Landscape Heterogeneity and Farming Practice Alter the Species
Total Page:16
File Type:pdf, Size:1020Kb
Basic and Applied Ecology 14 (2013) 540–546 Landscape heterogeneity and farming practice alter the species composition and taxonomic breadth of pollinator communities a,b,∗ b b a,b Georg K.S. Andersson , Klaus Birkhofer , Maj Rundlöf , Henrik G. Smith a Centre for Environmental and Climate Research, Lund University, Ecology Building, SE-223 62 Lund, Sweden b Department of Biology, Lund University, Ecology Building, SE-223 62 Lund, Sweden Received 24 July 2012; accepted 4 August 2013 Available online 8 September 2013 Abstract Effects of landscape heterogeneity and farming practice on species composition are less well known than those on species richness, in spite of the fact that community composition can be at least as important for ecosystem services, such as pollination. Here, we assessed the effect of organic farming and landscape heterogeneity on pollinator communities, focusing on multivariate patterns in species composition and the taxonomic breadth of communities. By relating our results to patterns observed for species richness we show that: (1) species richness generally declines with decreasing landscape heterogeneity, but taxonomic breadth only declines with landscape heterogeneity on conventionally managed farms. We further highlight the importance to provide results of species composition analyses as (2) primarily hoverfly species benefited from organic farming, but three bee species from different families were favoured by conventionally managed farms and (3) two hoverfly species with aphidophagous larvae showed contrasting responses to landscape heterogeneity. These results advance the understanding of how landscape heterogeneity and farming practices alter insect communities and further suggest that diversity patterns need to be analysed beyond species richness to fully uncover consequences of agricultural intensification. Zusammenfassung Der Einfluss der Heterogenität von Landschaften und der Bewirtschaftungsform auf die Artenzusammensetzung von Gemeinschaften ist allgemein weniger gut verstanden als deren Auswirkung auf die Artenzahl. Die Zusammensetzung von Bestäubergemeinschaften ist jedoch eine wichtige Eigenschaft welche ökosystemare Dienstleistungen wie z.B. die Bestäubung von Pflanzen durch Insekten beeinflussen kann. In dieser Studie wurde der Effekt der ökologischen und konventionellen Bewirtschaftung und unterschiedlicher Landschaftskomplexität auf die Artenzahl, Artenzusammensetzung und taxonomische Breite von Bestäubergemeinschaften untersucht. Aus dem Vergleich dieser Ergebnisse ergaben sich folgende Schlussfolgerun- gen: (1) die Artenzahl nimmt generell mit abnehmender Heterogenität der Landschaften ab, die taxonomische Breite einer Gemeinschaft nimmt jedoch nur unter konventioneller Bewirtschaftung ab. Es zeigten sich deutliche Unterschiede zwischen den analysierten Gruppen, da (2) hauptsächlich Schwebfliegenarten von der ökologischen Bewirtschaftung profitierten, wohinge- gen drei Bienenarten von konventioneller Bewirtschaftung profitierten. Zwei Schwebfliegenarten mit aphidophagen Larven ∗ Corresponding author at: Centre for Environmental and Climate Research, Lund University, Ecology Building, SE-223 62 Lund, Sweden. Tel.: +46 46 2229293. E-mail address: [email protected] (G.K.S. Andersson). 1439-1791/$ – see front matter © 2013 Gesellschaft für Ökologie. Published by Elsevier GmbH. All rights reserved. http://dx.doi.org/10.1016/j.baae.2013.08.003 G.K.S. Andersson et al. / Basic and Applied Ecology 14 (2013) 540–546 541 zeigten gegensätzliche Antworten auf eine zunehmende Heterogenität der Landschaft. Diese Ergebnisse tragen zu einem verbesserten Verständnis darüber bei, wie die Heterogenität von Landschaften und die Bewirtschaftungsform auf die Arten- zusammensetzung von Insektengemeinschaften wirken. Des Weiteren wird gezeigt, dass Biodiversitätsstudien neben der Artenzahl auch die Artenzusammensetzung berücksichtigen sollten, da nur auf diese Weise die Auswirkungen der land- wirtschaftlichen Intensivierung in vollem Umfang deutlich werden. © 2013 Gesellschaft für Ökologie. Published by Elsevier GmbH. All rights reserved. Keywords: Pollinators; Landscape context; Landscape ecology; Agricultural intensification; Agri-environment schemes Introduction Any effect of organic farming on diversity and community composition of pollinators may depend on spatial context Agricultural intensification is a major driver of biodiversity (Jauker, Diekötter, Schwarzbach, & Wolters 2009; Murray loss in farmland (Krebs, Wilson, Bradbury, & Siriwardena et al. 2012) and temporal duration of the farming practice. 1999; Geiger et al. 2010; Kleijn, Rundlöf, Scheper, Smith, First, the effect of farming practice on species richness and & Tscharntke 2011), and agri-environment schemes (AES) abundances depends on the heterogeneity of the surround- have been developed to mitigate this negative effect (Kleijn ing landscape (Carvell et al. 2011; Roschewitz, Gabriel, & Sutherland 2003; Whittingham 2007). One of the more Tscharntke, & Thies 2005; Rundlöf & Smith 2006; Rundlöf, prominent AES in Europe is organic farming which has Nilsson, & Smith 2008). Second, there may be a time lag been shown to provide higher biodiversity in various groups in the response of communities to agricultural homogeni- (Bengtsson, Ahnström, & Weibull 2005; Diekötter, Wamser, sation (Andersson, Rundlöf, & Smith 2010; Bissonette & Wolters, & Birkhofer 2010; Power & Stout 2011; Power, Storch 2007). Such a time lag has been shown for the effect Kelly, & Stout 2012; Rundlöf & Smith 2006; Rundlöf, of an AES, organic farming, on abundances of butterflies Edlund, & Smith 2010). Taxa that benefit from organic (Jonason et al. 2011). Both a better understanding of inter- farming, such as pollinators, provide a range of impor- actions between landscape heterogeneity and the effects of tant services to human societies (Isbell et al. 2011; Mace, farming practice and transition age on taxonomic breadth may Norris, & Fitter 2012) and such services are often posi- improve our ability to predict consequences of agricultural tively related to species richness (Klein, Steffan-Dewenter, intensification for pollinator communities. & Tscharntke 2003; Kremen, Williams, & Thorp 2002; Our main questions were how organic farming, time since Winqvist, Ahnström, & Bengtsson 2012). The key role of conversion to organic farming and landscape heterogeneity insect pollinators of different crops makes understanding modified community composition and taxonomic breadth of their response to management and landscape particularly pollinators. We addressed these questions by analysing dif- important (Eilers, Kremen, Smith Greenleaf, Garber, & Klein ferences in species composition and taxonomic breadth of 2011; Greenleaf & Kremen 2006; Klein et al. 2007; Kremen pollinator communities between (i) organic and conventional et al. 2002; Viana et al. 2012; Winfree, Williams, Gaines, fields, (ii) old and new organic fields and (iii) in landscapes Ascher, & Kremen 2007). However, species number may along a heterogeneity gradient. Finally (iv), we relate our not be the only characteristic that modifies the provision results to patterns observed for species richness to highlight of ecosystem services, which as in the case of pollination the importance of accounting for the taxonomic relatedness can also depend on the identity of species (Albano, Salvado, between species and for the species composition of commu- Duarte, Mexia, & Borges 2009; Chagnon, Gingras, & De nities while studying effects of landscape heterogeneity. Oliveira 1993). This compositional component of communi- ties may also be affected by agricultural intensification and farming practices. Methods Communities with identical species numbers can for exam- ple consist of closely or distantly related species which means Study sites and design that they differ in average taxonomic breadth between species pairs (Clarke & Warwick 1998). If a community consists of The study sites were selected in Scania, southern Swe- more distantly related species one would assume that it rep- den, along a gradient of landscape heterogeneity measured resents a larger range of functional groups. Theoretical and as the proportion of tilled crop and ley of all farmland in a 1- empirical studies suggest that such differences in functional km radius around all sampling points (see Persson, Olsson, group diversity can affect pollination services (Blüthgen Rundlöf, & Smith 2010). This was based on land-use data & Klein 2011; Hoehn, Tscharntke, Tylianakis, & Steffan- obtained from the Integrated Administrative and Control Sys- Dewenter 2008). Therefore, if taxonomic breadth indeed tem (IACS) database, which provides the areas of arable land correlates with functional diversity then it would be an impor- and other habitats, such as semi-natural grassland or mar- tant additional response metric to agricultural intensification gins. The homogenous landscapes do not generally consist (Purvis & Hector 2000). of more agricultural land. We selected ten conventional and 542 G.K.S. Andersson et al. / Basic and Applied Ecology 14 (2013) 540–546 using information from a Linnaean classification tree that is based on the relationship between all species taken from the Fauna Europaea database (Warwick & Clarke 1995; for tree see Appendix A). As we are not aware of any phylogenetic tree or any traits that cover all 180 species included our data we could not estimate phylogenetic or functional diversity. Linnaean classification trees for our pollinator communities at each site were