Developmental Regulation of Histone H3 Methylation at Lysine 4 in the Porcine Ovary

Total Page:16

File Type:pdf, Size:1020Kb

Developmental Regulation of Histone H3 Methylation at Lysine 4 in the Porcine Ovary REPRODUCTIONRESEARCH Developmental regulation of histone H3 methylation at lysine 4 in the porcine ovary Marcelo M Seneda2, Maren Godmann, Bruce D Murphy1, Sarah Kimmins and Vilceu Bordignon Department of Animal Science, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Que´bec, H9X 3V9 Canada, 1Centre de Recherche en Reproduction Animale (CRRA), Faculte´ de Me´decine Ve´te´rinaire, Universite´ de Montre´al, Saint-Hyacinthe, Que´bec, J2S 7C6 Canada and 2Departamento de Clı´nicas Veterina´rias, Universidade Estadual de Londrina, Londrina, Parana´, 86051–990 Brasil Correspondence should be addressed to S Kimmins; Email: [email protected] V Bordignon; Email: [email protected] Abstract Follicular growth and oogenesis involve highly dynamic changes in morphogenesis, chromatin structure, and gene transcription. The tight coordination of these events leads to ovulation of a mature oocyte and formation of the luteal tissue necessary to regulate embryo implantation and development. This entire process is regulated by numerous endocrine and in situ mechanisms. The role of epigenetic mechanisms in folliculogenesis, such as the biochemical modification of the DNA packaging proteins, the histones, is not well understood. Our objective was to determine the cellular and follicular stage-specific patterns of histone H3 methylation at lysine 4 (K4) in porcine preovulatory follicles and during luteinization in pig ovaries. Ovary tissues were collected from slaughtered prepubertal and cyclic gilts at various stages of the estrous cycle, pregnancy, and from ovaries recovered from gonatropin-treated gilts at 0, 24, and 38 h post human chorionic gonadotropin (hCG) injection. Samples were fixed in 4% paraformaldehyde and processed for embedding in paraffin and sectioned using standard histological protocols. Immunofluorescent staining was performed on 3 mm thick sections. The immunostaining pattern of mono-, di-, and tri-methylated histone H3-K4 and lysine-specific demethylase 1 (LSD1, also known as KDM1 or AOF1) was assessed. Interestingly, H3-K4 mono-, di-, and tri-methylation in follicles of prepubertal gilts was specifically distributed and developmentally regulated. While granulosa cells of primary, secondary, and early antral follicles were negative for H3-K4 methylation those from large antral follicles showed a striking upregulation in the cells located in the proximity to the oocyte. Specifically, the cumulus oophorus displayed intense staining for H3-K4 methylation and signals were strongest in the granulosa cells in the inner two cell layers of the follicular wall. Although all oocytes from primary to large antral stage follicles were positive for H3-K4 mono-, di-, and tri-methylation, the patterns of distribution were altered through oocyte follicle development. H3-K4 methylation in granulosa cells was dramatically reduced as time to ovulation approached and was low to undetected at 38 h post hCG treatment. H3-K4 mono-, di-, and tri-methylation in large luteal cells increased as differentiation evolved but remained low in small luteal cells. Strikingly, LSD1 (KDM1) expression was found to be restricted to the corpus luteum. In summary, this study provides new information on histone H3-K4 methylation patterns in the oocyte and follicle during folliculogenesis, which suggests that these epigenetic markers serve an essential regulatory role during folliculogenesis. Reproduction (2008) 135 829–838 Introduction Pepin et al. 2007). Despite the fact that in vivo and in vitro experiments and transgenic mouse models have The ovary is responsible for the generation of oocytes revealed key mechanisms that regulate folliculogenesis capable of undergoing fertilization and for the pro- (Pangas & Matzuk 2004, Skinner 2005), our under- duction of steroid hormones required to prepare for standing of the involvement of epigenetic processes is fertilization and pregnancy. The follicle is the primary just emerging (LaVoie 2005). Follicular development in structure of the ovary and is comprised of an oocyte mammalian species is driven by endocrine signals, encompassed by one or more layers of somatic cells. including estrogens and the gonadotropin and intra- Recent advances in the study of folliculogenesis in ovarian regulators such as growth and differentiation mammals demonstrate a tightly regulated program of factor 9 (GDF9; Su et al. 2004, Knight & Glister 2006). genomic, epigenetic, and hormonal events that direct Progression from the primordial to preantral stage is, in survival, proliferation, and differentiation of somatic part, regulated by oocyte-derived factors that include cells (DeManno et al. 1999, Ruiz-Cortes et al. 2005, GDF9 and bone morphogenic protein (BMP15), and is q 2008 Society for Reproduction and Fertility DOI: 10.1530/REP-07-0448 ISSN 1470–1626 (paper) 1741–7899 (online) Online version via www.reproduction-online.org Downloaded from Bioscientifica.com at 10/02/2021 03:15:26AM via free access 830 M M Seneda and others not dependent on gonadotropin support (Matzuk et al. referred to as germinal vesicle 0 (GV0) and consists of a 2002). As the follicle develops to the early antral stage, it nucleolus with diffuse filamentous chromatin distributed becomes responsive to gonadotropin and its develop- over the nuclear area, which is seen in most of the ment is also influenced by intra-ovarian regulators (Craig oocytes present in follicles smaller than 1 mm (Sun et al. et al. 2007). Signaling between the oocyte and granulosa 2004). With the progression of growth and differen- cells has emerged as a key regulator of the primary- tiation, oocytes undergo a dramatic change in nuclear to-secondary-to-antral follicle transition, and members organization in which chromatin becomes progressively of the transforming growth factor-b (TGF-b) family are condensed, forming a heterochromatin rim surrounding required for these transitions (Pangas & Matzuk 2004). the nucleolus, a configuration termed surrounded Estrogen and follicle-stimulating hormone (FSH) are nucleolus (SN; Debey et al. 1993), or GV1–4 (depending critical to the formation of antral follicles (Britt et al. on the condensation state of the chromatin) in the pig 2002, 2004),whichfailtoforminFSHreceptor (Sun et al. 2004). Accompanying these alterations in knockout mice (Dierich et al. 1998). chromatin structure are changes in transcription levels; Eukaryotic DNA is packaged into chromatin formed by oocytes showing the NSN configuration undergo high nucleosomes composed of a histone octamer (H2A, H2B, rates of transcription whereas those in the SN state H3, and H4) wrapped by 147 bps of DNA. Epigenetic display only a low level (Bouniol-Baly et al. 1999, mechanisms regulate chromatin higher order and the Maddox-Hyttel et al. 2005, De La Fuente 2006). access of gene regulatory factors to the DNA (Lietal. 2007). In the porcine ovary following the preovulatory LH DNA methylation and histone modifications are important surge, the luteinization process begins with hyperanemia epigenetic mechanisms regulating gene expression, and enlargement, followed by expulsion of the ovum development, and are deregulated in some cancers (Murphy et al.2001). Following ovulation, under the (reviewed in Goldberg et al. 2007). Post-translational influence of the gonadotropins, prolactin and insulin, modification of the amino terminus of histones acts to granulosa and thecal cells differentiate. This process is control access of the transcriptional machinery to the DNA accompanied by alterations in steroidogenesis whereby through recruitment of effector molecules, or can trigger the thecal and granulosa cell participate in the synthesis gene silencing through recruitment of transcriptional and secretion of progesterone (Murphy et al. 2001). At this repressors (Kouzarides 2007). Histone modifications point, the roles of histone modification in the control of associated with gene activation include histone H4 gene transcription are just beginning to be elucidated. For acetylation and histone H3 methylation at lysine 4 example, acetylation of histone H3 at lysine 9 has been (H3-K4; Barski et al. 2007, Kouzarides 2007). Genome revealed to increase transcription of Niemann-Pick C1 in wide studies in eukaryotes localize H3-K4 methylation to porcine granulosa cells (Gevry et al.2003)andpro- gene regulatory regions (Santos-Rosa et al. 2002, Ng et al. gesterone synthesis capacity is facilitated by upregulation 2003, Sims et al.2003). More recently, in high-resolution of cholesterol synthesis for which STAR is a key gene profiling of the human genome, H3-K4 methylation was whose expression appears to be regulated in part by correlated with gene activation (Barski et al. 2007). epigenetic mechanisms (Lazzaro et al. 2006). During Prior to birth in the mammalian ovary, oocytes are luteinization, granulosa cells undergo acetylation of arrested at prophase I of meiosis. Once the ovarian histone H3 and consequent transcriptional activation of follicle undergoes activation, oocytes are maintained the STAR gene (Christenson et al. 2001). Given the under meiotic arrest at the diplotene stage during importance of epigenetic modifications in the control of postnatal development. At puberty and from each gene expression and chromatin organization, the present estrous cycle on, the gonadotropin surge of luteinizing study was undertaken to determine the cell and develop- hormone (LH) promotes meiotic resumption (Eppig mental-specific patterns of histone H3-K4 mono (m1)-, di 2001). Epigenetic imprints in the form of DNA (m2)-,
Recommended publications
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Dynamic Changes in Mitochondrial 3D Structure During Folliculogenesis
    www.nature.com/scientificreports OPEN Dynamic changes in mitochondrial 3D structure during folliculogenesis and luteal formation in the goat large luteal cell lineage Yi‑Fan Jiang1*, Pin‑Huan Yu2, Yovita Permata Budi1, Chih‑Hsien Chiu3 & Chi‑Yu Fu4 In mammalian ovaries, mitochondria are integral sites of energy production and steroidogenesis. While shifts in cellular activities and steroidogenesis are well characterized during the diferentiation of large luteal cells in folliculogenesis and luteal formation, mitochondrial dynamics during this process have not been previously evaluated. In this study, we collected ovaries containing primordial follicles, mature follicles, corpus hemorrhagicum, or corpus luteum from goats at specifc times in the estrous cycle. Enzyme histochemistry, ultrastructural observations, and 3D structural analysis of serial sections of mitochondria revealed that branched mitochondrial networks were predominant in follicles, while spherical and tubular mitochondria were typical in large luteal cells. Furthermore, the average mitochondrial diameter and volume increased from folliculogenesis to luteal formation. In primordial follicles, the signals of cytochrome c oxidase and ATP synthase were undetectable in most cells, and the large luteal cells from the corpus hemorrhagicum also showed low enzyme signals and content when compared with granulosa cells in mature follicles or large luteal cells from the corpus luteum. Our fndings suggest that the mitochondrial enlargement could be an event during folliculogenesis and luteal formation, while the modulation of mitochondrial morphology and respiratory enzyme expressions may be related to tissue remodeling during luteal formation. Te development of follicles and formation of corpus luteum (CL) are the major processes that defne the two phases of the ovarian cycle.
    [Show full text]
  • Ans 214 SI Multiple Choice Set 4 Weeks 10/14 - 10/23
    AnS 214 SI Multiple Choice Set 4 Weeks 10/14 - 10/23 The following multiple choice questions pertain to material covered in the last two weeks' lecture sets. Answering the following questions will aid your exam preparation. These questions are meant as a gauge of your content knowledge - use them to pinpoint areas where you need more preparation. 1. A heifer begins ovarian activity at A. 6-8 months B. 8-10 months C.10-12 months D. 12-14 months E. 24 months 2. The gestation length of a cow is A. 82 days C. 166 days D. 283 days E. 311 days 3. All of the following produce hormones vital to ovarian cyclicity EXCEPT A. hypothalamus B. ovary C. posterior pituitary D. uterus E. all of the above are correct 4. Which of the following structures is INCORRECTLY matched to the hormones it produces? A. uterus: PGF2a B. ovary: testosterone, activin, estrogen, oxytocin C. placenta: progesterone, testosterone, estrogen D. anterior pituitary: ACTH, FSH, LH E. hypothalamus: GnRH, CRH 5. In the female reproductive system of all species A. the ovaries are supported by the mesometrium B. urine can only exit via the urethra via the suburethral diverticulum C. the uterus produces progesterone D. the oviduct is supported by the mesosalpinx E. the ovary is directly connected to the oviduct 6. Which of the following is FALSE about the mare? A. Ovulates from the medulla because of an inverted ovarian structure B. Ovulates a 2n oocyte C. Does not have a suburethral diverticulum D. Ovulates at only one site on the ovary, called the ovulation fossa E.
    [Show full text]
  • Reproductive Cycles in Females
    MOJ Women’s Health Review Article Open Access Reproductive cycles in females Abstract Volume 2 Issue 2 - 2016 The reproductive system in females consists of the ovaries, uterine tubes, uterus, Heshmat SW Haroun vagina and external genitalia. Periodic changes occur, nearly every one month, in Faculty of Medicine, Cairo University, Egypt the ovary and uterus of a fertile female. The ovarian cycle consists of three phases: follicular (preovulatory) phase, ovulation, and luteal (postovulatory) phase, whereas Correspondence: Heshmat SW Haroun, Professor of the uterine cycle is divided into menstruation, proliferative (postmenstrual) phase Anatomy and Embryology, Faculty of Medicine, Cairo University, and secretory (premenstrual) phase. The secretory phase of the endometrium shows Egypt, Email [email protected] thick columnar epithelium, corkscrew endometrial glands and long spiral arteries; it is under the influence of progesterone secreted by the corpus luteum in the ovary, and is Received: June 30, 2016 | Published: July 21, 2016 an indicator that ovulation has occurred. Keywords: ovarian cycle, ovulation, menstrual cycle, menstruation, endometrial secretory phase Introduction lining and it contains the uterine glands. The myometrium is formed of many smooth muscle fibres arranged in different directions. The The fertile period of a female extends from the age of puberty perimetrium is the peritoneal covering of the uterus. (11-14years) to the age of menopause (40-45years). A fertile female exhibits two periodic cycles: the ovarian cycle, which occurs in The vagina the cortex of the ovary and the menstrual cycle that happens in the It is the birth and copulatory canal. Its anterior wall measures endometrium of the uterus.
    [Show full text]
  • Horse Department Subjects for 2016 Skillathon the Skillathon Is Mandatory, but Not Part of the Overall Project Score
    Horse Department Subjects for 2016 Skillathon The Skillathon is mandatory, but not part of the overall project score. The Skillathon will be divided into three age groups. Recognition of the top scores for each age group will be announced at the fair. Also, all youth that score a minimum score, as determined by the Skillathon board, will be entered into a random drawing for various prizes at the fair. For 2016 all youth are expected to wear exactly what they wear for Showmanship at the fair for their Project Interview. See the Fair Book for complete information. If youth show more than one species, they may choose the species outfit they wear, and let the judge know during their interview. The skillathon will be hands on assessments as much as possible. 1. Horse Safety a. Know how to halter a horse and lead it safely b. Know how to tie a horse with a quick release knot c. Never tie a horse with a bridle/ bit in its mouth d. Know how to approach a horse safely e. Know safe riding apparel--helmet, boots, long pants f. Know what a horse needs when out to pasture or in a stall (horse always needs fresh clean water available) g. Understand how to “read” a horse based on its ears, tail, behavior 2. Grooming a Horse a. Given a basket of grooming tools, be able to select the items you need to properly groom your horse in general b. Given a basket of grooming tools, be able to select the items you need to properly groom your horse for a show c.
    [Show full text]
  • Ovarian Blood Vessel Occlusion As a Surgical Sterilization Method in Rats1
    1 – ORIGINAL ARTICLE MODELS, BIOLOGICAL Ovarian blood vessel occlusion as a surgical sterilization method in rats1 Eduardo MurakamiI, Laíza Sartori de CamargoII, Karym Christine de Freitas CardosoIII, Marina Pacheco MiguelIV, Denise Cláudia TavaresV, Cristiane dos Santos HonshoVI, Fabiana Ferreira de SouzaVII DOI: http://dx.doi.org/10.1590/S0102-86502014000400001 I Graduate student, Veterinary Medicine, University of Franca (UNIFRAN), Franca-SP, Brazil. Acquisition, analysis and interpretation of data. II Graduate student, Veterinary Medicine, UNIFRAN, Franca-SP, Brazil. Acquisition of data. IIIMaster, Postgraduate Program in Small Animal Medicine, University of Franca (UNIFRAN), Veterinary Medicine, Franca-SP, Brazil. Acquisition, analysis and interpretation of data. IVPhD, Associate Professor, Animal Pathology, Federal University of Goias, Veterinary Medicine, Jatai-GO, Brazil. Analysis and interpretation of data, critical revision. VFellow PhD Degree, Postgraduate Program in Animal Reproduction, Department of Preventive Veterinary Medicine and Animal, Reproduction, School of Agrarian Sciences and Veterinary Medicine (FCAV), Sao Paulo State University, Jaboticabal-SP, Brazil. Acquisition of data. VIPhD, Full Professor, Veterinary Surgery Division, UNIFRAN, Franca-SP, Brazil. Critical revision. VIIPhD, Full Professor, Animal Reproduction Division, UNIFRAN, Franca-SP, Brazil. Conception, design, intellectual and scientific content of the study. ABSTRACT PURPOSE: To evaluate the female sterilization by occlusion of the ovarian blood flow, using the rat as experimental model. METHODS: Fifty-five females rats were divided into four groups: I (n=10), bilateral ovariectomy, euthanized at 60 or 90 days; II (n=5), opening the abdominal cavity, euthanized at 90 days; III (n=20), bilateral occlusion of the ovarian blood supply using titanium clips, euthanized at 60 or 90 days; and IV (n=20), bilateral occlusion of the ovarian blood supply using nylon thread, euthanized at 60 or 90 days.
    [Show full text]
  • Board-Review-Series-Obstetrics-Gynecology-Pearls.Pdf
    ObstetricsandGynecology BOARDREVIEW Third Edition Stephen G. Somkuti, MD, PhD Associate Professor Department of Obstetrics and Gynecology and Reproductive Sciences Temple University School of Medicine School Philadelphia, Pennsylvania Director, The Toll Center for Reproductive Sciences Division of Reproductive Endocrinology Department of Obstetrics and Gynecology Abington Memorial Hospital Abington Reproductive Medicine Abington, Pennsylvania New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2008 by the McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 0-07-164298-6 The material in this eBook also appears in the print version of this title: 0-07-149703-X. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please contact George Hoare, Special Sales, at [email protected] or (212) 904-4069. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc.
    [Show full text]
  • Índice De Denominacións Españolas
    VOCABULARIO Índice de denominacións españolas 255 VOCABULARIO 256 VOCABULARIO agente tensioactivo pulmonar, 2441 A agranulocito, 32 abaxial, 3 agujero aórtico, 1317 abertura pupilar, 6 agujero de la vena cava, 1178 abierto de atrás, 4 agujero dental inferior, 1179 abierto de delante, 5 agujero magno, 1182 ablación, 1717 agujero mandibular, 1179 abomaso, 7 agujero mentoniano, 1180 acetábulo, 10 agujero obturado, 1181 ácido biliar, 11 agujero occipital, 1182 ácido desoxirribonucleico, 12 agujero oval, 1183 ácido desoxirribonucleico agujero sacro, 1184 nucleosómico, 28 agujero vertebral, 1185 ácido nucleico, 13 aire, 1560 ácido ribonucleico, 14 ala, 1 ácido ribonucleico mensajero, 167 ala de la nariz, 2 ácido ribonucleico ribosómico, 168 alantoamnios, 33 acino hepático, 15 alantoides, 34 acorne, 16 albardado, 35 acostarse, 850 albugínea, 2574 acromático, 17 aldosterona, 36 acromatina, 18 almohadilla, 38 acromion, 19 almohadilla carpiana, 39 acrosoma, 20 almohadilla córnea, 40 ACTH, 1335 almohadilla dental, 41 actina, 21 almohadilla dentaria, 41 actina F, 22 almohadilla digital, 42 actina G, 23 almohadilla metacarpiana, 43 actitud, 24 almohadilla metatarsiana, 44 acueducto cerebral, 25 almohadilla tarsiana, 45 acueducto de Silvio, 25 alocórtex, 46 acueducto mesencefálico, 25 alto de cola, 2260 adamantoblasto, 59 altura a la punta de la espalda, 56 adenohipófisis, 26 altura anterior de la espalda, 56 ADH, 1336 altura del esternón, 47 adipocito, 27 altura del pecho, 48 ADN, 12 altura del tórax, 48 ADN nucleosómico, 28 alunarado, 49 ADNn, 28
    [Show full text]
  • Ansc 630: Reproductive Biology 1
    ANSC 630: REPRODUCTIVE BIOLOGY 1 INSTRUCTOR: FULLER W. BAZER, PH.D. OFFICE: 442D KLEBERG CENTER EMAIL: [email protected] OFFICE PHONE: 979-862-2659 ANSC 630: INFORMATION CARD • NAME • MAJOR • ADVISOR • RESEARCH INTERESTS • PREVIOUS COURSES: – Reproductive Biology – Biochemistry – Physiology – Histology – Embryology OVERVIEW OF FUNCTIONAL REPRODUCTIVE ANATOMY: THE MAJOR COMPONENTS PARS NERVOSA PARS DISTALIS Hypothalamic Neurons Hypothalamic Neurons Melanocyte Supraoptic Stimulating Hormone Releasing Paraventricular Factor Axons Nerve Tracts POSTERIOR PITUITARY INTERMEDIATE LOBE OF (PARS NERVOSA) Oxytocin - Neurophysin PITUITARY Vasopressin-Neurophysin Melanocyte Stimulating Hormone (MSH) Hypothalamic Divisions Yen 2004; Reprod Endocrinol 3-73 Hormone Profile of the Estrous Cycle in the Ewe 100 30 30 50 15 15 GnRH (pg/ml)GnRH GnRH (pg/ml)GnRH 0 0 (pg/ml)GnRH 0 4 h 4 h 4 h PGF2α Concentration 0 5 10 16 0 Days LH FSH Estradiol Progesterone Development of the Hypophysis Dubois 1993 Reprod Mamm Man 17-50 Neurons • Cell body (soma; perikaryon) – Synthesis of neuropeptides • Cellular processes • Dendrites • Axon - Transport • Terminals – Storage and Secretion Yen 2004 Reprod Endocrinol 3-73 • Peptide neurotransmitter synthesis • Transcription – Gene transcribes mRNA • Translation – mRNA translated for protein synthesis • Maturation – post-translational processing • Storage in vesicles - Hormone secreted from vesicles Hypothalamus • Mid-central base of brain – Optic chiasma – 3rd ventricle – Mammillary body • Nuclei – Clusters of neurons • Different
    [Show full text]
  • Ultrasound Confirmation of Ovulation in Mares : a Normal Corpus Luteum Or
    RDA Manuscript Proof Ultrasound confirmatio n of ovulation in mares: a normal corpus luteum or a hemorrhagic anovulatory follicle? Journal:For Reproduction Peer in Domestic Review Animals Manuscript ID: Draft Manuscript Type: Original Article Date Submitted by the Author: n/a Complete List of Authors: Cuervo-Arango Lecina, Juan; Universidad Cardenal Herrera-CEU, Medinina y Cirugia Animal; Newcombe, John; Equine Fertrility Clinic WHF, equine < Species:, Pathology < General reproduction, Animal breeding < Subject Area: General reproduction RDA Manuscript Proof Page 1 of 24 RDA Manuscript Proof 1 2 3 1 Ultrasound confirmation of ovulation in mares: a normal corpus 4 5 6 2 luteum or a hemorrhagic anovulatory follicle? 7 8 9 3 10 11 1 2 12 4 J Cuervo-Arango and JR Newcombe 13 14 5 1 15 6 Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad CEU Cardenal 7 Herrera, 46113 Moncada, Valencia, Spain 16 2 17 8 Warren House Farm, Equine Fertility Clinic, Barracks Lane, WS8 6LS Brownhills, West Midlands, UK 18 9 For Peer Review 19 10 20 21 11 Contents 22 23 12 The most common pathological anovulatory condition that occurs spontaneously during the breeding 24 25 13 season in the mare is the hemorrhagic anovulatory follicle (HAF). A relatively high proportion of mares, 26 27 14 soon after ovulation, develop a corpus hemorrhagicum (CH) with a central lacuna. This type of corpora 28 29 15 lutea may resemble an HAF, which may complicate the accurate diagnosis of ovulation.. The main 30 31 16 objective of this study was to compare the ultrasound data of mares examined frequently with HAFs and 32 17 CHs to elucidate whether it is possible to distinguish them from each other.
    [Show full text]
  • Ovarian Systems Biology Michael K
    Spring 2020 – Systems Biology of Reproduction Lecture Outline – Ovarian Systems Biology Michael K. Skinner – Biol 475/575 CUE 418, 10:35-11:50 am, Tuesday & Thursday March 3, 2020 Week 8 Ovarian Systems Biology Cell Biology of the Ovary -Cell types/organization -Developmental stages (Folliculogenesis) -Atresia/apoptosis -Oogenesis Regulation of Folliculogenesis -Growth properties of ovarian follicles -Local production and action of growth factors -Growth regulations during development -Primordial follicle transition Endocrine Regulation of Tissue Function -Gonadotropin actions (Pituitary/Gonadal Axis) -Steroid production and action -Two cell theory modifications -Hormone actions during development Cell-Cell Interactions -Categorization of different cell-cell interactions in the ovary -Growth factor regulation follicle development -Oogenesis and systems biology Required Reading Bahr JM. (2018) Ovary, Overview. in: Encyclopedia of Reproduction 2nd Edition, Ed: MK Skinner. Elsevier. Vol 2: 3-7. REFERENCES Qi X, Yun C, Sun L, Xia J, et al. Gut microbiota-bile acid-interleukin-22 axis orchestrates polycystic ovary syndrome. Nat Med. 2019 Aug;25(8):1225-1233. Ramly B, Afiqah-Aleng N, Mohamed-Hussein ZA. Protein-Protein Interaction Network Analysis Reveals Several Diseases Highly Associated with Polycystic Ovarian Syndrome. Int J Mol Sci. 2019 Jun 18;20(12). Wang XY, Qin YY. Long non-coding RNAs in biology and female reproductive disorders. Front Biosci (Landmark Ed). 2019 Mar 1;24:750-764. Henriques MC, Loureiro S, Fardilha M, Herdeiro MT. Exposure to mercury and human reproductive health: A systematic review. Reprod Toxicol. 2019 Apr;85:93-103. Amjadi F, Mehdizadeh M, Ashrafi M, et al. Distinct changes in the proteome profile of endometrial tissues in polycystic ovary syndrome compared with healthy fertile women.
    [Show full text]
  • Histology of Female Reproductive System
    Histology of Female Reproductive System Dr. Rajesh Ranjan Assistant Professor Deptt. of Veterinary Anatomy C.V.Sc., Rewa Female Reproductive System ▪Ovaries ▪Oviducts ▪Uterus ▪Vagina ▪Vulva Ovaries Ovoid structure divided into outer cortex and inner medulla. Cortex ( outer portion) ◦ Broad peripheral zone containing follicles in various stages of development embedded in loose connective tissue stroma and covered by Germinal epithelium which is Simple cuboidal/ columnar (young) and low cuboidal/ squamous (adult). ◦ Stroma: supporting tissue and covered by Tunica albuginea just beneath the germinal epithelium. Medulla (Inner portion) ◦ Contains nerves, blood vessels, lymphatics, loose connective tissue and smooth muscles. ◦ Also contains rete ovarii which is a solid cellular cords or networks of irregular channels lined by cuboidal epithelium. Ovarian Follicles Primordial follicle: ◦ Unilaminar, preantral, resting follicle. ◦ Comprises of primary oocyte surrounded by simple squamous epithelium. Primary follicle: ◦ Unilaminar, preantral, growing follicle. ◦ Comprises of primary oocyte surrounded by simple cuboidal epithelium. Early Secondary follicle: ◦ Multilaminar, preantral, growing follicle. ◦ Comprises of primary oocyte surrounded zona pellucida and stratified epithelium of polyhedral/ follicular cells called as Granulosa cell. ◦ Zona pellucida is a glycoprotein layer. Late Secondary follicle: • Multilaminar, antral, growing follicle. • Comprises of primary oocyte surrounded by zona pellucida and stratified epithelium of polyhedral/ follicular cells called as Granulosa cell (Zona Granulosa) with an outer covering of theca interna. • Antral pockets are formed containing liquor folliculi. • Theca layer (Theca interna) comprises of vascularized multilaminar layer of spindle shaped stroma cells. Graafian follicle: Also calledVesicular/ Tertiary follicle. Multilaminar, antral, growing follicle. Comprises of primary oocyte surrounded by Zona pellucida, Granulosa cells (Stratum granulosum) with Antrum and Theca layers.
    [Show full text]