The History of the Empress Tree (Paulownia) in the USA

Total Page:16

File Type:pdf, Size:1020Kb

The History of the Empress Tree (Paulownia) in the USA Forests, Trees and Livelihoods ISSN: 1472-8028 (Print) 2164-3075 (Online) Journal homepage: http://www.tandfonline.com/loi/tftl20 Ornamental, crop, or invasive? The history of the Empress tree (Paulownia) in the USA Whitney Adrienne Snow To cite this article: Whitney Adrienne Snow (2015) Ornamental, crop, or invasive? The history of the Empress tree (Paulownia) in the USA, Forests, Trees and Livelihoods, 24:2, 85-96, DOI: 10.1080/14728028.2014.952353 To link to this article: http://dx.doi.org/10.1080/14728028.2014.952353 Published online: 08 Sep 2014. Submit your article to this journal Article views: 64 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tftl20 Download by: [University of Nebraska, Lincoln] Date: 10 October 2015, At: 11:22 Forests, Trees and Livelihoods, 2015 Vol. 24, No. 2, 85–96, http://dx.doi.org/10.1080/14728028.2014.952353 Ornamental, crop, or invasive? The history of the Empress tree (Paulownia) in the USA Whitney Adrienne Snow* Department of History, Midwestern State University, Wichita Falls, TX, USA The Paulownia tree first arrived in the USA in the early nineteenth century and quickly transitioned from an exotic oddity to a beloved ornamental by some and a reviled invasive species by others. Many gardeners and horticulturalists praised the tree for its rapid growth and beautiful lavender blossoms. Critics thought the non-native tree a threat to native flora and sought its eradication. One species, Paulownia tomentosa,is invasive and has been especially vilified by organizations ranging from the National Park Service and National Forests Service to the US Department of Agriculture. Another species, Paulownia elongata, started to gain attention as a viable domestic tree crop in the 1980s. Demand derived primarily from Asian countries, especially Japan where the tree had been traditionally used for dowry chests, furniture, and musical instruments. Due to over harvesting, Japan had suffered a severe shortage to the extent that Paulownia made up a large chunk of the country’s wood imports. P. elongata and various hybrids are currently grown by Americans ranging from diversified farmers to businessmen and even former president Jimmy Carter. Paulownia growers believe that the tree’s value expands beyond furniture and other carvings to environmental possibilities such as biofuels, biomass, electricity, and even air purification. Deemed a pest by some and a profitable commodity by others, the Paulownia has become a permanent part of the American landscape but measures must be taken to contain P. tomentosa and keep P. elongata from becoming invasive. Keywords: farmers; biodiversity; homegardens; tree planting; afforestation; biomass Introduction The Paulownia, a seemingly innocuous tree from China, became a resident of the USA in the 1840s, but only in the last several decades has the transplant taken the country by storm. A small Paulownia wood industry based largely on the species Paulownia elongata began in the 1970s but this particular tree has suffered negative publicity due to the poor reputation of its relative Paulownia tomentosa which many states declare undesirable. Called a beautiful, profitable blessing by some and a pesky bane by others, the Paulownia became a source of controversy. Farmers and lumbermen treasured P. elongata but the US Downloaded by [University of Nebraska, Lincoln] at 11:22 10 October 2015 Department of Agriculture (USDA) and the National Park Service (NPS) vilified P. tomentosa. P. elongata serves as a niche crop which not only meets foreign demand but contributes to the environmental movement and while P. tomentosa wears the mantle of invasive species, it has fans among gardeners. Members of the same genus, these two species have become an irrevocable part of the US landscape, but both need to be contained in order to protect native species, especially those on endangered lists. Due to large population numbers and fire/poison risks to native species, total eradication is not the answer. This paper suggests that controlling the spread of P. tomentosa and preventing the escape of P. elongata from plantations into the wild may be the best solution. *Email: [email protected] q 2014 Taylor & Francis 86 W.A. Snow Before delving into the tale of the princess tree, several words must be defined: native, non-native, invasive, and stakeholder (Heger et al. 2013). The term native refers to an indigenous species. A non-native is non-indigenous while an invasive multiplies wildly to the detriment of species in the vicinity. While the invasive has been recognized as a danger, the non-native has yet to pose a problem but has the capacity to do so (Alpert et al. 2000). Whether or not a plant is invasive has more to do with public opinion than its status as non-native (Kueffer 2013). This is where the term stakeholder, any group impacted by the presence of a non-native, comes into play. These might include farmers, gardeners, and environmentalists. Studies on invasive species have been more and more prevalent since the 1980s and contributors include but are not limited to ecologists, botanists, scientists, biologists, sociologists, psychologists, and historians (Simberloff et al. 2013). Various veins of ecology, natural resources, and/or environmental science appear in numerous articles (Bremner & Park 2007; Garcia-Llorente et al. 2008). Discipline-meshing has become commonplace, but there are fewer works on invasives in which natural sciences and humanities are combined (Kueffer 2013). Many ecologists have tried to implement sociology and psychology when addressing the question of invasives (Fischer et al. 2011; Selge et al. 2011). Written by an historian, this article is, above all else, a work of history but may shed light on two non-native species while adding to the growing body of interdisciplinary research. Addressing public opinion on Paulownia is critical to understanding how one species of Paulownia became invasive and another remained non-native. The public often dislike talk of eliminating a non-native species, especially those that have long been in the country. Pre-conceived notions about these species are deeply embedded. The public may imagine that those advocating eradication are motivated by xenophobia (Selge et al. 2011; Sharp et al. 2011). The pretty blossoms of the Paulownia tree, its nickname Empress, and its over 150-year presence in the USA are powerful inhibitors of public support for its destruction (Pejchar & Mooney 2009; Kueffer 2013). Instead of producing arguments for the elimination of invasives, conservationists need to call for the protection of native species being endangered by invasives. Publications for the public should be pro-native rather than anti-invasive (McKinney 2006; Larson et al. 2011). Unless people can identify invasives, they may target native look-alikes. Even with in-depth community outreach, conservationists argue that public support may remain elusive (Young et al. 2013). Public opposition to the eradication of non-natives often includes the argument that the exotics do no harm. A few experts claim the impact of some non-natives is ‘negligible’ (Skurski et al. 2013). Some argue that the influx of non-natives is perfectly natural, citing Downloaded by [University of Nebraska, Lincoln] at 11:22 10 October 2015 Beringia as one example (Brown & Sax 2004). Others claim non-natives are actually secondary to habitat loss when it comes to risks to biodiversity (Wilcove et al. 1998). This stance has been challenged by those who argue that exotics are the main danger to biodiversity (Garcia-Llorente et al. 2008; Kueffer 2013). The positions stakeholder groups have on the risks of non-natives and what, if anything should be done, remain varied. Because so many invasive species are too deeply entrenched in the landscape, containment, not eradication, should be pursued (Somaweera et al. 2010; Kueffer 2013). Control ‘can be very expensive and may be impossible’ (Mehta et al. 2007, p. 238). This is especially true since the presence of these non-native species is intertwined with history, trade, and profits (Pejchar & Mooney 2009). Being a commodity complicates management and this is clearly seen in the following, an analysis that details how the Paulownia tree reached the USA soil, shaped the country’s past, and may yet shape its future. History of the Empress tree 87 Often associated with monarchs, the Paulownia tree had names such as Empress and Princess. With this royal link came mystery, allure, fascination, and appeal that gave the tree a place in popular culture. This exotic resident had a cameo in the film Rocky and can be seen close to the steps actor Sylvester Stallone climbs (Lacy 2000). The tree played a key role in a New York Times Best-selling book – Berry’s (2005) Romanov Prophecy. Given publicity in books, pamphlets, magazines, and movies, the Paulownia has only increased its infamy with the passage of time. While dubbed a trespasser by critics, it has become as much a part of the terrain as any indigenous tree. The Paulownia did not receive the mantle invasive until the late twentieth century even though the tree has resided in the USA since the 1840s. This transition derived in part from Americans growing the trees in response to lulls in Japanese Paulownia-wood production. In this way, commodification of a non-native tree previously thought of as purely ornamental greatly contributed to its spread and fanned its reputation as a blight (Marshall et al. 2011). Use and history Indigenous to China, the genus Paulownia is currently made up of seven species and a number of hybrids (The International Plant Names Index). Often mistaken for a catalpa tree (Bignoniaceae), the Paulownia actually belongs to another family. The genus was long placed in the Scrophulariaceae or figwort family but was recently transferred by the Angiosperm Phylogeny Group to the monogeneric family Paulowniaceae (APG III 2009).
Recommended publications
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • Towards Resolving Lamiales Relationships
    Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • Honey and Pollen Flora of SE Australia Species
    List of families - genus/species Page Acanthaceae ........................................................................................................................................................................34 Avicennia marina grey mangrove 34 Aizoaceae ............................................................................................................................................................................... 35 Mesembryanthemum crystallinum ice plant 35 Alliaceae ................................................................................................................................................................................... 36 Allium cepa onions 36 Amaranthaceae ..................................................................................................................................................................37 Ptilotus species foxtails 37 Anacardiaceae ................................................................................................................................................................... 38 Schinus molle var areira pepper tree 38 Schinus terebinthifolius Brazilian pepper tree 39 Apiaceae .................................................................................................................................................................................. 40 Daucus carota carrot 40 Foeniculum vulgare fennel 41 Araliaceae ................................................................................................................................................................................42
    [Show full text]
  • Paulownia Tomentosa and Paulownia Elongata X Fortunei in Glasshouse Experiment
    Growth and Development of Paulownia tomentosa and Paulownia elongata x fortunei in Glasshouse Experiment Veselka Gyuleva, Tatiana Stankova, Miglena Zhyanski, Maria Glushkova and Ekaterina Andonova Forest Research Institute – BAS, blvd. “Kliment Ohridski” 132, Sofia, 1756, Bulgaria Corresponding Author: Veselka Gyuleva, e-mail: [email protected] Received: 20 March 2020 Accepted: 10 May 2020 Abstract The growth potential of Paulownia tomentosa and Paulownia elongata x fortunei, cultivated at three planting densities in a greenhouse was investigated, using conventional field and laboratory methods. Data on the survival percentage, base diameter, total plant height, biomass and leaf area were obtained and analyzed. Differences in growth, productivity, survival and biomass allocation pattern of the tested clones of Paulownia tomentosa and Paulownia elongata x fortunei were found. The results obtained showed that hybrids of Paulownia elongata x fortunei do not exceed the growth performance of the Paulownia tomentosa species for the region of Sofia. Key words: fast-growing forest trees, plant height, base diameter, biomass allocation Introduction Over the last two decades, species and hybrids of genus Paulownia have attracted the attention of many researchers, mainly due to the fact that they are fast-growing and suitable for testing at higher planting densities, at short-rotations, and possess potential for repeatable reproduction. According to the literature (Ericsson and Nilsson, 2006), short-rotation plantations will be increasingly used for biomass production in the future, and species or clones with high repetitive regenerative capacity will be particularly valuable. Moreover, Maier and Vetter (2004) reported that, unlike most fast-growing tree species, Paulownia tomentosa increases its bioproductivity during the second rotation or after the first 4-year cycle.
    [Show full text]
  • A Rare Native Potential Ornamental Tree from Khasi Hills, Meghalaya (India)
    Pleione 11(1): 40 - 43. 2017. ISSN: 0973-9467 © East Himalayan Society for Spermatophyte Taxonomy Rediscovery of Wightia speciosissima (D.Don) Merr. (Paulowniaceae), a rare native potential ornamental tree from Khasi hills, Meghalaya (India) Ashish V. Prabhugaonkar, M. Murugesan1 and A. A. Mao Botanical Survey of India, Eastern Regional Centre, Shillong 793003, Meghalaya, India 1 Corresponding Author, e-mail: [email protected] [Received 07.06.2017; Revised & accepted 12.06.2017; Published 30.06.2017] Abstract Wightia speciosissima (D.Don) Merr. (Paulowniaceae), a rare tree was observed at forested area near Puriang Village in Khasi Hills of Meghalaya (India). This beautiful tree is reported after 100 years in Khasi hills of Meghalaya and more than 50 years for flora of India. The tree showed scattered population in this forest area and very less regeneration by seeds. Propagation of tree by cuttings was successfully attempted and tree is being prospected as native ornamental tree. Key words: Wightia speciosissima, Rediscovery, Meghalaya, Agroforestry INTRODUCTION The genus Wightia Wall. of Paulowniaceae is distributed in subtropical regions of India, Nepal, Myanmar, Malaysia, Vietnam and Yunnan of China. It includes only two species W. speciosissima (D. Don) Merr. and W. borneensis Hook. f. (Zhou et al. 2014). During a recent exploration trip to East Khasi Hills in Meghalaya, the authors came across an elegant tree species belonging to Paulowniaceae at a forested area near Puriang Village in Khasi Hills. Upon careful observation and consultation of regional floristic works (Balakrishnan 1981-1983; Haridasan 1985-1987; Joseph 1982; Kumar & Rao 1983; Pandey et al. 2005; Roy et al.
    [Show full text]
  • Chloroplast Genome Analysis of Angiosperms and Phylogenetic Relationships Among
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.05.078212; this version posted May 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Chloroplast genome analysis of Angiosperms and phylogenetic relationships among Lamiaceae members with particular reference to teak (Tectona grandis L.f) P. MAHESWARI, C. KUNHIKANNAN AND R. YASODHA* Institute of Forest Genetics and Tree Breeding, Coimbatore 641 002 INDIA *Author for correspondence R. YASODHA, Institute of Forest Genetics and Tree Breeding, Coimbatore, India Telephone: +91 422 2484114; Fax number : +91 422 248549; e.mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.05.078212; this version posted May 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Availability of comprehensive phylogenetic tree for flowering plants which includes many of the economically important crops and trees is one of the essential requirements of plant biologists for diverse applications. It is the first study on the use of chloroplast genome of 3265 Angiosperm taxa to identify evolutionary relationships among the plant species. Sixty genes from chloroplast genome was concatenated and utilized to generate the phylogenetic tree. Overall the phylogeny was in correspondence with Angiosperm Phylogeny Group (APG) IV classification with very few taxa occupying incongruous position either due to ambiguous taxonomy or incorrect identification. Simple sequence repeats (SSRs) were identified from almost all the taxa indicating the possibility of their use in various genetic analyses.
    [Show full text]
  • Kadoorie Farm and Botanic Garden, 2004. Report of Rapid Biodiversity Assessments at Dachouding and Sanyue Nature Reserves, Northwest Guangdong, China, April 2001
    Report of Rapid Biodiversity Assessments at Dachouding and Sanyue Nature Reserves, Northwest Guangdong, China, April 2001 Kadoorie Farm and Botanic Garden in collaboration with Zhongshan University Zhaoqing Forestry Bureau February 2004 South China Forest Biodiversity Survey Report Series: No. 37 (Online Simplified Version) Report of Rapid Biodiversity Assessments at Dachouding and Sanyue Nature Reserves, Northwest Guangdong, China, April 2001 Editors Bosco P.L. Chan, Ng Sai-Chit, Michael W.N. Lau and John R. Fellowes Contributors Kadoorie Farm and Botanic Garden: Michael W.N. Lau (ML) Bosco P.L. Chan (BC) John R. Fellowes (JRF) Lee Kwok Shing (LKS) Ng Sai-Chit (NSC) Roger Kendrick (RCK) Zhongshan University: Chang Hong (CH) Voluntary specialists: Graham T. Reels (GTR) Keith D.P. Wilson (KW) Background The present report details the findings of a trip to Northwest Guangdong by members of Kadoorie Farm and Botanic Garden (KFBG) in Hong Kong and their colleagues, as part of KFBG's South China Biodiversity Conservation Programme (renamed the China Programme in 2003). The overall aim of the programme is to minimise the loss of forest biodiversity in the region, and the emphasis in the first three years is on gathering up-to-date information on the distribution and status of fauna and flora. Citation Kadoorie Farm and Botanic Garden, 2004. Report of Rapid Biodiversity Assessments at Dachouding and Sanyue Nature Reserves, Northwest Guangdong, China, April 2001 . South China Forest Biodiversity Survey Report Series (Online Simplified Version): No. 37. KFBG, Hong Kong SAR, ii + 33 pp. Copyright Kadoorie Farm and Botanic Garden Corporation Lam Kam Road, Tai Po, N.T., Hong Kong February 2004 - i - Contents Objectives …………………………………………………………………………………….
    [Show full text]
  • Simulating Carbon Dioxide Exchange Rates of Deciduous Tree Species: Evidence for a General Pattern in Biochemical Changes and Water Stress Response
    Annals of Botany 104: 775–784, 2009 doi:10.1093/aob/mcp156, available online at www.aob.oxfordjournals.org Simulating carbon dioxide exchange rates of deciduous tree species: evidence for a general pattern in biochemical changes and water stress response Robert F. Reynolds1, William L. Bauerle3,4,* and Ying Wang2 1Department of Horticulture and 2Department of Applied Economics and Statistics, Clemson University, Clemson, SC 29634, USA, 3Department of Horticulture & Landscape Architecture, Colorado State University, Fort Collins, CO 80523-1173, USA and 4Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA Received: 9 March 2009 Returned for revision: 21 April 2009 Accepted: 21 May 2009 Published electronically: 30 June 2009 † Background and Aims Deciduous trees have a seasonal carbon dioxide exchange pattern that is attributed to changes in leaf biochemical properties. However, it is not known if the pattern in leaf biochemical properties – maximum Rubisco carboxylation (Vcmax) and electron transport (Jmax) – differ between species. This study explored whether a general pattern of changes in Vcmax, Jmax, and a standardized soil moisture response accounted for carbon dioxide exchange of deciduous trees throughout the growing season. † Methods The model MAESTRA was used to examine Vcmax and Jmax of leaves of five deciduous trees, Acer rubrum ‘Summer Red’, Betula nigra, Quercus nuttallii, Quercus phellos and Paulownia elongata, and their response to soil moisture. MAESTRA was parameterized using data from in situ measurements on organs. Linking the changes in biochemical properties of leaves to the whole tree, MAESTRA integrated the general pattern in Vcmax and Jmax from gas exchange parameters of leaves with a standardized soil moisture response to describe carbon dioxide exchange throughout the growing season.
    [Show full text]
  • Lamiales – Synoptical Classification Vers
    Lamiales – Synoptical classification vers. 2.6.2 (in prog.) Updated: 12 April, 2016 A Synoptical Classification of the Lamiales Version 2.6.2 (This is a working document) Compiled by Richard Olmstead With the help of: D. Albach, P. Beardsley, D. Bedigian, B. Bremer, P. Cantino, J. Chau, J. L. Clark, B. Drew, P. Garnock- Jones, S. Grose (Heydler), R. Harley, H.-D. Ihlenfeldt, B. Li, L. Lohmann, S. Mathews, L. McDade, K. Müller, E. Norman, N. O’Leary, B. Oxelman, J. Reveal, R. Scotland, J. Smith, D. Tank, E. Tripp, S. Wagstaff, E. Wallander, A. Weber, A. Wolfe, A. Wortley, N. Young, M. Zjhra, and many others [estimated 25 families, 1041 genera, and ca. 21,878 species in Lamiales] The goal of this project is to produce a working infraordinal classification of the Lamiales to genus with information on distribution and species richness. All recognized taxa will be clades; adherence to Linnaean ranks is optional. Synonymy is very incomplete (comprehensive synonymy is not a goal of the project, but could be incorporated). Although I anticipate producing a publishable version of this classification at a future date, my near- term goal is to produce a web-accessible version, which will be available to the public and which will be updated regularly through input from systematists familiar with taxa within the Lamiales. For further information on the project and to provide information for future versions, please contact R. Olmstead via email at [email protected], or by regular mail at: Department of Biology, Box 355325, University of Washington, Seattle WA 98195, USA.
    [Show full text]
  • The Linderniaceae and Gratiolaceae Are Further Lineages Distinct from the Scrophulariaceae (Lamiales)
    Research Paper 1 The Linderniaceae and Gratiolaceae are further Lineages Distinct from the Scrophulariaceae (Lamiales) R. Rahmanzadeh1, K. Müller2, E. Fischer3, D. Bartels1, and T. Borsch2 1 Institut für Molekulare Physiologie und Biotechnologie der Pflanzen, Universität Bonn, Kirschallee 1, 53115 Bonn, Germany 2 Nees-Institut für Biodiversität der Pflanzen, Universität Bonn, Meckenheimer Allee 170, 53115 Bonn, Germany 3 Institut für Integrierte Naturwissenschaften ± Biologie, Universität Koblenz-Landau, Universitätsstraûe 1, 56070 Koblenz, Germany Received: July 14, 2004; Accepted: September 22, 2004 Abstract: The Lamiales are one of the largest orders of angio- Traditionally, Craterostigma, Lindernia and their relatives have sperms, with about 22000 species. The Scrophulariaceae, as been treated as members of the family Scrophulariaceae in the one of their most important families, has recently been shown order Lamiales (e.g., Takhtajan,1997). Although it is well estab- to be polyphyletic. As a consequence, this family was re-classi- lished that the Plocospermataceae and Oleaceae are their first fied and several groups of former scrophulariaceous genera branching families (Bremer et al., 2002; Hilu et al., 2003; Soltis now belong to different families, such as the Calceolariaceae, et al., 2000), little is known about the evolutionary diversifica- Plantaginaceae, or Phrymaceae. In the present study, relation- tion of most of the orders diversity. The Lamiales branching ships of the genera Craterostigma, Lindernia and its allies, hith- above the Plocospermataceae and Oleaceae are called ªcore erto classified within the Scrophulariaceae, were analyzed. Se- Lamialesº in the following text. The most recent classification quences of the chloroplast trnK intron and the matK gene by the Angiosperm Phylogeny Group (APG2, 2003) recognizes (~ 2.5 kb) were generated for representatives of all major line- 20 families.
    [Show full text]
  • Paulownia Tomentosa
    Paulownia tomentosa INTRODUCTORY DISTRIBUTION AND OCCURRENCE BOTANICAL AND ECOLOGICAL CHARACTERISTICS FIRE EFFECTS AND MANAGEMENT MANAGEMENT CONSIDERATIONS APPENDIX: FIRE REGIME TABLE REFERENCES INTRODUCTORY AUTHORSHIP AND CITATION FEIS ABBREVIATION NRCS PLANT CODE COMMON NAMES TAXONOMY SYNONYMS LIFE FORM FEDERAL LEGAL STATUS OTHER STATUS Princesstree in postfire habitat in Linville Gorge Wilderness Area, North Carolina. Photo by Dane Kuppinger. AUTHORSHIP AND CITATION: Innes, Robin J. 2009. Paulownia tomentosa. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [ 2010, February 8]. FEIS ABBREVIATION: PAUTOM NRCS PLANT CODE [140]: PATO2 COMMON NAMES: princesstree princess tree princess-tree paulownia royal paulownia empress tree imperial-tree kiri tree TAXONOMY: The scientific name of princesstree is Paulownia tomentosa (Thunb.) Sieb. & Zucc. ex Steud. [45,73]. A review [3] stated that botanists have historically debated the taxonomic classification of princesstree, placing it within either the figwort (Scrophulariaceae) or trumpet-creeper (Bignoniaceae) family. Based on floral anatomy, embryo morphology, and seed morphology, princesstree is placed in Scrophulariaceae, a family of mostly herbaceous species [3,62,158]. Princesstree is a popular ornamental, and several cultivars have been developed [62,115,123]. SYNONYMS: Paulownia imperialis Sieb. & Zucc. [62] LIFE FORM: Tree FEDERAL LEGAL STATUS: None OTHER STATUS: Information on state-level noxious weed status of plants in the United States is available at Plants Database. DISTRIBUTION AND OCCURRENCE SPECIES: Paulownia tomentosa GENERAL DISTRIBUTION HABITAT TYPES AND PLANT COMMUNITIES GENERAL DISTRIBUTION: Princesstree is nonnative in North America. It occurs from Montreal, Canada, south to Florida and west to Texas and Indiana; it has also been planted in coastal Washington [101] and California [62].
    [Show full text]