Phorid Newsletter #5

Total Page:16

File Type:pdf, Size:1020Kb

Phorid Newsletter #5 Phorid Newsletter Number 5 Brian V. Brown, editor ??date Drawing of Stichillus planipes Borgmeier by Jesse Cantley Again, greetings from Los Angeles! It has slope of the Andes, one montane site on the been a busy summer, but it is time for me to Amazonian (east) slope of the Andes and report on my Ecuador trip. one lowland site in the Amazonian region. Our first locality was the Maquipucuna Biological Reserve, 1300m Phorid collecting activities in Ecuador, elevation on the western slope. We stayed 1996. there for only four days and got relatively little: I reared Apocephalus (Mesophora) mortifer from a small cantharid, I got several This year I focussed my efforts on Myriophora and Gymnophora spiracularis the South American country of Ecuador. In from an injured millipede, and I collected 1987 I made my first visit to the tropics, several different phorids from ants. consisting of a rather poorly-organized but Our next site was to be the Bilsa still fascinating visit to this country. I was Biological Station in a coastal range of interested to see how it would appear nine mountains in Esmeraldas province. It was to years later. be a four-hour drive from Maquipucuna, Unlike 1987, we had a huge which we had plenty of time for since we advantage this time. Through a grant from had to meet our transportation (pack mules) our museum, I was able to send Mr. Peter at 10:00AM. The night before we were to Hibbs to Ecuador in late January to scout out leave, however, it rained heavily and in the field sites, operate Malaise traps and arrange morning the road was blocked by numerous collecting permits. Peter stayed there until landslides. We struggled out, waiting for late July and greatly increased the number of people to dig out the rocks and mud specimens that we were able to collect. blocking the road, and finally made it to the In May, Jesse Cantley and I travelled main road, still hopeful of reaching the pack to Ecuador to join Peter. Our plans were to mules on time. A flat tire that had to be visit four sites: two on the Pacific (west) fixed and a truck blocking the road while Phorid Newsletter, 5, page 1 farmers loaded it with cattle completely proboscis that they were using to drag the obliterated our optimism, and we resigned ants away. When more than one female was ourselves to show up late and have to turn on the tray they seemed to fight over the around again. Amazingly, when we arrived carcass. at the meeting site at 2:00PM the mules had We left Bilsa after a week, this type just arrived. We packed our gear on them, by a brutal ride on the back of packmules. and started walking up the 18km road to the Returning to Quito, we recovered and station. It soon became apparent, however, decided that rather than trying for two more that the road was incredibly bad, with thick, sites, one more would be enough. We made sucking mud up to mid-calf on every step. plans for our final destination, Yasuni The mules and their driver quickly left us far National Park in the amazonian lowlands. behind, and eventually it got dark out. We We drove to Yasuni in a single day, which I were stuck: the mules had our flashlights, found rather frightening because the road water, money and everything else. traversed nearly the entire country. In 1987 Eventually, the moon came up (at about most of this area was completely 11:00PM) and it was bright enough for us to inaccessible; now it is cut-over and largely see and continue. Walking up that road all destroyed. Still, the scenery was spectacular, night was the most intensely brutal and with relatively few problems we reached experience to which I have ever been the research station that night. subjected. We were exhausted, wet and Yasuni turned out to be one of the incredibly footsore from the grasping mud. richest and most productive sites at which I By the time we arrived at the station it was have ever collected. We collected large 5:00AM, and the howler monkeys were numbers and a great diversity of phorids already beginning their morning calls. associated with ants, and made many new The next day we were barely able to ant-phorid associations. In particular, we walk. My feet were rubbed raw and I was found two species of phorids parasitizing the completely exhausted. Everyone at the large ant Cephalotes atratus: one was an station was astounded at how bad the road Apocephalus that was attacking the head, was. and the other was a Diocophora that, When we got around to collecting at amazingly enough, was parasitizing the legs Bilsa we got a few things. We crushed a of the ant. large number of different ponerine ants and Another interesting observation was got one species of Apocephalus attracted to at a nest of the leaf-cutter ant Atta all of them. We found a large raid of cephalotes, where we saw two species of Labidus praedator and collected quite a few Neodohrniphora attacking the ants associated phorids. Injuring millipedes was simultaneously. We carefully collected also an excellent collecting method, which individual ants that they attacked and I hope yielded huge numbers of Myriophora and to demonstrate that the two species were Puliciphora. One especially interesting partitioning the host resource based on ant observation was the behavior of a couple of worker size. female Dohrniphora ecitophila that were I could have stayed at Yasuni for attracted to some crushed Odontomachus much longer, but two weeks were all we ants. This phorid has an extremely long had. I am still sorting through all the Phorid Newsletter, 5, page 2 material we collected, but clearly Ecuador, disseminated throughout the phorid and especially Yasuni, was a tremendously community. rewarding place to work. I want to point out this is not intended to be a forum for criticizing Henry's work. Instead, I wish to point out What's new on the Web? new information, omissions and small errors in fact that are inevitable when such a large The phorid website is located at: work is undertaken. http://www.lam.mus.ca.us/lacmnh/ departments/research/entomology/phorids/ NATURAL HISTORY. For starters, I will point phorspez.html out that a couple of life history papers about Recently, I posted my list of all Phalacrotophora punctiapex Borgmeier phorid species so far recorded from La Selva were not included. This species is a nest Biological Station in Costa Rica. I soon parasite of sphecid wasps of the genus hope to post some color images to go with Trypoxylon, according to the following this list. references: In issue #4, I said I would list the phorid holdings in the Los Angeles County Coville, R.E. and C. G riswold. 1983. Nesting biology of Tripoxylon xanthandrum in Costa Rica with Museum. I decided not to do this, as it is observations on its spider prey (Hymenoptera: probably of minimal interest to most people. Sphecidae; A raneae: Senoculidae). Journal of I have posted this information on the web the Kansas Entomological Society 56:205- page, however, if anyone would like to see 216. it. Coville, R.E. and C. G riswold. 1984. Biology of Trypoxylon (Trypargilum) superbum (Hymenoptera: Sphecidae), a spider-hunting Address change wasp with extended guarding of the brood by males. Journal of the Kansas Entomological Society 57:365-376. Please note the new address for Dr. Guangchun Liu, who will be in South Korea for one year. KEYS TO GENERA. The keys must be used with caution for specimens from the Neotropical Region. Some species will not Updating Disney's book on Phoridae key out to their correct genus, especially some Beckerina, Macrocerides, As we all know, Dr. Henry Disney Apocephalus and many Metopina-group produced a wonderful textbook on Phoridae males. This was an unavoidable problem, in 1994, exhaustively surveying the because so much of the Neotropical fauna is literature on phorid life histories, unknown, but others should be aware of it. providing a new key to phorid genera and a Also a new genus, Vestigipoda, has list of the necessary literature to identify been described: Disney, R.H.L. (1996) A new phorids to species. I propose that we provide genus of scuttle fly (Diptera; Phoridae) whose legless, updates to this book in the Phorid wingless, females mimic ant larvae (Hymenoptera; Newsletter so that this information is better Formicidae). Sociobiology, 27, 95-118. It is unlikely Phorid Newsletter, 5, page 3 to be confused with any other phorid genera fireflies. in the key, however! These six techniques collected 53 species of Apocephalus. The number of species collected by the various methods GUIDE TO THE LITERATURE. Since the book were as follows: has been published, the following new keys Number of spp. collected have become available: Total Exclusive Malaise 23 20 Raids 22 20 Neotropical Apocephalus (Mesophora)- BL 4 2 Over baited 3 2 Brown, B.V. (1996) Preliminary analysis of a host shift: Crushed 3 1 revision of the Neotropical species of Apocephalus, Rearing 1 1 subgenus Mesophora (Diptera: Phoridae). Contributions in Science, 462, 1-36. The overlap of the catch of Apocephalus species is as follows: Neodohrniphora- Disney, R.H.L. (1996) A key to Neodohrniphora (Diptera: Phoridae), parasites of leaf- M R B O C R cutter ants (Hymenoptera: Formicidae). Journal of Malaise 23 1 1 0 1 0 Natural History, 30, 1377-1389. Raids 22 0 1 0 0 B.L. 4 0 1 0 Over baited 3 0 0 Plethysmochaeta- Disney, R.H.L.
Recommended publications
  • Rediscovery and Reclassification of the Dipteran Taxon Nothomicrodon
    www.nature.com/scientificreports OPEN Rediscovery and reclassification of the dipteran taxon Nothomicrodon Wheeler, an exclusive Received: 07 November 2016 Accepted: 28 February 2017 endoparasitoid of gyne ant larvae Published: 31 March 2017 Gabriela Pérez-Lachaud1, Benoit J. B. Jahyny2,3, Gunilla Ståhls4, Graham Rotheray5, Jacques H. C. Delabie6 & Jean-Paul Lachaud1,7 The myrmecophile larva of the dipteran taxon Nothomicrodon Wheeler is rediscovered, almost a century after its original description and unique report. The systematic position of this dipteran has remained enigmatic due to the absence of reared imagos to confirm indentity. We also failed to rear imagos, but we scrutinized entire nests of the Brazilian arboreal dolichoderine ant Azteca chartifex which, combined with morphological and molecular studies, enabled us to establish beyond doubt that Nothomicrodon belongs to the Phoridae (Insecta: Diptera), not the Syrphidae where it was first placed, and that the species we studied is an endoparasitoid of the larvae of A. chartifex, exclusively attacking sexual female (gyne) larvae. Northomicrodon parasitism can exert high fitness costs to a host colony. Our discovery adds one more case to the growing number of phorid taxa known to parasitize ant larvae and suggests that many others remain to be discovered. Our findings and literature review confirm that the Phoridae is the only taxon known that parasitizes both adults and the immature stages of different castes of ants, thus threatening ants on all fronts. Ants are hosts to at least 17 orders of myrmecophilous arthropods (organisms dependent on ants), ranging from general scavengers to highly selective predators and parasitoids that attack either ants, their brood or other myr- mecophiles1–3.
    [Show full text]
  • Diptera, Phoridae) from Iran
    Archive of SID J Insect Biodivers Syst 04(3): 147–155 ISSN: 2423-8112 JOURNAL OF INSECT BIODIVERSITY AND SYSTEMATICS Research Article http://jibs.modares.ac.ir http://zoobank.org/References/578CCEF1-37B7-45D3-9696-82B159F75BEB New records of the scuttle flies (Diptera, Phoridae) from Iran Roya Namaki Khameneh1, Samad Khaghaninia1*, R. Henry L. Disney2 1 Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, I.R. Iran. 2 Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, U.K. ABSTRACT. The faunistic study of the family Phoridae carried out in northwestern of Iran during 2013–2017. Five species (Conicera tibialis Schmitz, Received: 1925, Dohrniphora cornuta (Bigot, 1857), Gymnophora arcuata (Meigen, 1830), 06 August, 2018 Metopina oligoneura (Mik, 1867) and Triphleba intermedia (Malloch, 1908)) are newly recorded from Iran. The genera Conicera Meigen, 1830, Dohrniphora Accepted: 14 November, 2018 Dahl, 1898, Gymnophora Macquart, 1835 and Triphleba Rondani, 1856 are reported for the first time from the country. Diagnostic characters of the Published: studied species along with their photographs are provided. 20 November, 2018 Subject Editor: Key words: Phoridae, Conicera, Dohrniphora, Gymnophora, Triphleba, Iran, New Farzaneh Kazerani records Citation: Namaki khameneh, R., Khaghaninia, S. & Disney, R.H.L. (2018) New records of the scuttle flies (Diptera, Phoridae) from Iran. Journal of Insect Biodiversity and Systematics, 4 (3), 147–155. Introduction Phoridae with about 4,000 identified insect eggs, larvae, and pupae. The adults species in more than 260 genera, is usually feed on nectar, honeydew and the considered as one of the largest families of exudates of fresh carrion and dung, Diptera (Ament & Brown, 2016).
    [Show full text]
  • Diptera) Diversity in a Patch of Costa Rican Cloud Forest: Why Inventory Is a Vital Science
    Zootaxa 4402 (1): 053–090 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4402.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:C2FAF702-664B-4E21-B4AE-404F85210A12 Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest: Why inventory is a vital science ART BORKENT1, BRIAN V. BROWN2, PETER H. ADLER3, DALTON DE SOUZA AMORIM4, KEVIN BARBER5, DANIEL BICKEL6, STEPHANIE BOUCHER7, SCOTT E. BROOKS8, JOHN BURGER9, Z.L. BURINGTON10, RENATO S. CAPELLARI11, DANIEL N.R. COSTA12, JEFFREY M. CUMMING8, GREG CURLER13, CARL W. DICK14, J.H. EPLER15, ERIC FISHER16, STEPHEN D. GAIMARI17, JON GELHAUS18, DAVID A. GRIMALDI19, JOHN HASH20, MARTIN HAUSER17, HEIKKI HIPPA21, SERGIO IBÁÑEZ- BERNAL22, MATHIAS JASCHHOF23, ELENA P. KAMENEVA24, PETER H. KERR17, VALERY KORNEYEV24, CHESLAVO A. KORYTKOWSKI†, GIAR-ANN KUNG2, GUNNAR MIKALSEN KVIFTE25, OWEN LONSDALE26, STEPHEN A. MARSHALL27, WAYNE N. MATHIS28, VERNER MICHELSEN29, STEFAN NAGLIS30, ALLEN L. NORRBOM31, STEVEN PAIERO27, THOMAS PAPE32, ALESSANDRE PEREIRA- COLAVITE33, MARC POLLET34, SABRINA ROCHEFORT7, ALESSANDRA RUNG17, JUSTIN B. RUNYON35, JADE SAVAGE36, VERA C. SILVA37, BRADLEY J. SINCLAIR38, JEFFREY H. SKEVINGTON8, JOHN O. STIREMAN III10, JOHN SWANN39, PEKKA VILKAMAA40, TERRY WHEELER††, TERRY WHITWORTH41, MARIA WONG2, D. MONTY WOOD8, NORMAN WOODLEY42, TIFFANY YAU27, THOMAS J. ZAVORTINK43 & MANUEL A. ZUMBADO44 †—deceased. Formerly with the Universidad de Panama ††—deceased. Formerly at McGill University, Canada 1. Research Associate, Royal British Columbia Museum and the American Museum of Natural History, 691-8th Ave. SE, Salmon Arm, BC, V1E 2C2, Canada. Email: [email protected] 2.
    [Show full text]
  • Chapter 13. Assessing Host Specificity and Field Release Potential of Fire Ant Decapitating Flies (Phoridae: Pseudacteon)
    ASSESSING HOST RANGES OF PARASITOIDS AND PREDATORS _________________________________ CHAPTER 13. ASSESSING HOST SPECIFICITY AND FIELD RELEASE POTENTIAL OF FIRE ANT DECAPITATING FLIES (PHORIDAE: PSEUDACTEON) S. D. Porter1 and L. E. Gilbert2 1USDA-ARS, Center for Medical, Agricultural and Veterinary Entomology, P.O. Box 14565, Gainesville, Florida 32604 USA [email protected] 2Brackenridge Field Laboratory and Section of Integrative Biology, University of Texas, Austin, Texas 78712 USA BACKGROUND OF SYSTEM Fire ant populations in their South American homeland are about 1/5 to 1/10 as dense as popu- lations in North America (Porter et al., 1992; Porter et al., 1997a). This intercontinental differ- ence in fire ant densities was not explained by differences in climate, habitat, soil type, land use, plant cover, or sampling protocols (Porter et al., 1997a). Escape from numerous natural en- emies left behind in South America is the most apparent explanation for the intercontinental population differences. Natural enemies left behind in South America include two species of microsporidian pathogens, three species of nematodes, about 20 species of phorid decapitating flies, a eucharitid wasp, a parasitic ant, and numerous other microbes and arthropods of uncer- tain relationship to fire ants (Porter et al., 1997a). Escape from coevolved ant communities may also have been important. Ants in Brazil and Argentina, however, do not appear to be any more abundant than those in the United States, at least as indicated by their ability to find and occupy baits (Porter et al., 1997a). Classical or self-sustaining biological control agents are currently the only potential means for achieving permanent regional control of fire ants.
    [Show full text]
  • Bee Viruses: Routes of Infection in Hymenoptera
    fmicb-11-00943 May 27, 2020 Time: 14:39 # 1 REVIEW published: 28 May 2020 doi: 10.3389/fmicb.2020.00943 Bee Viruses: Routes of Infection in Hymenoptera Orlando Yañez1,2*, Niels Piot3, Anne Dalmon4, Joachim R. de Miranda5, Panuwan Chantawannakul6,7, Delphine Panziera8,9, Esmaeil Amiri10,11, Guy Smagghe3, Declan Schroeder12,13 and Nor Chejanovsky14* 1 Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland, 2 Agroscope, Swiss Bee Research Centre, Bern, Switzerland, 3 Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium, 4 INRAE, Unité de Recherche Abeilles et Environnement, Avignon, France, 5 Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden, 6 Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand, 7 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand, 8 General Zoology, Institute for Biology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany, 9 Halle-Jena-Leipzig, German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany, 10 Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States, 11 Department Edited by: of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States, 12 Department of Veterinary Akio Adachi, Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States,
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • A Molecular Diagnostic Survey of Pathogens and Parasites of Honey Bees, Apis Mellifera L., from Arkansas and Oklahoma
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 12-2017 A Molecular Diagnostic Survey of Pathogens and Parasites of Honey Bees, Apis mellifera L., From Arkansas and Oklahoma Dylan Cleary University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Entomology Commons, and the Parasitology Commons Recommended Citation Cleary, Dylan, "A Molecular Diagnostic Survey of Pathogens and Parasites of Honey Bees, Apis mellifera L., From Arkansas and Oklahoma" (2017). Theses and Dissertations. 2554. http://scholarworks.uark.edu/etd/2554 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. A Molecular Diagnostic Survey of Pathogens and Parasites of Honey Bees, Apis mellifera L., From Arkansas and Oklahoma A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology by Dylan Alexandra Cleary Oklahoma State University Bachelor of Science in Natural Resources, Ecology and Management, 2013 December 2017 University of Arkansas This thesis is approved for recommendation to the Graduate Council _____________________________ Allen L. Szalanski, Ph.D Thesis Director _____________________________ _____________________________ Donald Steinkraus, Ph.D Jackie Lee, Ph.D Co-Advisor Committee Member Abstract The health and viability of colonies of the honey bee, Apis mellifera, in the United States have fluctuated dramatically over the past decade. This poses a substantial threat to agricultural production in this country. Currently, no single factor has been identified for this decline.
    [Show full text]
  • Insect Timing and Succession on Buried Carrion in East Lansing, Michigan
    INSECT TIMING AND SUCCESSION ON BURIED CARRION IN EAST LANSING, MICHIGAN By Emily Christine Pastula A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTERS OF SCIENCE Entomology 2012 ABSTRACT INSECT TIMING AND SUCCESSION ON BURIED CARRION IN EAST LANSING, MICHIGAN By Emily Christine Pastula This study examined pig carcasses buried at two different depths, 30 and 60 cm, to determine if insects are able to colonize buried carcasses, when they arrive at each depth, and what fauna are present over seven sampling dates to establish an insect succession database on buried carrion in East Lansing, Michigan. Thirty-eight pigs were buried, 18 at 30 cm and 20 at 60 cm. Four control carcasses were placed on the soil surface. Three replicates at each depth were exhumed after 3 days, 7 days, 14 days, 21 days, 30 days, and 60 days. One pig was also exhumed from 60 cm after 90 days and another after 120 days. Sarcophaga bullata (Diptera: Sarcophagidae) and Hydrotaea sp. (Diptera: Muscidae) were found colonizing buried carrion 5 days after burial at 30 cm. Insect succession at 30 cm proceeded with flesh and muscid flies being the first to colonize, followed by blow flies. Insects were able to colonize carcasses at 60 cm and Hydrotaea sp. and Megaselia scalaris (Diptera: Phoridae), were collected 7 days after burial. Insect succession at 60 cm did not proceed similarly as predicted, instead muscid and coffin flies were the only larvae collected. Overall these results reveal post-burial interval (PBI) estimates for forensic investigations in mid-Michigan during the summer, depending on climatic and soil conditions.
    [Show full text]
  • INSECTS of MICRONESIA Diptera: Phoridae
    INSECTS OF MICRONESIA Diptera: Phoridae By ERWIN M. BEYER BONN, STIFTSGASSE 8, WEST GERMANY INTRODUCTION G. E. Bohart was the first to report on phorids of Micronesia. In his study on the Phoridae of Guam [1947, U. S. Nat. Mus., Proc. 96 (3205): 397-416, figs. 33-48] he dealt with five genera and 11 species; one genus (Para­ fannia Bohart) and nine species were described as new. C. N. Colyer [1957, Hawaiian Ent. Soc., Proc. 16 (2) : 232] synonymized Parafannia Bohart with Gymnoptera Lioy. In our recent study on the Phoridae of Hawaii (Insects of Hawaii 11, 1964) D. E. Hardy and I recognize M egaselia stuntzi Bohart as a synonym of M. setaria (Malloch). In this present study, Pulici­ phora nigriventris Bohart is shown to be a synonym of P. pulex Dahl. Bohart's descriptions of his new species are inadequate and not always based upon the most reliable characters; the illustrations are sometimes inac­ curate. I am unable, therefore, to include Chonocephalus species in this study. In the Micronesian material before me, three members of this genus are rep­ resented; none of these can, however, be identified as any of Bohart's species. M egaselia setifemur Bohart, which also needs redescription, is not repre­ sented in this material. At present, seven genera, two subgenera, and 24 named species of Phori­ dae, including the two species of ChonocephalusJ are known to occur in Micro­ nesia. Ten species are new to science, one tribe (Beckerinini) and five species are recorded for the first time in Micronesia. When considering the Micronesian phorid genera, it is evident that only genera of worldwide distribution are represented.
    [Show full text]
  • Georg-August-Universität Göttingen
    GÖTTINGER ZENTRUM FÜR BIODIVERSITÄTSFORSCHUNG UND ÖKOLOGIE GÖTTINGEN CENTRE FOR BIODIVERSITY AND ECOLOGY Herb layer characteristics, fly communities and trophic interactions along a gradient of tree and herb diversity in a temperate deciduous forest Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität Göttingen vorgelegt von Mag. rer. nat. Elke Andrea Vockenhuber aus Wien Göttingen, Juli, 2011 Referent: Prof. Dr. Teja Tscharntke Korreferent: Prof. Dr. Stefan Vidal Tag der mündlichen Prüfung: 16.08.2011 2 CONTENTS Chapter 1: General Introduction............................................................................................ 5 Effects of plant diversity on ecosystem functioning and higher trophic levels ....................................................... 6 Study objectives and chapter outline ...................................................................................................................... 8 Study site and study design ................................................................................................................................... 11 Major hypotheses.................................................................................................................................................. 12 References............................................................................................................................................................. 13 Chapter 2: Tree diversity and environmental context
    [Show full text]
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
    [Show full text]
  • Parasite Interactions in Urban Gardens
    Environmental Entomology, XX(X), 2017, 1–9 doi: 10.1093/ee/nvx155 Research Pollinator Ecology and Management Vegetation Management and Host Density Influence Bee– Parasite Interactions in Urban Gardens Hamutahl Cohen,1,2,3 Robyn D. Quistberg,1 and Stacy M. Philpott1 1Environmental Studies Department, University of California, Santa Cruz, CA 95064, 2Environmental Studies Department, University of California, 1156 High Street, Santa Cruz, CA 95060, and 3Corresponding author, e-mail: [email protected] Subject Editor: Gloria DeGrandi-Hoffman Received 17 April 2017; Editorial decision 28 August 2017 Abstract Apocephalus borealis phorid flies, a parasitoid of bumble bees and yellow jacket wasps in North America, was recently reported as a novel parasitoid of the honey bee Apis mellifera Linnaeus (Hymenoptera: Apidae). Little is known about the ecology of this interaction, including phorid fecundity on bee hosts, whether phorid-bee parasitism is density dependent, and which local habitat and landscape features may correlate with changes in parasitism rates for either bumble or honey bees. We examined the impact of local and landscape drivers and host abundance on phorid parasitism of A. mellifera and the bumble bee Bombus vosnesenskii Radoszkowski (Hymenoptera: Apidae). We worked in 19 urban gardens along the North-Central Coast of California, where phorid parasitism of honey bees was first reported in 2012. We collected and incubated bees for phorid emergence, and surveyed local vegetation, ground cover, and floral characteristics as well as land cover types surrounding gardens. We found that phorid parasitism was higher on bumble bees than on honey bees, and phorids produced nearly twice as many pupae on individual bumble bee hosts than on honey bee hosts.
    [Show full text]