Misc Dothideomycetes LSU Sequences Friday, 18 January 2019 8:53 AM

Total Page:16

File Type:pdf, Size:1020Kb

Misc Dothideomycetes LSU Sequences Friday, 18 January 2019 8:53 AM misc Dothideomycetes LSU sequences Friday, 18 January 2019 8:53 AM LSU sequences generated from three recently collected specimens of Dothideomycetes from New Zealand were incorporated into the LSU phylogeny published by Guatimosim et al. 2015 (Persoonia 35: 230-241, http://dx.doi.org/10.3767/003158515X688046) PDD 112249 (https://scd.landcareresearch.co.nz/Specimen/PDD%20112249) is a hyperparasite of Rhagadolobium dicksoniifolium. This specimen has immature ascomata typical of Paranectriella (Rossman, Myc Pap 157, 1987) and Titaea conidia of the asexual state. Paranectriella was placed in the Paranectriellaceae by Hyde et al. (Families of Dothideomycetes, Fungal Diversity 63: 1-313, 2013), incertae sedis in the Dothideomycetes. The sequences from PDD 112249 are the first for this family, and confirm its unclear relationship within the Dothideomycetes. PDD 112241 (https://scd.landcareresearch.co.nz/Specimen/PDD%20112241) is a Parmulariaceae-like pathogen of the fern Adiantum cunninghamii. LSU sequences placed it sister to Asterotexis and Inocyclus angularis in the Guatimosim et al. 2015 phylogeny. Although these authors treat Inocyclus as incertae sedis because no type material has been studied, their order Asterotexiales seem appropriate for the PDD 112241 fungus with respect to biology and morphology. Based on the phylogeny, it probably needs a new genus. NG_059638 is the GenBank record for the LSU sequences from PDD 107531 (https://scd.landcareresearch.co.nz/Specimen/PDD_ 107531) the holotype specimen of Neocoleroa metrosideri, a leaf pathogen of Metrosideros excelsa. This is the only DNA sequence available for a species of Neocoleroa. The LSU phylogeny presented here confirms the conclusion of Johnston & Park (2016, http://dx.doi.org/10.11646/phytotaxa.253.3.5) that Neocoleroa belongs in the Symptoventuriaceae, a clade sister to the Venturiaceae. Capnodiales Aulographaceae Hysteriaceae Gloniaceae Paranectriellaceae Botryosphaeriales Tubeufiaceae Patellariaceae Asterotexiaceae Aliquandostipitaceae Asterinaceae Parmulariaceae Venturiaceae Sympoventuriaceae Phaeotrichaceae bits and pieces Page 1 .
Recommended publications
  • Mycosphere Notes 225–274: Types and Other Specimens of Some Genera of Ascomycota
    Mycosphere 9(4): 647–754 (2018) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/9/4/3 Copyright © Guizhou Academy of Agricultural Sciences Mycosphere Notes 225–274: types and other specimens of some genera of Ascomycota Doilom M1,2,3, Hyde KD2,3,6, Phookamsak R1,2,3, Dai DQ4,, Tang LZ4,14, Hongsanan S5, Chomnunti P6, Boonmee S6, Dayarathne MC6, Li WJ6, Thambugala KM6, Perera RH 6, Daranagama DA6,13, Norphanphoun C6, Konta S6, Dong W6,7, Ertz D8,9, Phillips AJL10, McKenzie EHC11, Vinit K6,7, Ariyawansa HA12, Jones EBG7, Mortimer PE2, Xu JC2,3, Promputtha I1 1 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 2 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China 3 World Agro Forestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan Province, People’s Republic of China 4 Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China 5 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China 6 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 7 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 8 Department Research (BT), Botanic Garden Meise, Nieuwelaan 38, BE-1860 Meise, Belgium 9 Direction Générale de l'Enseignement non obligatoire et de la Recherche scientifique, Fédération Wallonie-Bruxelles, Rue A.
    [Show full text]
  • Jhon Alexander Osorio Romero
    INVENTARIO TAXONÓMICO DE ESPECIES PERTENECIENTES AL GÉNERO PHYLLACHORA (FUNGI ASCOMYCOTA ) ASOCIADAS A LA VEGETACIÓN DE SABANA NEOTROPICAL (CERRADO BRASILERO) CON ÉNFASIS EN EL PARQUE NACIONAL DE BRASILIA DF. JHON ALEXANDER OSORIO ROMERO UNIVERSIDAD DE CALDAS UNIVERSIDAD DEL QUINDÍO UNIVERSIDAD TECNOLÓGICA DE PEREIRA MAESTRÍA EN BIOLOGÍA VEGETAL PEREIRA 2008 INVENTARIO TAXONÓMICO DE ESPECIES PERTENECIENTES AL GÉNERO PHYLLACHORA (FUNGI ASCOMYCOTA ) ASOCIADAS A LA VEGETACIÓN DE SABANA NEOTROPICAL (CERRADO BRASILERO) CON ÉNFASIS EN EL PARQUE NACIONAL DE BRASILIA DF. JHON ALEXANDER OSORIO ROMERO Trabajo de grado presentado como requisito para optar al título de Magíster en Biología Vegetal Orientado por: CARLOS ANTONIO INÁCIO PhD. Departamento de Fitopatología Universidad de Brasilia Brasilia, D.F Brasil UNIVERSIDAD DE CALDAS UNIVERSIDAD DEL QUINDÍO UNIVERSIDAD TECNOLÓGICA DE PEREIRA MAESTRÍA EN BIOLOGÍA VEGETAL PEREIRA 2008 DEDICATORIA A Dios, por ser el artífice de todo y permitirme alcanzar mis objetivos. A mis padres, quienes han aplaudido cada uno de mis logros y me han señalado correctamente los senderos del respeto, la honestidad, la perseverancia y la humildad; su confianza y apoyo incondicional han sido herramientas esenciales para cumplir con este importante objetivo en mi vida. A mi novia y mejor amiga Andrea, por ser mi fuerza y templanza, por mostrarme las bondades de la vida y ser mi fuente de inspiración para nunca desfallecer en el intento. A la memoria de mi Grecco. “La ciencia apenas sirve para darnos una idea de la extensión de nuestra ignorancia”. Félicité Robert de Lammenais AGRADECIMIENTOS Quisiera resaltar aquellas personas, que contribuyeron para llevar en buen término la realización de este trabajo y que enseguida me refiero: Especial agradecimiento al profesor (PhD), Carlos Antonio Inácio , mi orientador científico y quien me brindó la oportunidad de realizar esta importante investigación; a él, doy gracias por el apoyo científico, material y humano, por su colaboración y dedicación en mi formación como investigador.
    [Show full text]
  • Preliminary MAIN RESEARCH LINES
    Brothers, Sheila C From: Schroeder, Margaret <[email protected]> Sent: Tuesday, February 03, 2015 9:07 AM To: Brothers, Sheila C Subject: Proposed New Dual Degree Program: PhD in Plant Pathology with Universidade Federal de Vicosa Proposed New Dual Degree Program: PhD in Plant Pathology with Universidade Federal de Vicosa This is a recommendation that the University Senate approve, for submission to the Board of Trustees, the establishment of a new Dual Degree Program: PhD in Plant Pathology with Universidade Federal de Vicosa, in the Department of Plant Pathology within the College of Agriculture, Food, and Environment. Best- Margaret ---------- Margaret J. Mohr-Schroeder, PhD | Associate Professor of Mathematics Education | STEM PLUS Program Co-Chair | Department of STEM Education | University of Kentucky | www.margaretmohrschroeder.com 1 DUAL DOCTORAL DEGREE IN PLANT PATHOLOGY BETWEEN THE UNIVERSITY OF KENTUCKY AND THE UNIVERSIDADE FEDERAL DE VIÇOSA Program Goal This is a proposal for a dual Doctoral degree program between the University of Kentucky (UK) and the Universidade Federal de Viçosa (UFV) in Brazil. Students will acquire academic credits and develop part of the research for their Doctoral dissertations at the partner university. A stay of at least 12 consecutive months at the partner university will be required for the program. Students in the program will obtain Doctoral degrees in Plant Pathology from both UK and UFV. Students in the program will develop language skills in English and Portuguese, and become familiar with norms of the discipline in both countries. Students will fulfill the academic requirements of both institutions in order to obtain degrees from both.
    [Show full text]
  • Proposed Generic Names for Dothideomycetes
    Naming and outline of Dothideomycetes–2014 Nalin N. Wijayawardene1, 2, Pedro W. Crous3, Paul M. Kirk4, David L. Hawksworth4, 5, 6, Dongqin Dai1, 2, Eric Boehm7, Saranyaphat Boonmee1, 2, Uwe Braun8, Putarak Chomnunti1, 2, , Melvina J. D'souza1, 2, Paul Diederich9, Asha Dissanayake1, 2, 10, Mingkhuan Doilom1, 2, Francesco Doveri11, Singang Hongsanan1, 2, E.B. Gareth Jones12, 13, Johannes Z. Groenewald3, Ruvishika Jayawardena1, 2, 10, James D. Lawrey14, Yan Mei Li15, 16, Yong Xiang Liu17, Robert Lücking18, Hugo Madrid3, Dimuthu S. Manamgoda1, 2, Jutamart Monkai1, 2, Lucia Muggia19, 20, Matthew P. Nelsen18, 21, Ka-Lai Pang22, Rungtiwa Phookamsak1, 2, Indunil Senanayake1, 2, Carol A. Shearer23, Satinee Suetrong24, Kazuaki Tanaka25, Kasun M. Thambugala1, 2, 17, Saowanee Wikee1, 2, Hai-Xia Wu15, 16, Ying Zhang26, Begoña Aguirre-Hudson5, Siti A. Alias27, André Aptroot28, Ali H. Bahkali29, Jose L. Bezerra30, Jayarama D. Bhat1, 2, 31, Ekachai Chukeatirote1, 2, Cécile Gueidan5, Kazuyuki Hirayama25, G. Sybren De Hoog3, Ji Chuan Kang32, Kerry Knudsen33, Wen Jing Li1, 2, Xinghong Li10, ZouYi Liu17, Ausana Mapook1, 2, Eric H.C. McKenzie34, Andrew N. Miller35, Peter E. Mortimer36, 37, Dhanushka Nadeeshan1, 2, Alan J.L. Phillips38, Huzefa A. Raja39, Christian Scheuer19, Felix Schumm40, Joanne E. Taylor41, Qing Tian1, 2, Saowaluck Tibpromma1, 2, Yong Wang42, Jianchu Xu3, 4, Jiye Yan10, Supalak Yacharoen1, 2, Min Zhang15, 16, Joyce Woudenberg3 and K. D. Hyde1, 2, 37, 38 1Institute of Excellence in Fungal Research and 2School of Science, Mae Fah Luang University,
    [Show full text]
  • Mycosphere Notes 169–224 Article
    Mycosphere 9(2): 271–430 (2018) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/9/2/8 Copyright © Guizhou Academy of Agricultural Sciences Mycosphere notes 169–224 Hyde KD1,2, Chaiwan N2, Norphanphoun C2,6, Boonmee S2, Camporesi E3,4, Chethana KWT2,13, Dayarathne MC1,2, de Silva NI1,2,8, Dissanayake AJ2, Ekanayaka AH2, Hongsanan S2, Huang SK1,2,6, Jayasiri SC1,2, Jayawardena RS2, Jiang HB1,2, Karunarathna A1,2,12, Lin CG2, Liu JK7,16, Liu NG2,15,16, Lu YZ2,6, Luo ZL2,11, Maharachchimbura SSN14, Manawasinghe IS2,13, Pem D2, Perera RH2,16, Phukhamsakda C2, Samarakoon MC2,8, Senwanna C2,12, Shang QJ2, Tennakoon DS1,2,17, Thambugala KM2, Tibpromma, S2, Wanasinghe DN1,2, Xiao YP2,6, Yang J2,16, Zeng XY2,6, Zhang JF2,15, Zhang SN2,12,16, Bulgakov TS18, Bhat DJ20, Cheewangkoon R12, Goh TK17, Jones EBG21, Kang JC6, Jeewon R19, Liu ZY16, Lumyong S8,9, Kuo CH17, McKenzie EHC10, Wen TC6, Yan JY13, Zhao Q2 1 Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, P.R. China 2 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3 A.M.B. Gruppo Micologico Forlivese ‘‘Antonio Cicognani’’, Via Roma 18, Forlı`, Italy 4 A.M.B. Circolo Micologico ‘‘Giovanni Carini’’, C.P. 314, Brescia, Italy 5 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, P.R. China 6 Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of national education Ministry of Education, Guizhou University, Guiyang, Guizhou Province 550025, P.R.
    [Show full text]
  • Title of Manuscript
    Asian Journal of Mycology 2(1): 287–297 (2019) ISSN 2651-1339 www.asianjournalofmycology.org Article Doi 10.5943/ajom/2/1/19 https://www.dothideomycetes.org: An online taxonomic resource for the classification, identification, and nomenclature of Dothideomycetes Pem D1, Hongsanan S2, Doilom M3, Tibpromma S3, Wanasinghe DN3, Dong W1, Liu NG1, Phookamsak R3, Phillips AJL4, Jeewon R5 and Hyde KD1, 3* 1 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand 2 College of Life Science and Oceanography, Shenzhen University, 1068, Nanhai Avenue, Nanshan, Shenzhen 518055, People’s Republic of China 3 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People’s Republic of China 4 Faculty of Sciences, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Lisbon, Portugal 5 Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius Pem D, Hongsanan S, Doilom M, Tibpromma S, Wanasinghe DN, Dong W, Ningguo L, Phookamsak R, Phillips AJL, Jeewon R, Hyde KD 2019 – https://www.dothideomycetes.org: An online taxonomic resource for the classification, identification, and nomenclature of Dothideomycetes. Asian Journal of Mycology 2(1), 287–297, Doi 10.5943/ajom/2/1/19 Abstract The number of species, genera, families and orders currently known to science in the class Dothideomycetes are rapidly changing with updated phylogenetic data but there are challenges ahead in dealing with the vast amount of taxonomic data scattered in the literature. In order to provide a suitable platform to bring all this data together, a website https://www.dothideomycetes.org has been set up and is explained in this paper.
    [Show full text]
  • The Evolution of Fungal Epiphytes
    Mycosphere 7 (11): 1690–1712 (2016) www.mycosphere.org ISSN 2077 7019 Article – special issue Doi 10.5943/mycosphere/7/11/6 Copyright © Guizhou Academy of Agricultural Sciences The evolution of fungal epiphytes Hongsanan S1,2,3, Sánchez-Ramírez S4,5, Crous PW6, Ariyawansa HA7, Zhao RL8, Hyde KD1,2,3* 1 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People’s Republic of China 2 World Agroforestry Centre, East and Central Asia, Kunming 650201, Yunnan, People’s Republic of China 3 Center of Excellence in Fungal Research, Chiang Rai 57100, Thailand 4 Department of Natural History, Royal Ontario Museum, Toronto, ON M5S 2C6, Canada 5 Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada 6 CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD, Utrecht, The Netherlands 7 Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Xiaohe District, Guiyang City, Guizhou Province 550006, People’s Republic of China 8 State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China Hongsanan S, Sánchez-Ramírez S, Crous PW, Ariyawansa HA, Zhao RL, Hyde KD. 2016 – The evolution of fungal epiphytes. Mycosphere 7 (11), 1690–1712, Doi 10.5943/mycosphere/7/11/6 Abstract Fungal epiphytes are a polyphyletic group found on the surface of plants, particularly on leaves, with a worldwide distribution. They belong in the phylum Ascomycota, which contains the largest known number of fungal genera. There has been little research dating the origins of the common ancestors of fungal epiphytes.
    [Show full text]
  • P. 1 1 Character Evolution of Modern Fly-Speck Fungi and Implications For
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.13.989582; this version posted March 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 Character evolution of modern fly-speck fungi and implications for interpreting 3 thyriothecial fossils 4 5 Ludovic Le Renard*1, André L. Firmino2, Olinto L. Pereira3, Ruth A. Stockey4, 6 Mary. L. Berbee1 7 8 1Department of Botany, University of British Columbia, Vancouver BC, V6T 1Z4, Canada 9 2Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Monte Carmelo, Minas 10 Gerais, 38500-000, Brazil 11 3Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570- 12 000, Brazil 13 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, 14 USA 15 16 Email: [email protected] 17 18 Manuscript received _______; revision accepted _______. 19 20 Running head: Fly-speck fungi character evolution 21 22 23 p. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.13.989582; this version posted March 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 24 25 Abstract 26 PREMISE OF THE STUDY: Fossils show that fly-speck fungi have been reproducing with 27 small, black thyriothecia on leaf surfaces for ~250 million years. We analyze morphological 28 characters of extant thyriothecial fungi to develop a phylogenetic framework for interpreting 29 fossil taxa.
    [Show full text]
  • Keys to the Genera of Amerospored and Didymospored Pyrenomycetes
    KEYS TO THE GENERA OF AMEROSPORED AND DIDYMOSPORED PYRENOMYCETES from J. A. von Arx and E. Muller Beitrage zur Kryptogamenflora der Schweiz Translated into English by G. B. BUTTERFILL COMMONWEALTH MYCOLOGICAL INSTITUTE KEW, SURREY, ENGLAND © Commonwealth Agricultural Bureaux 1969 Printed lithographically by E. C. Freeman Ltd., London, S.W. INTRODUCTION Studies on the genera of pyrenomycetes issued as Contributions to the Cryptogamic Flora of Switzerland occupy three volumes at present - the Amerospored Pyrenomycetes by J. A. vonArxandE. Muller, the Didymospored Pyrenomycetes by E. Miiller and J. A. von Arx, and the Hysteriaceae and Lophiaceae by H. Zogg. These volumes represent a much wider study and more modern interpretation of the pyrenomycete genera covered than any book published in English. Dr. Zogg's contribution has a very simple introductory key to the genera he includes, and this has not been translated. The two volumes by von Arx and Muller deal with a very large number of genera and one is directed to these by a number of keys to the orders, families and genera. To facilitate the use of these volumes at the CMI, the keys were translated into English and they have been available for use by working visitors interested in the pyrenomycetes. This use has led to numerous requests that we arrange for publication of the keys for use in laboratories where German is not spoken and has become rusty through lack of use. We are indebted to Dr. von Arx and Dr. Muller and the committee responsible for the Swiss Cryptogamic Flora who gave us permission to reproduce the following keys, and we hereby gratefully acknowledge their kindness and generosity.
    [Show full text]
  • Introducing Parmulariales Ord. Nov., and Hemigraphaceae, Melaspileellaceae and Stictographaceae Fam
    Phytotaxa 369 (2): 063–079 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.369.2.1 Studies on Parmulariaceae I. A phylogeny based on available sequence data; introducing Parmulariales ord. nov., and Hemigraphaceae, Melaspileellaceae and Stictographaceae fam. nov. DONG-QIN DAI1, LI-ZHOU TANG1,2,*, CHAO LIU1, HAI-BO WANG1 & KEVIN D. HYDE3 1Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qu- jing Normal University, Qujing, Yunnan 655011, People’s Republic of China 2State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yun- nan 650223, People’s Republic of China 3Centre of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand Corresponding author: [email protected] Abstract The family Parmulariaceae comprises three polyphyletic genera, but with very little data in GenBank and is presently placed in the order Asterinales. In this study, we re-analyze the available sequence data for taxa of the family and re-examine the type species of Hemigrapha, Inocyclus and Parmularia. The phylogenetic tree generated from maximum likelihood and Bayesian analyses of combined LSU-SSU sequence data demonstrate the relationships among Hemigrapha, Inocyclus and Parmularia species, and the relations of Buelliella, Karschia, Labrocarpon, Lembosia, Melaspileella, Melaspileopsis and Stictographa. We introduce Parmulariales ord. nov. to accommodate Parmulariaceae and the order Asterinales accommodates Asterinaceae, Asterotexaceae, Hemigraphaceae fam. nov., Melaspileellaceae fam. nov. and Stictographaceae fam. nov. Notes for each new order and families are provided.
    [Show full text]
  • Towards a Phylogenetic Reappraisal of Parmulariaceae and Asterinaceae (Dothideomycetes)
    Persoonia 35, 2015: 230–241 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158515X688046 Towards a phylogenetic reappraisal of Parmulariaceae and Asterinaceae (Dothideomycetes) E. Guatimosim1*, A.L. Firmino1*, J.L. Bezerra 2, O.L. Pereira1, R.W. Barreto1, P.W. Crous3,4,5 Key words Abstract Members of the Asterinaceae and Parmulariaceae are obligate biotrophic fungi with a pantropical dis- tribution that grow in direct association with living plant tissues and produce external ascomata and bitunicate asci. Asterinales These fungi are poorly known, with limited information about their taxonomic position in the Dothideomycetes. epitype Much of what is known is conjectural and based on observation of morphological characters. An assessment of Neotropical fungi the phylogenetic position of the Asterinaceae and Parmulariaceae is provided based on a phylogenetic analysis of taxonomic novelties the nrDNA operon (ITS) and the large subunit rDNA (LSU) sequence data obtained from fresh material of selected type species species collected in Brazil. Three key species were included and epitypified, namely Asterina melastomatis, which is the type species for the type genus of the Asterinaceae; Prillieuxina baccharidincola (Asterinaceae); and Parmularia styracis, which is the type species for the type genus of the Parmulariaceae. An LSU rDNA phylogenetic analysis was performed indicating the correct phylogenetic placement of the Asterinales within the Dothideomycetes. From this initial analysis it is clear that the Parmulariaceae as currently circumscribed is polyphyletic, and that the As­ terinaceae and Parmulariaceae are related, which justifies the maintenance of the order Asterinales. Asterotexis cucurbitacearum is recognised as distinct from other Dothideomycetes and placed in the newly proposed family and order (Asterotexiaceae, Asterotexiales), while the higher order phylogeny of Inocyclus angularis remains un- resolved.
    [Show full text]
  • Towards a Natural Classification of Dothideomycetes 6: the Genera
    Phytotaxa 176 (1): 055–067 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2014 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.176.1.8 Towards a natural classification of Dothideomycetes 6: The genera Dolabra, Placostromella, Pleosphaerellula, Polysporidiella and Pseudotrichia (Dothideomycetes incertae sedis) KASUN M. THAMBUGALA1,2,3, HIRAN A. ARIYAWANSA2,3, ZUO-YI LIU1*, EKACHAI CHUKEATIROTE2,3 & KEVIN D. HYDE2,3 1 Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Xiaohe District, Guiyang City, Guizhou Province 550006, People’s Republic of China 2 Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3 School of Science, Mae Fah Luang University, Chiang Rai. 57100, Thailand * Corresponding author: [email protected] Abstract The type specimens of Dolabra, Placostromella, Pleosphaerellula, Polysporidiella and Pseudotrichia were re-examined in order to suggest their familial and higher placement according to the morphology based on modern taxonomic concepts. An overview of the history and descriptions and illustrations of these genera are provided. Based on morphological similarities, Placostromella is placed in Parmulariaceae, while Pseudotrichia is transferred to Montagnulaceae. Pleosphaerellula is placed in Pleosporales, genera incertae sedis and Polysporidiella is retained in Dothideomycetes, genera incertae sedis as it is not typical of any existing family of Dothideomycetes. According to published phylogenetic data, Dolabra belongs in Chaetothyriomycetidae, genera incertae sedis (Eurotiomycetes). Recollection, epitypifycation and multi-gene molecular analyses are needed for all type species of these genera in order to clarify their familial status. By illustrating and redescribing the type species we expect to stimulate interest for these fungi to be recollected.
    [Show full text]