Geographic, Environmental and Biotic Sources of Variation in the Nutrient Relations of Tropical Montane Forests
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Synchronous Fire Activity in the Tropical High Andes: an Indication Of
Global Change Biology Global Change Biology (2014) 20, 1929–1942, doi: 10.1111/gcb.12538 Synchronous fire activity in the tropical high Andes: an indication of regional climate forcing R. M. ROMAN - C U E S T A 1,2,C.CARMONA-MORENO3 ,G.LIZCANO4 ,M.NEW4,*, M. SILMAN5 ,T.KNOKE2 ,Y.MALHI6 ,I.OLIVERAS6,†,H.ASBJORNSEN7 and M. VUILLE 8 1CREAF. Centre for Ecological Research and Forestry Applications, Facultat de Ciencies. Unitat d’ Ecologia Universitat Autonoma de Barcelona, Bellaterra, Barcelona 08193, Spain, 2Institute of Forest Management, Technische Universit€at Munchen,€ Center of Life and Food Sciences Weihenstephan, Hans-Carl-von-Carlowitz-Platz 2, Freising, 85354, Germany, 3Global Environmental Monitoring Unit, Institute for Environment and Sustainability, European Commission, Joint Research Centre, TP. 440 21020, Ispra, Varese 21027, Italy, 4School of Geography and the Environment, Oxford University, South Parks Road, Oxford OX13QY, UK, 5Wake Forest University, Box 7325 Reynolda Station, Winston Salem, NC 27109-7325, USA, 6Environmental Change Institute, School of Geography and the Environment, Oxford University, South Parks Road, Oxford OX13QY, UK, 7College of Life Sciences and Agriculture Durham, University of New Hampshire, Durham, NH, USA, 8Department of Atmospheric and Environmental Sciences Albany, University of Albany, Albany, NY, USA Abstract Global climate models suggest enhanced warming of the tropical mid and upper troposphere, with larger tempera- ture rise rates at higher elevations. Changes in fire activity are amongst the most significant ecological consequences of rising temperatures and changing hydrological properties in mountainous ecosystems, and there is a global evi- dence of increased fire activity with elevation. Whilst fire research has become popular in the tropical lowlands, much less is known of the tropical high Andean region (>2000masl, from Colombia to Bolivia). -
Moose Calving Strategies in Interior Montane Ecosystems
Journal of Mammalogy, 88(1):139–150, 2007 MOOSE CALVING STRATEGIES IN INTERIOR MONTANE ECOSYSTEMS KIM G. POOLE,* ROBERT SERROUYA, AND KARI STUART-SMITH Aurora Wildlife Research, 2305 Annable Road, Nelson, British Columbia V1L 6K4, Canada (KGP) Serrouya & Associates, RPO #3, Box 9158, Revelstoke, British Columbia V0E 3K0, Canada (RS) Tembec Inc., British Columbia Division, P.O. Box 4600, Cranbrook, British Columbia V1C 4J7, Canada (KS) Parturient ungulates are relatively more sensitive to predation risk than other individuals and during other times of the year. Selection of calving areas by ungulates may be ultimately related to trade-offs between minimizing risk of predation and meeting nutritional needs for lactation. We used digital and field data to examine selection of calving areas by 31 global positioning system–collared moose (Alces alces) in southeastern British Columbia. We exam- ined movements 12 days before and after calving, and analyzed habitat selection at 2 scales of comparison: the immediate calving area to the extended calving area (100 ha), and the extended calving area to the surrounding home range. Maternal moose exhibited 1 of 2 distinct elevational strategies for calving area selection during the days leading up to calving: 16 moose were climbers and 15 were nonclimbers. Climbers moved a mean of 310 m higher in elevation to calve, whereas nonclimbers showed little change in elevation. Hourly movements by all maternal females increased 2- to 3-fold in the 1–4 days before calving and were generally directional, such that all calving areas were outside of areas used during the 12 days before calving. At the broad scale, elevation was the strongest predictor of the extended calving area within the home range. -
Plants of Southeastern Polynesia. 3
Plants of Southeastern Polynesia. 3. F. R. FoSBERG1 and M.-H. SACHET1 Abstract In this paper are presented critical notes and records of species of Ophioglossum (Ophi oglossaceae), Waltheria (Sterculiaceae), Alyxia (Apocynaceae) and Morinda (Rubiaceae), a new varietal combination and two new varieties in Alyxia stellata, and a discussion of the generic separation of Ochrosia and Neiosperma (Apocynaceae). Ophioglossum pendulum var. falcatum (Presl) Fosberg, 0cc. Pap. Bishop Mus. 23 :29, 1962. 0. pendulum L. f. var. pendulum is common at low and moderate elevations in Tahiti. A collection from 1100 m elevation, south of Orohena, MacDaniels 1533 (US) is perfectly typical var. falcatum, apparently the first record of this variety from the Society Islands and from southern Polynesia. It is by far the commoner form in the Hawaiian Islands. The typical form, var. pendulum, with long pendant sterile parts of the fronds is common in Tahiti but very rare in Hawaii. Waltheria tomentosa (J. R. & G. Forst.) St. John, Nat. Can. 98:573, 1971.2 Lophanthus tomentosus J. R. & G. Forst., Char. Gen. 14, 1775; 28, pl. 14, 1776. Waltheria lophanthus Forst. f., Prodr. 47, 1786. It is surprising that no one had made this transfer. Of course, the application of the " Kew Rule" would have made it inappropriate prior to the formulation of the modern International Rules of Botanical Nomenclature at the Vienna Congress in 1905. However, there seems to be no reason for not now taking up the oldest available epithet for this plant. This species is still to be found on the dry sides of most of the Marquesas and on the smaller, low dry islands of the group. -
GLIMPSES of FORESTRY RESEARCH in the INDIAN HIMALAYAN REGION Special Issue in the International Year of Forests-2011
Special Issue in the International Year of Forests-2011 i GLIMPSES OF FORESTRY RESEARCH IN THE INDIAN HIMALAYAN REGION Special Issue in the International Year of Forests-2011 Editors G.C.S. Negi P.P. Dhyani ENVIS CENTRE ON HIMALAYAN ECOLOGY G.B. Pant Institute of Himalayan Environment & Development Kosi-Katarmal, Almora - 263 643, India BISHEN SINGH MAHENDRA PAL SINGH 23-A, New Connaught Place Dehra Dun - 248 001, India 2012 Glimpses of Forestry Research in the Indian Himalayan Region Special Issue in the International Year of Forests-2011 © 2012, ENVIS Centre on Himalayan Ecology G.B. Pant Institute of Himalayan Environment and Development (An Autonomous Institute of Ministry of Environment and Forests, Govt. of India) Kosi-Katarmal, Almora All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of the copyright owner. ISBN: 978-81-211-0860-7 Published for the G.B. Pant Institute of Himalayan Environment and Development by Gajendra Singh Gahlot for Bishen Singh Mahendra Pal Singh, 23-A, New Connaught Place, Dehra Dun, India and Printed at Shiva Offset Press and composed by Doon Phototype Printers, 14, Old Connaught Place, Dehra Dun India. Cover Design: Vipin Chandra Sharma, Information Associate, ENVIS Centre on Himalayan Ecology, GBPIHED Cover Photo: Forest, agriculture and people co-existing in a mountain landscape of Purola valley, Distt. Uttarkashi (Photo: G.C.S. Negi) Foreword Amongst the global mountain systems, Himalayan ranges stand out as the youngest and one of the most fragile regions of the world; Himalaya separates northern part of the Asian continent from south Asia. -
DECISION TIME for CLOUD FORESTS No
WATER-RELATED ISSUES AND PROBLEMS OF THE HUMID TROPICS AND OTHER WARM HUMID REGIONS IHP HUMID TROPICS PROGRAMME SERIES NO. 13 IHP Humid Tropics Programme Series No. 1 The Disappearing Tropical Forests DECISION TIME FOR CLOUD FORESTS No. 2 Small Tropical Islands No. 3 Water and Health No. 4 Tropical Cities: Managing their Water No. 5: Integrated Water Resource Management No. 6 Women in the Humid Tropics No. 7 Environmental Impacts of Logging Moist Tropical Forests No. 8 Groundwater No. 9 Reservoirs in the Tropics – A Matter of Balance No.10 Environmental Impacts of Converting Moist Tropical Forest to Agriculture and Plantations No.11 Helping Children in the Humid Tropics: Water Education No.12 Wetlands in the Humid Tropics No.13 Decision Time for Cloud Forests For further information on this Series, contact: UNESCO Division of Water Sciences International Hydrological Programme 1, Rue Miollis 75352 Paris 07 SP France tel. (+33) 1 45 68 40 02 fax (+33) 1 45 67 58 69 PREFACE At a Tropical Montane Cloud Forest workshop held at Cambridge, U.K. in July 1998, 30 scientists, professional managers, and NGO conservation group members representing more than 14 countries and all global regions, concluded that there is insufficient public and political awareness of the status and values of Tropical Montane Cloud Forests (TMCF). The group suggested that a science-based “pop-doc” would be an effective initial action to remedy this. What follows is a response to that recommendation. It documents some of the scientific information that will be of interest to other scientists and managers of TMCF, but not over- whelming for a lay reader who is seeking to become more informed about these remarkable ecosystems. -
Relationships Between Climate, Vegetation, and Energy Exchange Across a Montane Gradient Ray G
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, G01026, doi:10.1029/2010JG001476, 2011 Relationships between climate, vegetation, and energy exchange across a montane gradient Ray G. Anderson1,2 and Michael L. Goulden1 Received 8 July 2010; revised 3 November 2010; accepted 3 January 2011; published 10 March 2011. [1] We measured the evaporative fraction (EF) across a semiarid elevation gradient in the San Jacinto and Santa Rosa Mountains of southern California using the Regional Evaporative Fraction Energy Balance platform and four eddy covariance towers. We compared our measurements to precipitation estimates and satellite observations of vegetation indices to assess the seasonal and interannual controls of precipitation and vegetation on surface energy exchanges. Precipitation amount and timing had the largest effect on evaporative fraction, with vegetation having a relatively greater importance at higher elevations than lower elevations. Vegetation cover was linearly related to mean annual EF, but did not predict seasonal variation in EF in most of the study area’s ecosystems. Multiyear vegetation observations show that vegetation density increases in a stepwise pattern with precipitation, probably due to shifts in dominant plant communities. Precipitation is a more important factor in controlling EF than temperature. Possible future climate change, including decreases in precipitation amount and increases in variability, could decrease vegetation cover, thus reducing EF and increasing albedo. Citation: Anderson, R. G., and M. L. Goulden (2011), Relationships between climate, vegetation, and energy exchange across a montane gradient, J. Geophys. Res., 116, G01026, doi:10.1029/2010JG001476. 1. Introduction downstream ecosystems and users [Viviroli and Weingartner, 2004]. Mountains act as “Sky Islands,” providing cooler [2] Patterns of vegetation distribution and energy exchange temperatures and more available water for isolated ecosys- are crucial because they control regional climate [Beringer tems. -
Drivers of Atmospheric Methane Uptake by Montane Forest Soils in the Southern Peruvian Andes
Biogeosciences Discuss., doi:10.5194/bg-2016-16, 2016 Manuscript under review for journal Biogeosciences Published: 27 January 2016 c Author(s) 2016. CC-BY 3.0 License. Drivers of atmospheric methane uptake by montane forest soils in the southern Peruvian Andes †1 †2 3 3 1 1,4 2 S. P. Jones , T. Diem , L. P. Huaraca Quispe , A. J. Cahuana , D. S. Reay , P. Meir and Y. A. Teh 1School of Geosciences, University of Edinburgh, Edinburgh, UK 5 2Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK 3Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru 4Research School of Biology, Australian National University, Canberra, Australia † contributed equally to the work Correspondence to: Sam Jones ([email protected]) 10 Abstract. The soils of tropical montane forests can act as sources or sinks of atmospheric methane (CH 4). Understanding this activity is important in regional atmospheric CH4 budgets, given that these ecosystems account for substantial portions of the landscape in mountainous areas like the Andes. Here we investigate the drivers of CH 4 fluxes from premontane, lower and upper montane forests, experiencing a seasonal climate, in southeastern Peru. Between February 2011 and June 2013, these soils all functioned as net sinks for atmospheric CH4. Mean (standard error) net CH4 fluxes for the dry and wet season -2 -1 -2 -1 15 were -1.6 (0.1) and -1.1 (0.1) mg CH4 - C m d in the upper montane forest; -1.1 (0.1) and -1.0 (0.1) mg CH4 - C m d in -2 -1 the lower montane forest; and -0.2 (0.1) and -0.1 (0.1) mg CH4 - C m d in the premontane forest. -
Impacts of Habitat Degradation on Tropical Montane Biodiversity and Ecosystem Services: a Systematic Map for Identifying Future Research Priorities
SYSTEMATIC REVIEW published: 17 December 2019 doi: 10.3389/ffgc.2019.00083 Impacts of Habitat Degradation on Tropical Montane Biodiversity and Ecosystem Services: A Systematic Map for Identifying Future Research Priorities Malcolm C. K. Soh 1*, Nicola J. Mitchell 1, Amanda R. Ridley 1, Connor W. Butler 2, Chong Leong Puan 3 and Kelvin S.-H. Peh 2,4 1 School of Biological Sciences, The University of Western Australia, Perth, WA, Australia, 2 School of Biological Sciences, University of Southampton, Southampton, United Kingdom, 3 Faculty of Forestry, Universiti Putra Malaysia, Serdang, Edited by: Malaysia, 4 Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, United Kingdom Mark Andrew Adams, Swinburne University of Technology, Australia Tropical montane forests (TMFs) are major centers of evolutionary change and harbor Reviewed by: many endemic species with small geographic ranges. In this systematic map, we Giuliano Maselli Locosselli, University of São Paulo, Brazil focus on the impacts of anthropogenic habitat degradation on TMFs globally. We first Daniel J. Wieczynski, determine how TMF research is distributed across geographic regions, degradation UCLA Department of Ecology and type (i.e., deforestation, land-use conversion, habitat fragmentation, ecological level Evolutionary Biology, United States (i.e., ecosystem, community, population, genetic) and taxonomic group. Secondly, we *Correspondence: Malcolm C. K. Soh summarize the impacts of habitat degradation on biodiversity and ecosystem services, [email protected] and identify deficiencies in current knowledge. We show that habitat degradation in TMFs impacts biodiversity at all ecological levels and will be compounded by climate change. Specialty section: This article was submitted to However, despite montane species being perceived as more extinction-prone due to Tropical Forests, their restricted geographic ranges, there are some indications of biotic resilience if the a section of the journal impacts to TMFs are less severe. -
HAWAII and SOUTH PACIFIC ISLANDS REGION - 2016 NWPL FINAL RATINGS U.S
HAWAII and SOUTH PACIFIC ISLANDS REGION - 2016 NWPL FINAL RATINGS U.S. ARMY CORPS OF ENGINEERS, COLD REGIONS RESEARCH AND ENGINEERING LABORATORY (CRREL) - 2013 Ratings Lichvar, R.W. 2016. The National Wetland Plant List: 2016 wetland ratings. User Notes: 1) Plant species not listed are considered UPL for wetland delineation purposes. 2) A few UPL species are listed because they are rated FACU or wetter in at least one Corps region. Scientific Name Common Name Hawaii Status South Pacific Agrostis canina FACU Velvet Bent Islands Status Agrostis capillaris UPL Colonial Bent Abelmoschus moschatus FAC Musk Okra Agrostis exarata FACW Spiked Bent Abildgaardia ovata FACW Flat-Spike Sedge Agrostis hyemalis FAC Winter Bent Abrus precatorius FAC UPL Rosary-Pea Agrostis sandwicensis FACU Hawaii Bent Abutilon auritum FACU Asian Agrostis stolonifera FACU Spreading Bent Indian-Mallow Ailanthus altissima FACU Tree-of-Heaven Abutilon indicum FAC FACU Monkeybush Aira caryophyllea FACU Common Acacia confusa FACU Small Philippine Silver-Hair Grass Wattle Albizia lebbeck FACU Woman's-Tongue Acaena exigua OBL Liliwai Aleurites moluccanus FACU Indian-Walnut Acalypha amentacea FACU Alocasia cucullata FACU Chinese Taro Match-Me-If-You-Can Alocasia macrorrhizos FAC Giant Taro Acalypha poiretii UPL Poiret's Alpinia purpurata FACU Red-Ginger Copperleaf Alpinia zerumbet FACU Shellplant Acanthocereus tetragonus UPL Triangle Cactus Alternanthera ficoidea FACU Sanguinaria Achillea millefolium UPL Common Yarrow Alternanthera sessilis FAC FACW Sessile Joyweed Achyranthes -
Hawaiian Santalum Species (Sandalwood)
April 2006 Species Profiles for Pacific Island Agroforestry ver. 4.1 www.traditionaltree.org Santalum ellipticum, S. freycinetianum, S. haleakalae, and S. paniculatum (Hawaiian sandalwood) Santalaceae (sandalwood family) ‘iliahialo‘e (S. ellipticum) ‘iliahi, ‘a‘ahi, ‘aoa, lā‘au ‘ala, wahie ‘ala (S. freycinetianum, S. haleakalae, and S. paniculatum) Mark D. Merlin, Lex A.J. Thomson, and Craig R. Elevitch IN BRIEF Distribution Hawaiian Islands, varies by species. Size Small shrubs or trees, typically 5–10 m photo: M. Merlin M. photo: (16–33 ft) or larger at maturity. Habitat Varies by species; typically xeric, sub humid, or humid tropics with a distinct dry season of 3–5 months. Vegetation Open, drier forests and wood lands. Soils All species require light to medium, well drained soils. Growth rate Slow to moderate, 0.3–0.7 m/yr (1–2.3 ft/yr). Main agroforestry uses Homegardens, mixed species forestry. Main uses Heartwood for crafts, essential oil extraction. Yields Heartwood in 30+ years. Intercropping Because sandalwood is para sitic and requires one or more host plants, intercropping is not only possible but neces sary. Santalum freycinetianum var. Invasive potential Sandalwood has a capac lanaiense, rare, nearly extinct. ity for invasiveness in disturbed areas, but this Photo taken near summit of is rarely considered a problem. Lāna‘ihale, Lāna‘i in 1978. INTRODUCTION SANDALWOOD TERMS Hawaiian sandalwood species are small trees that occur naturally in open, drier forest and woodland communities. Hemi-parasitic Describes a plant that photosynthe They are typically multistemmed and somewhat bushy, at sizes but derives water and some nutrients through at taining a height of 5–10 m (16–33 ft) or larger at maturity, taching to roots of other species. -
5-YEAR REVIEW Short Form Summary Species Reviewed: Pteralyxia Kauaiensis (Kaulu) Curre Nt Classification: Endangered
5-YEAR REVIEW Short Form Summary Species Reviewed: Pteralyxia kauaiensis (kaulu) Curre nt Classification: Endangered Federal Register Notice announcing initiation of this review: [USFWS] U.S. Fish and Wildlife Service. 2008. Endangered and threatened wildlife and plants; initiation of 5-year status reviews of 70 species in Idaho, Montana, Oregon, Washington, and the Pacific Islands. Federal Register 73(83):23264- 23266. Lead Region/Field Office: Re gio n 1 /Pacific Islands Fish and Wildlife Office, Honolulu, Hawaii Name of Reviewer(s): Marie Bruegmann, Pacific Islands Fish and Wildlife Office, Plant Recovery Coordinator Marilet A. Zablan, Pacific Islands Fish and Wildlife Office, Assistant Field Supervisor for Endangered Species Jeff Newman, Pacific Islands Fish and Wildlife Office, Acting Deputy Field Supervisor Methodology used to complete this 5-year review: This review was conducted by staff of the Pacific Islands Fish and Wildlife Office of the U.S. Fish and Wildlife Service (USFWS), beginning on April 29, 2008. The review was based on the final critical habitat designation for Pteralyxia kauaiensis and other species from the island of Kauai (USFWS 2003), as well as a review of current, available information. The National Tropical Botanical Garden provided an initial draft of portions of the review and recommendations for conservation actions needed prior to the next five-year review. The evaluation of Samuel Aruch, biological consultant, was reviewed by the P lant Recovery Coordinator. The document was then reviewed by the Assistant Field Supervisor for Endangered Species and Acting Deputy Field Supervisor before submission to the Field Supervisor for approval. Background: For information regarding the species listing history and other facts, please refer to the Fish and Wildlife Service’s Environmental Conservation On-line System (ECOS) database for threatened and endangered species (http://ecos.fws.gov/tess_public). -
(Tropical Montane Forest)-Grassland Ecosystem Mosaic of Peninsular India: a Review
American Journal of Plant Sciences, 2012, 3, 1632-1639 http://dx.doi.org/10.4236/ajps.2012.311198 Published Online November 2012 (http://www.SciRP.org/journal/ajps) The Shola (Tropical Montane Forest)-Grassland Ecosystem Mosaic of Peninsular India: A Review Milind Bunyan1, Sougata Bardhan2, Shibu Jose2* 1School of Forest Resources and Conservation, Gainesville, USA; 2The Center for Agroforestry, School of Natural Resources, 203 Anheuser-Busch Natural Resources Building, University of Missouri, Columbia, USA. Email: *[email protected] Received August 17th, 2012; revised September 24th, 2012; accepted October 10th, 2012 ABSTRACT Tropical montane forests (alternatively called tropical montane cloud forests or simply cloud forests) represent some of the most threatened ecosystems globally. Tropical montane forests (TMF) are characterized and defined by the presence of persistent cloud cover. A significant amount of moisture may be captured through the condensation of cloud-borne moisture on vegetation distinguishing TMF from other forest types. This review examines the structural, functional and distributional aspects of the tropical montane forests of peninsular India, locally known as shola, and the associated grasslands. Our review reveals that small fragments may be dominated by edge effect and lack an “interior” or “core”, making them susceptible to complete collapse. In addition to their critical role in hydrology and biogeochemistry, the shola-grassland ecosystem harbor many faunal species of conservation concern. Along with intense anthropogenic pressure, climate change is also expected to alter the dynamic equilibrium between the forest and grassland, raising concerns about the long-term sustainability of these ecosystems. Keywords: Shola Forests; Western Ghats; GIS; Biodiversity; Species Composition; Shola Fragments 1.