa ≥ 90% enquanto que as do ______________________________________________________________________________________________ ∗ Corresponding Author 92 FOREST DISTURBANCES IN UGANDA copado e sub-copado (P. excelsa, F. africana e S. scheffleri) emergiram nas parcelas em que a intensidade luminosa se situou entre os 6% e os 100%. Key words: Canopy, germination, pioneer species, seedling emergence, site manipulation, tropical forest. Introduction tolerant species can establish in either gaps or understorey (Forget 1991). Seed germination, emergence, growth, survival Whereas forest site disturbances can result and establishment of seedlings affect forest from natural tree falls, logging is a major cause of regeneration by influencing plant populations in forest disturbances (Whitmore 1992). This study tropical forests (Osunkjoya et al. 1992). These was carried out in Kalinzu forest reserve in areas processes vary with species and forest habitat that experienced different logging levels. The characteristics (Clark 1990; Pons 1992; Schupp objectives were to determine (1) the effect of 1988; Tripathi & Khan 1990). Habitat different plot manipulations (loosening the topsoil, characteristics such as degree of canopy openness weeding out herbs and shrubs and removing and nature of soil can be affected by various kinds topsoil) on seedling emergence, (2) the species of forest disturbances (Boot & Gullison 1995; composition and abundance of the tree seeds Denslow 1995). present in the forest soil seed bank and, (3) the Soil disturbance can influence germination and effect of different forest light environments (under seedling emergence because it exposes some of the closed canopy, forest gap edge and gap centre) on formerly buried seeds to incident light, which may seedling emergence. In this article, the term induce some of them to germinate (Denslow 1980; ‘emerged seedling’ refers to those very young Jensen 1995; Pugnaire & Lozano 1997). For seedlings that have just emerged above the ground example, Putz & Appanah (1987) noted that surface. pioneer tree species are most abundant in open forest areas where soil has been disturbed. Materials and methods Disturbance that loosens soil may enhance seed germination and seedling emergence because of Study area and location of study plots improved aeration and temperature variation This study was carried out in Kalinzu Forest (Clark & Clark 1987; Denslow 1987). Reserve, which is located in southwestern Uganda Forest soil disturbance also affects the soil seed between 00 17' S - 00 30' S and 300 00' - 300 07' E and bank, which often contains dormant seeds (Riswan has an altitudinal range of 1250 - 1827 m above sea & Kartawinta 1991; Silvertown 1987). While seeds level. It experiences two rainfall peaks from March of many tropical trees have short longevity to May and September to November. The annual (Vasquez-Yanes & Orozico-Segovia 1996), seeds of rainfall ranges between 1,150 - 1400 mm (Howard some species, especially the pioneer species often lie 1991). Minimum and maximum temperature dormant in the soil seed bank (Ellison et al. 1993; ranges are 140 - 170 C and 250 - 280 C, respectively. Thompson 1992). Soil disturbance can expose According to Howard (1991), this forest can be formerly buried and dormant seeds to the ground classified as a medium altitude moist evergreen surface consequently promoting their germination forest and medium altitude moist semi-deciduous (Everham et al. 1996). forest. Two hundred and sixty five tree species Augspurger (1984) noted that light strongly (more than 57 percent of the country's total) have influences regeneration of some tropical tree been recorded in this forest (Howard 1991). species. According to Martinez-Ramos & Soto- Study plots were located in three areas of the Castro (1995), pioneer species and secondary forest forest having different management histories species usually germinate and establish in gaps. (Howard 1991). One area was heavily On the other hand, seedlings of many shade MUHANGUZI et al. 93 mechanically logged between 1950 and 1975 and is forest and forest edge coloniser) and referred to as forest type A (FTA). The second area Craterispermum laurinum (Poir.) Benth. (an was heavily pitsawn while the third was understory species, Hamilton 1991) were sown in minimally disturbed, and these areas are referred the weeded and undisturbed plots. Other seeds to as forest types B (FTB) and C (FTC), were sown in plots where the soil was loosened and respectively. In each of the three forest types, a 1 x the topsoil removed. The location of each seed was 1650 m transect was established. Thirty-three mapped and ten replicates made for each type of study plots, each 20 x 20 m in size, were established manipulation. Before sowing the seeds, their in each forest type and laid out in an alternating viability was tested using a technique suggested fashion at 30 m intervals along each transect. by Burke (1970), whereby tetrazolium solution is Seedling emergence was monitored in sub applied to freshly exposed cotyledons of sliced plots established within each of the big plots of 20 seeds. Fresh and air-dried seeds were used x 20 m size. The sub-plots measuring 2 x 2 m were because older seeds tend to be sensitive to light located at a distance of one metre apart. In each quality (Vasquez-Yanes & Orozco-Segovia 1996). forest type, 33 plots were manipulated in a Fifty seeds of M. leo-errerae, T. orientalis, F. particular manner e.g. some plots were africana and C. laurinum were sown in the manipulated by weeding out existing herbs and replicate plots while only 30 and 20 seeds of S. shrubs while others had their topsoil removed to a scheffleri and P. excelsa, respectively, were sown depth of about 10 cm so as to remove seeds already because they had few fresh and viable seeds at the present in the soil prior to this study. Other plots time. All seedlings that emerged were enumerated. were manipulated by loosening the topsoil and removing roots and any other plant remains. Some Soil seed bank analysis plots were left undisturbed while others were
Recommended publications
  • Microscopic, Histochemical and Preliminary Phytochemical Characterization of Leaves of Trema Micrantha (L.) Blume
    Anales de Biología 43: 93-99, 2021 ARTICLE http://dx.doi.org/10.6018/analesbio.43.09 ISSN/eISSN 1138-3399/1989-2128 Microscopic, histochemical and preliminary phytochemical characterization of leaves of Trema micrantha (L.) Blume Cledson dos Santos Magalhães1, Rafaela Damasceno Sá1, Solma Lúcia Souto Maior de Araújo Baltar2 & Karina Perrelli Randau1 1 Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, 50740-321, Recife, Pernambuco, Brazil. 2 Universidade Federal de Alagoas, 57309-005, Arapiraca, Alagoas, Brazil. Resumen Correspondence Caracterización microscópica, histoquímica y fitoquímica preilmi- K.P. Randau nar de las hojas de Trema micrantha (L.) Blume E-mail: [email protected] Para enriquecer el enriquecer el conocimiento sobre Trema mi- Received: 22 November 2020 crantha (L.) Blume, esta investigación tuvo como objetivo realizar Accepted: 15 April 2021 la caracterización anatómica, histoquímica y fitoquímica de las ho- Published on-line: 30 May 2021 jas de la especie. Se realizaron cortes transversales del pecíolo y limbo, así como cortes paradérmicos del limbo, analizados en mi- croscopía óptica y polarizada. Se utilizaron diferentes reactivos para el análisis histoquímico. Se han descrito estructuras anatómi- cas que proporcionan un diagnóstico detallado de las especies es- tudiadas. La histoquímica mostró la presencia de metabolitos es- enciales (flavonoides, taninos, entre otros) para la especie y me- diante análisis SEM-EDS se confirmó que los cristales están com- puestos por oxalato de calcio. El análisis fitoquímico permitió la identificación de mono y sesquiterpenos, triterpenos y esteroides, entre otros. El estudio proporcionó datos sin precedentes sobre la especie, ampliando la información científica de T. micrantha. Palabras clave: Cannabaceae; Microscopía; Farmacobotánica.
    [Show full text]
  • TAXON:Trema Orientalis (L.) Blume SCORE:10.0 RATING
    TAXON: Trema orientalis (L.) Blume SCORE: 10.0 RATING: High Risk Taxon: Trema orientalis (L.) Blume Family: Cannabaceae Common Name(s): charcoal tree Synonym(s): Celtis guineensis Schumach. gunpowder tree Celtis orientalis L. peach cedar Trema guineensis (Schumach.) Ficalho poison peach Assessor: Chuck Chimera Status: Assessor Approved End Date: 4 Mar 2020 WRA Score: 10.0 Designation: H(Hawai'i) Rating: High Risk Keywords: Tropical, Pioneer Tree, Weedy, Bird-Dispersed, Coppices Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) y 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) y 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed 401
    [Show full text]
  • Polyploidy in Trema (Ulmaceae)
    1971 341 Polyploidy in Trema (Ulmaceae) A. S. Hans1,2,3 Panjab University, Botany Department, Chandigarh 14, India ReceivedDecember 18, 1969 Introduction Trema Lour. belongs to Ulmaceae, a small family of trees and shrubs, encompassing 15 genera and about 150 species (Lawrence 1951) in tropics and subtropics of both the hemispheres. Trema is a small genus composed of 30 tropical species of which only three species constitute the Indian flora. The members of the Ulmaceae show variation in basic chromosome number. Celtis is polybasic with x=10, 11, and 14 (Darlington and Wylie 1955), while Ulmus, Holoptelea and Zelkovia exhibit a uniform base number of 14. A few instances of inter and intraspecific polyploidy in Celtis and Ulmus exist in nature. Celtis australias has been reported to be a tetraploid (2n=40), while C. laevigata, C. sinensis, and C. occidentalis are diploid, all with 2n=20 (Bowden 1945). The report of 2n=28 in C. occidentalis (Sax 1933) is suggestive of aneuploid races in the species. Most of the species of Ulmus are diploid except U. americana where in addition to the diploid race (Krause 1930), a tetraploid race is also known (Sax 1933). Artificial triploids and tetraploids have been raised in U. glabra by Ehrenberg (1945). The two chromosomally known species of Trema exhibit variable numbers. T. orientalis has been reported to have n=18 (Arora 1960) from Banglore and n=20 (Gajapathy 1961) from Madras in South India; T. politoria has n=10+B (Mehra and Gill). In view of the discordant reports on the chromosome number (n=18, 20) in Trema orientalis, the cytological study was undertaken to ratify the chromosome number, to assess the incidence of polyploidy, and if possible to determine the base number of this small genus.
    [Show full text]
  • Studies on Seed Germination and Micro Propagation of Trema Orientalis (L.) Blume and Macaranga Pelt at a (Roxb.) Mull
    STUDIES ON SEED GERMINATION AND MICRO PROPAGATION OF TREMA ORIENTALIS (L.) BLUME AND MACARANGA PELT AT A (ROXB.) MULL. ARG. AND THEIR USE IN REVEGETATION OF MINE WASTELANDS A THESIS SUBMITTED TO GOA UNIVERSITY FOR THE AWARD OF THE DEGREE OF 5 8 1 • - # 7 DOCTOR OF PHILOSOPHY tfOM/SfU IN /O V)CX BOTANY 6* tfc FACULTY OF LIFE SCIENCE ^- i PUi> BY CASSIE R. RODRIGUES V* Research Guide PROF. B. F. RODRIGUES UGC-SAP DEPARTMENT OF BOTANY ) GOA UNIVERSITY December 2013 T — S 2.2- T - 62 - 2- <Dedicated to, M y Parents Mrs. Adetina g. (Rpdrignes Mr. A- Bosco <Rgdrigues M y g u id e Prof. (Bernard <F. (Rgdrigues DECLARATION I hereby declare that the matter embodied in this thesis entitled, “Studies on seed germination and micro propagation of Trema orientalis (L.) Blume and Macaranga peltata (Roxb.) Mull. Arg. and their use in revegetation of mine wastelands.” is the result of investigations carried out by me, under the supervision of Prof. B. F Rodrigues and it has not previously formed the basis for the award of any degree, diploma, associate ship, fellowship or the other such similar title. Goa University Ms. Cassie R. Rodrigues December 2013 (Candidate) CERTIFICATE This is to certify that the work incorporated in this thesis entitled, “Studies on seed germination and micro propagation of Trema orientalis (L.) Blume and Macaranga peltata (Roxb.) Mull. Arg. and their use in revegetation of mine wastelands.” submitted by Ms. Cassie R. Rodrigues, constitutes her independent work and the same has not been previously submitted for the award of any other degree, diploma, associate ship, fellowship or the other such title.
    [Show full text]
  • Analysisandinterpreta Tion Of
    A N A L Y S I S A N D I N T E R P R E T A T I O N OF B O T A N I C A L R E M A I N S F R O M S I B U D U C A V E , K W A Z U L U – N A T A L Christine Scott A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the Degree of Master of Science Department of Archaeology School of Geography, Archaeology and Environmental Studies University of the Witwatersrand Johannesburg, 2005 D E C L A R A T I O N I declare that this thesis is my own, unaided work. It is being submitted for the Degree of Master of Science in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University. ……………………… Signature of candidate …….. day of …..…………… 2005 ii A B S T R A C T The identification and analysis of seeds (including fruits and nuts) from second millennium AD deposits at Sibudu Cave, KwaZulu-Natal, constitute the first in-depth archaeobotanical study of seeds in South Africa. The study highlights problems in the reconstruction of past vegetation and climatic variables from seed data. The Sibudu seed assemblage produced no evidence to suggest vegetation change in the Sibudu area during the last 1000 years. Either it is not possible to identify short-term fluctuations in indigenous vegetation from seed data, or the evidence of vegetation change has been masked by the influence of the perennial Tongati River, depositional history, differential preservation and recovery, and identification difficulties.
    [Show full text]
  • Angiospermic Flora of Gafargaon Upazila of Mymensingh District Focusing on Medicinally Important Species
    Bangladesh J. Plant Taxon. 26(2): 269‒283, 2019 (December) © 2019 Bangladesh Association of Plant Taxonomists ANGIOSPERMIC FLORA OF GAFARGAON UPAZILA OF MYMENSINGH DISTRICT FOCUSING ON MEDICINALLY IMPORTANT SPECIES 1 M. OLIUR RAHMAN , NUSRAT JAHAN SAYMA AND MOMTAZ BEGUM Department of Botany, University of Dhaka, Dhaka 1000, Bangladesh Keywords: Angiosperm; Taxonomy; Vegetation analysis; Medicinal Plants; Distribution; Conservation. Abstract Gafargaon upazila has been floristically explored to identify and assess the angiospermic flora that resulted in occurrence of 203 taxa under 174 genera and 75 families. Magnoliopsida is represented by 167 taxa under 140 genera and 62 families, while Liliopsida is constituted by 36 taxa belonging to 34 genera and 13 families. Vegetation analysis shows that herbs are represented by 106 taxa, shrubs 35, trees 54, and climbers by 8 species. In Magnoliopsida, Solanaceae is the largest family possessing 10 species, whereas in Liliopsida, Poaceae is the largest family with 12 species. The study has identified 45 medicinal plants which are used for treatment of over 40 diseases including diabetes, ulcer, diarrhoea, dysentery, fever, cold and cough, menstrual problems, blood pressure and urinary disorders by the local people. Some noticeable medicinal plants used in primary healthcare are Abroma augusta (L.) L.f., Coccinia grandis (L.) Voigt., Commelina benghalensis L., Cynodon dactylon (L.) Pers., Holarrhena antidysenterica Flem., Glycosmis pentaphylla (Retz.) A. DC., Mikania cordata (Burm. f.) Robinson, Ocimum tenuiflorum L. and Rauvolfia serpentina (L.) Benth. A few number of species are also employed in cultural festivals in the study area. Cardamine flexuosa With., Oxystelma secamone (L.) Karst., Phaulopsis imbricata (Forssk.) Sweet, Piper sylvaticum Roxb., Stephania japonica (Thunb.) Miers and Trema orientalis L.
    [Show full text]
  • Contribution to the Biosystematics of Celtis L. (Celtidaceae) with Special Emphasis on the African Species
    Contribution to the biosystematics of Celtis L. (Celtidaceae) with special emphasis on the African species Ali Sattarian I Promotor: Prof. Dr. Ir. L.J.G. van der Maesen Hoogleraar Plantentaxonomie Wageningen Universiteit Co-promotor Dr. F.T. Bakker Universitair Docent, leerstoelgroep Biosystematiek Wageningen Universiteit Overige leden: Prof. Dr. E. Robbrecht, Universiteit van Antwerpen en Nationale Plantentuin, Meise, België Prof. Dr. E. Smets Universiteit Leiden Prof. Dr. L.H.W. van der Plas Wageningen Universiteit Prof. Dr. A.M. Cleef Wageningen Universiteit Dr. Ir. R.H.M.J. Lemmens Plant Resources of Tropical Africa, WUR Dit onderzoek is uitgevoerd binnen de onderzoekschool Biodiversiteit. II Contribution to the biosystematics of Celtis L. (Celtidaceae) with special emphasis on the African species Ali Sattarian Proefschrift ter verkrijging van de graad van doctor op gezag van rector magnificus van Wageningen Universiteit Prof. Dr. M.J. Kropff in het openbaar te verdedigen op maandag 26 juni 2006 des namiddags te 16.00 uur in de Aula III Sattarian, A. (2006) PhD thesis Wageningen University, Wageningen ISBN 90-8504-445-6 Key words: Taxonomy of Celti s, morphology, micromorphology, phylogeny, molecular systematics, Ulmaceae and Celtidaceae, revision of African Celtis This study was carried out at the NHN-Wageningen, Biosystematics Group, (Generaal Foulkesweg 37, 6700 ED Wageningen), Department of Plant Sciences, Wageningen University, the Netherlands. IV To my parents my wife (Forogh) and my children (Mohammad Reza, Mobina) V VI Contents ——————————— Chapter 1 - General Introduction ....................................................................................................... 1 Chapter 2 - Evolutionary Relationships of Celtidaceae ..................................................................... 7 R. VAN VELZEN; F.T. BAKKER; A. SATTARIAN & L.J.G. VAN DER MAESEN Chapter 3 - Phylogenetic Relationships of African Celtis (Celtidaceae) ........................................
    [Show full text]
  • Evaluation of Antidiabetic Activity of Ethanolic Extract of Trema Orientalis (L.) Blume Leaves
    IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS) e-ISSN:2278-3008, p-ISSN:2319-7676. Volume 11, Issue 5 Ver. I (Sep. - Oct.2016), PP 17-26 www.iosrjournals.org Evaluation of Antidiabetic Activity of Ethanolic Extract of Trema Orientalis (L.) Blume Leaves. Jiji .K.N1*, Pramod.C2 , Boby S Prasad2, DR.P.Muralidharan1 1Department of Pharmacology, C.L.Baid Metha College of Pharmacy, Chennai. 2 University College of Pharmacy, Cheruvandoor, Kottayam, Kerala. Abstract: Context: Trema orientalis(L.)Blume is a species of flowering tree in the hemp family Cannabaceae. This common tree is widely used in African folk medicine for many diseases, for example asthma, cough, dysenteria and hypertension Objectives: The objective of the study was to evaluate the antidiabetic activity of ethanolic extract of Trema orientalis (L.) Blume leaves by in vivo methods. Material and methods: The leaves of Trema orientalis were dried under shade and then powdered, and extracted with ethanol by hot continuous extraction method using soxhlet apparatus. Preliminary phytochemical studies were carried out on extract. The antidiabetic potential of ethanolic extract of T.orientalis (EETO) was evaluated by using Streptozotocin-Nicotinamide induced type 2 diabetic rat model. Two doses of the EETO (250mg/kg and 500mg/kg) were administered to normal and experimental diabetic rats for 14 days. The blood samples were withdrawn from the retro orbital sinus on 1, 7 and 14th days of extract administration and fasting blood glucose levels were estimated. In addition, changes in body weight and serum lipid profiles, assessed in the extract treated diabetic rats were compared with diabetic control and normal animals.
    [Show full text]
  • Botryosphaeriaceae Species Overlap on Four Unrelated, Native South African Hosts
    Botryosphaeriaceae species overlap on four unrelated, native South African hosts Fahimeh JAMI1*, Bernard SLIPPERS2, Michael J. WINGFIELD1, Marieka GRYZENHOUT3 1 Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa 2Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa 3Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa, * Corresponding author. Tel.: +27124205819; Fax:0027 124203960. E-mail address: [email protected] ABSTRACT The Botryosphaeriaceae represents an important and diverse family of latent fungal pathogens of woody plants. While some species appear to have wide host ranges, others are reported only from single hosts. It is, however, not clear whether apparently narrow host ranges reflect specificity or if this is an artifact of sampling. We address this question by sampling leaves and branches of native South African trees from four different families, including Acacia karroo (Fabaceae), Celtis africana (Cannabaceae), Searsia lancea (Anacardiaceae) and Gymnosporia buxifolia (Celastraceae). As part of this process, two new species of the Botryosphaeriaceae, namely Tiarosporella africana sp. nov. and Aplosporella javeedii sp. nov., emerged from sequence comparisons based on the ITS rDNA, TEF-1α, β-tubulin and LSU rDNA gene regions. An additional five known species were identified including Neofusicoccum parvum, N. kwambonambiense, Spencermartinsia viticola, Diplodia pseudoseriata and Botryosphaeria dothidea. Despite extensive sampling of the trees, some of these species were not isolated on many of the hosts as was expected. For example, B. dothidea, which is known to have a broad host range but was found only on A.
    [Show full text]
  • Celtis Sinensis Pers. (Ulmaceae) Naturalised in Northern South Africa and Keys to Distinguish Between Celtis Species Commonly Cultivated in Urban Environments
    Bothalia - African Biodiversity & Conservation ISSN: (Online) 2311-9284, (Print) 0006-8241 Page 1 of 9 Original Research Celtis sinensis Pers. (Ulmaceae) naturalised in northern South Africa and keys to distinguish between Celtis species commonly cultivated in urban environments Authors: Background: Alien Celtis species are commonly cultivated in South Africa. They are easily 1 Stefan J. Siebert confused with indigenous C. africana Burm.f. and are often erroneously traded as such. Celtis Madeleen Struwig1,2,3 Leandra Knoetze1 australis L. is a declared alien invasive tree. Celtis sinensis Pers. is not, but has become Dennis M. Komape1 conspicuous in urban open spaces. Affiliations: Objectives: This study investigates the extent to which C. sinensis has become naturalised, 1Unit for Environmental constructs keys to distinguish between indigenous and cultivated Celtis species, and provides Sciences and Management, a descriptive treatment of C. sinensis. North-West University, South Africa Methods: Land-cover types colonised by C. sinensis were randomly sampled with 16 belt transects. Woody species were identified, counted and height measured to determine the 2 Department of Soil, Crop population structure. C. africana and the three alien Celtis species were cultivated for 2 years and Climate Sciences, University of the Free State, and compared morphologically. South Africa Results: Celtis sinensis, Ligustrum lucidum and Melia azedarach were found to be alien species, 3Department of Botany, most abundant in urban areas. The population structure of C. sinensis corresponds to that of National Museum, the declared invasive alien, M. azedarach. Although C. africana occurs naturally, it is not South Africa regularly cultivated. This is ascribed to erroneous plantings because of its resemblance to juvenile plants of C.
    [Show full text]
  • From Southeast-Central and Southern Africa with the Description Of
    A revision of the genus Arbelodes Karsch (Lepidoptera: Cossoidea: Metarbelidae) from southeast-central and southern Africa with the description of thirteen new species Ingo Lehmann Published by the author Author: Ingo Lehmann Produced by: S&K NEUE Hamburger Digitaldruck + Medien GmbH Hamburg – Germany This publication may be ordered from: the author Date of publication: 23rd August, 2010 Copyright © 2010 The author All rights reserved. No part of this publication may be reproduced in any form or by any means, stored or transmitted electronically in any retrieval system without written prior permission of the copyright holder. One original hard copy of this publication has been sent to: the Zoological Record, Thomson Reuters, Heslington, York, UK The Natural History Museum, London, UK (BMNH), the Natural History Museum, Paris, France (MNHN), the National Museums of Kenya, Nairobi (NMK), the Royal Museum for Central Africa, Tervuren, Belgium (RMCA), the Transvaal Museum of Natural History, Pretoria, South Africa (TMSA), the Zoological Research Institute and Museum Alexander Koenig, Bonn (ZFMK), the Natural History Museum, Humboldt-University, Berlin (ZMHB). 2 Date of publication: 23rd August, 2010 (Pp. 1- 82 ) A revision of the genus Arbelodes Karsch (Lepidoptera: Cossoidea: Metarbelidae) from southeast-central and southern Africa with the description of thirteen new species Ingo Lehmann Breite Straße 52, 23966 Wismar, Germany, [email protected] University of Bonn, Zoological Research Institute and Museum Alexander Koenig Adenauerallee 160, 53113 Bonn, Germany ABSTRACT The genus Arbelodes Karsch (1896) is presented, currently comprising 22 species, from southeast-central and southern Africa. This genus is found to be centred in southern Africa, with the highest diversities and endemism in montane zones as in the Great Escarpment-Drakensberg (South Africa and Lesotho), the Cape Floristic Region and in southern Namibia.
    [Show full text]
  • Molecular Phylogenetics and Character Evolution of Cannabaceae
    TAXON 62 (3) • June 2013: 473–485 Yang & al. • Phylogenetics and character evolution of Cannabaceae Molecular phylogenetics and character evolution of Cannabaceae Mei-Qing Yang,1,2,3 Robin van Velzen,4,5 Freek T. Bakker,4 Ali Sattarian,6 De-Zhu Li1,2 & Ting-Shuang Yi1,2 1 Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China 2 Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China 3 University of Chinese Academy of Sciences, Beijing 100093, P.R. China 4 Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands 5 Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands 6 Department of Natural Resources, Gonbad University, Gonbad Kavous 4971799151, Iran Authors for correspondence: Ting-Shuang Yi, [email protected]; De-Zhu Li, [email protected] Abstract Cannabaceae includes ten genera that are widely distributed in tropical to temperate regions of the world. Because of limited taxon and character sampling in previous studies, intergeneric phylogenetic relationships within this family have been poorly resolved. We conducted a molecular phylogenetic study based on four plastid loci (atpB-rbcL, rbcL, rps16, trnL-trnF) from 36 ingroup taxa, representing all ten recognized Cannabaceae genera, and six related taxa as outgroups. The molecular results strongly supported this expanded family to be a monophyletic group. All genera were monophyletic except for Trema, which was paraphyletic with respect to Parasponia. The Aphananthe clade was sister to all other Cannabaceae, and the other genera formed a strongly supported clade further resolved into a Lozanella clade, a Gironniera clade, and a trichotomy formed by the remaining genera.
    [Show full text]